Example #1
0
void UnixAPIChecker::checkPreStmt(const CallExpr *CE,
                                  CheckerContext &C) const {
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return;

  // Don't treat functions in namespaces with the same name a Unix function
  // as a call to the Unix function.
  const DeclContext *NamespaceCtx = FD->getEnclosingNamespaceContext();
  if (NamespaceCtx && isa<NamespaceDecl>(NamespaceCtx))
    return;

  StringRef FName = C.getCalleeName(FD);
  if (FName.empty())
    return;

  SubChecker SC =
    llvm::StringSwitch<SubChecker>(FName)
      .Case("open", &UnixAPIChecker::CheckOpen)
      .Case("openat", &UnixAPIChecker::CheckOpenAt)
      .Case("pthread_once", &UnixAPIChecker::CheckPthreadOnce)
      .Case("calloc", &UnixAPIChecker::CheckCallocZero)
      .Case("malloc", &UnixAPIChecker::CheckMallocZero)
      .Case("realloc", &UnixAPIChecker::CheckReallocZero)
      .Case("reallocf", &UnixAPIChecker::CheckReallocfZero)
      .Cases("alloca", "__builtin_alloca", &UnixAPIChecker::CheckAllocaZero)
      .Case("__builtin_alloca_with_align",
            &UnixAPIChecker::CheckAllocaWithAlignZero)
      .Case("valloc", &UnixAPIChecker::CheckVallocZero)
      .Default(nullptr);

  if (SC)
    (this->*SC)(C, CE);
}
static bool getPrintfFormatArgumentNum(const CallExpr *CE,
                                       const CheckerContext &C,
                                       unsigned int &ArgNum) {
  // Find if the function contains a format string argument.
  // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
  // vsnprintf, syslog, custom annotated functions.
  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
  if (!FDecl)
    return false;
  for (specific_attr_iterator<FormatAttr>
         i = FDecl->specific_attr_begin<FormatAttr>(),
         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {

    const FormatAttr *Format = *i;
    ArgNum = Format->getFormatIdx() - 1;
    if ((Format->getType() == "printf") && CE->getNumArgs() > ArgNum)
      return true;
  }

  // Or if a function is named setproctitle (this is a heuristic).
  if (C.getCalleeName(CE).find("setproctitle") != StringRef::npos) {
    ArgNum = 0;
    return true;
  }

  return false;
}
Example #3
0
void UnixAPIChecker::checkPreStmt(const CallExpr *CE,
                                  CheckerContext &C) const {
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return;

  StringRef FName = C.getCalleeName(FD);
  if (FName.empty())
    return;

  SubChecker SC =
    llvm::StringSwitch<SubChecker>(FName)
      .Case("open", &UnixAPIChecker::CheckOpen)
      .Case("pthread_once", &UnixAPIChecker::CheckPthreadOnce)
      .Case("calloc", &UnixAPIChecker::CheckCallocZero)
      .Case("malloc", &UnixAPIChecker::CheckMallocZero)
      .Case("realloc", &UnixAPIChecker::CheckReallocZero)
      .Case("reallocf", &UnixAPIChecker::CheckReallocfZero)
      .Cases("alloca", "__builtin_alloca", &UnixAPIChecker::CheckAllocaZero)
      .Case("valloc", &UnixAPIChecker::CheckVallocZero)
      .Default(nullptr);

  if (SC)
    (this->*SC)(C, CE);
}
Example #4
0
// Check the jail state before any function call except chroot and chdir().
void ChrootChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const {
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;

  ASTContext &Ctx = C.getASTContext();
  if (!II_chroot)
    II_chroot = &Ctx.Idents.get("chroot");
  if (!II_chdir)
    II_chdir = &Ctx.Idents.get("chdir");

  // Ingnore chroot and chdir.
  if (FD->getIdentifier() == II_chroot || FD->getIdentifier() == II_chdir)
    return;
  
  // If jail state is ROOT_CHANGED, generate BugReport.
  void *const* k = C.getState()->FindGDM(ChrootChecker::getTag());
  if (k)
    if (isRootChanged((intptr_t) *k))
      if (ExplodedNode *N = C.addTransition()) {
        if (!BT_BreakJail)
          BT_BreakJail.reset(new BuiltinBug("Break out of jail",
                                        "No call of chdir(\"/\") immediately "
                                        "after chroot"));
        BugReport *R = new BugReport(*BT_BreakJail, 
                                     BT_BreakJail->getDescription(), N);
        C.emitReport(R);
      }
  
  return;
}
void GenericTaintChecker::addSourcesPost(const CallExpr *CE,
                                         CheckerContext &C) const {
  // Define the attack surface.
  // Set the evaluation function by switching on the callee name.
  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
  if (!FDecl || FDecl->getKind() != Decl::Function)
    return;

  StringRef Name = C.getCalleeName(FDecl);
  if (Name.empty())
    return;
  FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
    .Case("scanf", &GenericTaintChecker::postScanf)
    // TODO: Add support for vfscanf & family.
    .Case("getchar", &GenericTaintChecker::postRetTaint)
    .Case("getchar_unlocked", &GenericTaintChecker::postRetTaint)
    .Case("getenv", &GenericTaintChecker::postRetTaint)
    .Case("fopen", &GenericTaintChecker::postRetTaint)
    .Case("fdopen", &GenericTaintChecker::postRetTaint)
    .Case("freopen", &GenericTaintChecker::postRetTaint)
    .Case("getch", &GenericTaintChecker::postRetTaint)
    .Case("wgetch", &GenericTaintChecker::postRetTaint)
    .Case("socket", &GenericTaintChecker::postSocket)
    .Default(nullptr);

  // If the callee isn't defined, it is not of security concern.
  // Check and evaluate the call.
  ProgramStateRef State = nullptr;
  if (evalFunction)
    State = (this->*evalFunction)(CE, C);
  if (!State)
    return;

  C.addTransition(State);
}
void GenericTaintChecker::addSourcesPre(const CallExpr *CE,
                                        CheckerContext &C) const {
  ProgramStateRef State = nullptr;
  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
  if (!FDecl || FDecl->getKind() != Decl::Function)
    return;

  StringRef Name = C.getCalleeName(FDecl);
  if (Name.empty())
    return;

  // First, try generating a propagation rule for this function.
  TaintPropagationRule Rule =
    TaintPropagationRule::getTaintPropagationRule(FDecl, Name, C);
  if (!Rule.isNull()) {
    State = Rule.process(CE, C);
    if (!State)
      return;
    C.addTransition(State);
    return;
  }

  // Otherwise, check if we have custom pre-processing implemented.
  FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
    .Case("fscanf", &GenericTaintChecker::preFscanf)
    .Default(nullptr);
  // Check and evaluate the call.
  if (evalFunction)
    State = (this->*evalFunction)(CE, C);
  if (!State)
    return;
  C.addTransition(State);

}
void DoubleFetchChecker::checkPostStmt(const CallExpr *CE, CheckerContext &Ctx) const{
	ProgramStateRef state = Ctx.getState();
	const FunctionDecl *FDecl = Ctx.getCalleeDecl(CE);
	StringRef funcName = Ctx.getCalleeName(FDecl);
	//std::cout<<"[checkPostStmt<CallExpr>] func name is:"<<funcName<<std::endl;
	//printf("[checkPostStmt<CallExpr>] func name is:%s\n",funcName);

}
void DoubleFetchChecker::checkPreStmt(const CallExpr *CE, CheckerContext &Ctx) const{
	ProgramStateRef state = Ctx.getState();
	const FunctionDecl *FDecl = Ctx.getCalleeDecl(CE);
	StringRef funcName = Ctx.getCalleeName(FDecl);
	//std::cout<<"[checkPreStmt<CallExpr>] func name is:"<<funcName.<<std::endl;
	//printf("[checkPreStmt<CallExpr>] func name is:%s\n",funcName);
	//std::cout<<"-------------------->getLocStart: "<<CE->getLocStart().getRawEncoding()<<std::endl;
	//std::cout<<"--------------------->getLocEnd: "<<CE->getLocEnd().getRawEncoding()<<std::endl;
	//std::cout<<"-------------------->getExprLoc: "<<CE->getExprLoc().getRawEncoding()<<std::endl;

	unsigned int spelling = Ctx.getSourceManager().getSpellingLineNumber(CE->getExprLoc());
	unsigned int ex = Ctx.getSourceManager().getExpansionLineNumber(CE->getExprLoc());

}
void DoubleFetchChecker::checkPostStmt(const CallExpr *CE, CheckerContext &Ctx) const{
	ProgramStateRef state = Ctx.getState();
	const FunctionDecl *FDecl = Ctx.getCalleeDecl(CE);
	StringRef funcName = Ctx.getCalleeName(FDecl);

	/*
	  	  	const Expr * arg0 = CE->getArg(0);
			std::cout<<"[checkPostStmt]--->arg0: "<<toStr(arg0)<<std::endl;
			SourceLocation Loc0 = arg0->getExprLoc();
			StringRef name0 = Ctx.getMacroNameOrSpelling(Loc0);
			std::cout<<"[checkPostStmt]---> arg0Namen: "<<name0.str()<<std::endl;
	 */

}
bool BuiltinFunctionChecker::evalCall(const CallExpr *CE,
                                      CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  const LocationContext *LCtx = C.getLocationContext();
  if (!FD)
    return false;

  unsigned id = FD->getBuiltinID();

  if (!id)
    return false;

  switch (id) {
  case Builtin::BI__builtin_expect: {
    // For __builtin_expect, just return the value of the subexpression.
    assert (CE->arg_begin() != CE->arg_end());
    SVal X = state->getSVal(*(CE->arg_begin()), LCtx);
    C.addTransition(state->BindExpr(CE, LCtx, X));
    return true;
  }

  case Builtin::BI__builtin_alloca: {
    // FIXME: Refactor into StoreManager itself?
    MemRegionManager& RM = C.getStoreManager().getRegionManager();
    const AllocaRegion* R =
      RM.getAllocaRegion(CE, C.blockCount(), C.getLocationContext());

    // Set the extent of the region in bytes. This enables us to use the
    // SVal of the argument directly. If we save the extent in bits, we
    // cannot represent values like symbol*8.
    DefinedOrUnknownSVal Size =
        state->getSVal(*(CE->arg_begin()), LCtx).castAs<DefinedOrUnknownSVal>();

    SValBuilder& svalBuilder = C.getSValBuilder();
    DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
    DefinedOrUnknownSVal extentMatchesSizeArg =
      svalBuilder.evalEQ(state, Extent, Size);
    state = state->assume(extentMatchesSizeArg, true);
    assert(state && "The region should not have any previous constraints");

    C.addTransition(state->BindExpr(CE, LCtx, loc::MemRegionVal(R)));
    return true;
  }
  }

  return false;
}
Example #11
0
void MacOSKeychainAPIChecker::checkPostStmt(const CallExpr *CE,
                                            CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return;

  StringRef funName = C.getCalleeName(FD);

  // If a value has been allocated, add it to the set for tracking.
  unsigned idx = getTrackedFunctionIndex(funName, true);
  if (idx == InvalidIdx)
    return;

  const Expr *ArgExpr = CE->getArg(FunctionsToTrack[idx].Param);
  // If the argument entered as an enclosing function parameter, skip it to
  // avoid false positives.
  if (isEnclosingFunctionParam(ArgExpr) &&
      C.getLocationContext()->getParent() == 0)
    return;

  if (SymbolRef V = getAsPointeeSymbol(ArgExpr, C)) {
    // If the argument points to something that's not a symbolic region, it
    // can be:
    //  - unknown (cannot reason about it)
    //  - undefined (already reported by other checker)
    //  - constant (null - should not be tracked,
    //              other constant will generate a compiler warning)
    //  - goto (should be reported by other checker)

    // The call return value symbol should stay alive for as long as the
    // allocated value symbol, since our diagnostics depend on the value
    // returned by the call. Ex: Data should only be freed if noErr was
    // returned during allocation.)
    SymbolRef RetStatusSymbol =
      State->getSVal(CE, C.getLocationContext()).getAsSymbol();
    C.getSymbolManager().addSymbolDependency(V, RetStatusSymbol);

    // Track the allocated value in the checker state.
    State = State->set<AllocatedData>(V, AllocationState(ArgExpr, idx,
                                                         RetStatusSymbol));
    assert(State);
    C.addTransition(State);
  }
}
bool GenericTaintChecker::checkPre(const CallExpr *CE, CheckerContext &C) const{

  if (checkUncontrolledFormatString(CE, C))
    return true;

  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
  if (!FDecl || FDecl->getKind() != Decl::Function)
    return false;

  StringRef Name = C.getCalleeName(FDecl);
  if (Name.empty())
    return false;

  if (checkSystemCall(CE, Name, C))
    return true;

  if (checkTaintedBufferSize(CE, FDecl, C))
    return true;

  return false;
}
Example #13
0
bool ChrootChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return false;

  ASTContext &Ctx = C.getASTContext();
  if (!II_chroot)
    II_chroot = &Ctx.Idents.get("chroot");
  if (!II_chdir)
    II_chdir = &Ctx.Idents.get("chdir");

  if (FD->getIdentifier() == II_chroot) {
    Chroot(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_chdir) {
    Chdir(C, CE);
    return true;
  }

  return false;
}
Example #14
0
void MacOSKeychainAPIChecker::checkPreStmt(const CallExpr *CE,
                                           CheckerContext &C) const {
  unsigned idx = InvalidIdx;
  ProgramStateRef State = C.getState();

  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return;
  
  StringRef funName = C.getCalleeName(FD);
  if (funName.empty())
    return;

  // If it is a call to an allocator function, it could be a double allocation.
  idx = getTrackedFunctionIndex(funName, true);
  if (idx != InvalidIdx) {
    const Expr *ArgExpr = CE->getArg(FunctionsToTrack[idx].Param);
    if (SymbolRef V = getAsPointeeSymbol(ArgExpr, C))
      if (const AllocationState *AS = State->get<AllocatedData>(V)) {
        if (!definitelyReturnedError(AS->Region, State, C.getSValBuilder())) {
          // Remove the value from the state. The new symbol will be added for
          // tracking when the second allocator is processed in checkPostStmt().
          State = State->remove<AllocatedData>(V);
          ExplodedNode *N = C.addTransition(State);
          if (!N)
            return;
          initBugType();
          SmallString<128> sbuf;
          llvm::raw_svector_ostream os(sbuf);
          unsigned int DIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
          os << "Allocated data should be released before another call to "
              << "the allocator: missing a call to '"
              << FunctionsToTrack[DIdx].Name
              << "'.";
          BugReport *Report = new BugReport(*BT, os.str(), N);
          Report->addVisitor(new SecKeychainBugVisitor(V));
          Report->addRange(ArgExpr->getSourceRange());
          Report->markInteresting(AS->Region);
          C.emitReport(Report);
        }
      }
    return;
  }

  // Is it a call to one of deallocator functions?
  idx = getTrackedFunctionIndex(funName, false);
  if (idx == InvalidIdx)
    return;

  // Check the argument to the deallocator.
  const Expr *ArgExpr = CE->getArg(FunctionsToTrack[idx].Param);
  SVal ArgSVal = State->getSVal(ArgExpr, C.getLocationContext());

  // Undef is reported by another checker.
  if (ArgSVal.isUndef())
    return;

  SymbolRef ArgSM = ArgSVal.getAsLocSymbol();

  // If the argument is coming from the heap, globals, or unknown, do not
  // report it.
  bool RegionArgIsBad = false;
  if (!ArgSM) {
    if (!isBadDeallocationArgument(ArgSVal.getAsRegion()))
      return;
    RegionArgIsBad = true;
  }

  // Is the argument to the call being tracked?
  const AllocationState *AS = State->get<AllocatedData>(ArgSM);
  if (!AS && FunctionsToTrack[idx].Kind != ValidAPI) {
    return;
  }
  // If trying to free data which has not been allocated yet, report as a bug.
  // TODO: We might want a more precise diagnostic for double free
  // (that would involve tracking all the freed symbols in the checker state).
  if (!AS || RegionArgIsBad) {
    // It is possible that this is a false positive - the argument might
    // have entered as an enclosing function parameter.
    if (isEnclosingFunctionParam(ArgExpr))
      return;

    ExplodedNode *N = C.addTransition(State);
    if (!N)
      return;
    initBugType();
    BugReport *Report = new BugReport(*BT,
        "Trying to free data which has not been allocated.", N);
    Report->addRange(ArgExpr->getSourceRange());
    if (AS)
      Report->markInteresting(AS->Region);
    C.emitReport(Report);
    return;
  }

  // Process functions which might deallocate.
  if (FunctionsToTrack[idx].Kind == PossibleAPI) {

    if (funName == "CFStringCreateWithBytesNoCopy") {
      const Expr *DeallocatorExpr = CE->getArg(5)->IgnoreParenCasts();
      // NULL ~ default deallocator, so warn.
      if (DeallocatorExpr->isNullPointerConstant(C.getASTContext(),
          Expr::NPC_ValueDependentIsNotNull)) {
        const AllocationPair AP = std::make_pair(ArgSM, AS);
        generateDeallocatorMismatchReport(AP, ArgExpr, C);
        return;
      }
      // One of the default allocators, so warn.
      if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(DeallocatorExpr)) {
        StringRef DeallocatorName = DE->getFoundDecl()->getName();
        if (DeallocatorName == "kCFAllocatorDefault" ||
            DeallocatorName == "kCFAllocatorSystemDefault" ||
            DeallocatorName == "kCFAllocatorMalloc") {
          const AllocationPair AP = std::make_pair(ArgSM, AS);
          generateDeallocatorMismatchReport(AP, ArgExpr, C);
          return;
        }
        // If kCFAllocatorNull, which does not deallocate, we still have to
        // find the deallocator.
        if (DE->getFoundDecl()->getName() == "kCFAllocatorNull")
          return;
      }
      // In all other cases, assume the user supplied a correct deallocator
      // that will free memory so stop tracking.
      State = State->remove<AllocatedData>(ArgSM);
      C.addTransition(State);
      return;
    }

    llvm_unreachable("We know of no other possible APIs.");
  }

  // The call is deallocating a value we previously allocated, so remove it
  // from the next state.
  State = State->remove<AllocatedData>(ArgSM);

  // Check if the proper deallocator is used.
  unsigned int PDeallocIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
  if (PDeallocIdx != idx || (FunctionsToTrack[idx].Kind == ErrorAPI)) {
    const AllocationPair AP = std::make_pair(ArgSM, AS);
    generateDeallocatorMismatchReport(AP, ArgExpr, C);
    return;
  }

  // If the buffer can be null and the return status can be an error,
  // report a bad call to free.
  if (State->assume(ArgSVal.castAs<DefinedSVal>(), false) &&
      !definitelyDidnotReturnError(AS->Region, State, C.getSValBuilder())) {
    ExplodedNode *N = C.addTransition(State);
    if (!N)
      return;
    initBugType();
    BugReport *Report = new BugReport(*BT,
        "Only call free if a valid (non-NULL) buffer was returned.", N);
    Report->addVisitor(new SecKeychainBugVisitor(ArgSM));
    Report->addRange(ArgExpr->getSourceRange());
    Report->markInteresting(AS->Region);
    C.emitReport(Report);
    return;
  }

  C.addTransition(State);
}
Example #15
0
bool StreamChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return false;

  ASTContext &Ctx = C.getASTContext();
  if (!II_fopen)
    II_fopen = &Ctx.Idents.get("fopen");
  if (!II_tmpfile)
    II_tmpfile = &Ctx.Idents.get("tmpfile");
  if (!II_fclose)
    II_fclose = &Ctx.Idents.get("fclose");
  if (!II_fread)
    II_fread = &Ctx.Idents.get("fread");
  if (!II_fwrite)
    II_fwrite = &Ctx.Idents.get("fwrite");
  if (!II_fseek)
    II_fseek = &Ctx.Idents.get("fseek");
  if (!II_ftell)
    II_ftell = &Ctx.Idents.get("ftell");
  if (!II_rewind)
    II_rewind = &Ctx.Idents.get("rewind");
  if (!II_fgetpos)
    II_fgetpos = &Ctx.Idents.get("fgetpos");
  if (!II_fsetpos)
    II_fsetpos = &Ctx.Idents.get("fsetpos");
  if (!II_clearerr)
    II_clearerr = &Ctx.Idents.get("clearerr");
  if (!II_feof)
    II_feof = &Ctx.Idents.get("feof");
  if (!II_ferror)
    II_ferror = &Ctx.Idents.get("ferror");
  if (!II_fileno)
    II_fileno = &Ctx.Idents.get("fileno");

  if (FD->getIdentifier() == II_fopen) {
    Fopen(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_tmpfile) {
    Tmpfile(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fclose) {
    Fclose(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fread) {
    Fread(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fwrite) {
    Fwrite(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fseek) {
    Fseek(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_ftell) {
    Ftell(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_rewind) {
    Rewind(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fgetpos) {
    Fgetpos(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fsetpos) {
    Fsetpos(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_clearerr) {
    Clearerr(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_feof) {
    Feof(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_ferror) {
    Ferror(C, CE);
    return true;
  }
  if (FD->getIdentifier() == II_fileno) {
    Fileno(C, CE);
    return true;
  }

  return false;
}
void CFNumberChecker::checkPreStmt(const CallExpr *CE,
                                         CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;

  ASTContext &Ctx = C.getASTContext();
  if (!ICreate) {
    ICreate = &Ctx.Idents.get("CFNumberCreate");
    IGetValue = &Ctx.Idents.get("CFNumberGetValue");
  }
  if (!(FD->getIdentifier() == ICreate || FD->getIdentifier() == IGetValue) ||
      CE->getNumArgs() != 3)
    return;

  // Get the value of the "theType" argument.
  SVal TheTypeVal = C.getSVal(CE->getArg(1));

  // FIXME: We really should allow ranges of valid theType values, and
  //   bifurcate the state appropriately.
  Optional<nonloc::ConcreteInt> V = TheTypeVal.getAs<nonloc::ConcreteInt>();
  if (!V)
    return;

  uint64_t NumberKind = V->getValue().getLimitedValue();
  Optional<uint64_t> OptCFNumberSize = GetCFNumberSize(Ctx, NumberKind);

  // FIXME: In some cases we can emit an error.
  if (!OptCFNumberSize)
    return;

  uint64_t CFNumberSize = *OptCFNumberSize;

  // Look at the value of the integer being passed by reference.  Essentially
  // we want to catch cases where the value passed in is not equal to the
  // size of the type being created.
  SVal TheValueExpr = C.getSVal(CE->getArg(2));

  // FIXME: Eventually we should handle arbitrary locations.  We can do this
  //  by having an enhanced memory model that does low-level typing.
  Optional<loc::MemRegionVal> LV = TheValueExpr.getAs<loc::MemRegionVal>();
  if (!LV)
    return;

  const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts());
  if (!R)
    return;

  QualType T = Ctx.getCanonicalType(R->getValueType());

  // FIXME: If the pointee isn't an integer type, should we flag a warning?
  //  People can do weird stuff with pointers.

  if (!T->isIntegralOrEnumerationType())
    return;

  uint64_t PrimitiveTypeSize = Ctx.getTypeSize(T);

  if (PrimitiveTypeSize == CFNumberSize)
    return;

  // FIXME: We can actually create an abstract "CFNumber" object that has
  //  the bits initialized to the provided values.
  ExplodedNode *N = C.generateNonFatalErrorNode();
  if (N) {
    SmallString<128> sbuf;
    llvm::raw_svector_ostream os(sbuf);
    bool isCreate = (FD->getIdentifier() == ICreate);

    if (isCreate) {
      os << (PrimitiveTypeSize == 8 ? "An " : "A ")
         << PrimitiveTypeSize << "-bit integer is used to initialize a "
         << "CFNumber object that represents "
         << (CFNumberSize == 8 ? "an " : "a ")
         << CFNumberSize << "-bit integer; ";
    } else {
      os << "A CFNumber object that represents "
         << (CFNumberSize == 8 ? "an " : "a ")
         << CFNumberSize << "-bit integer is used to initialize "
         << (PrimitiveTypeSize == 8 ? "an " : "a ")
         << PrimitiveTypeSize << "-bit integer; ";
    }

    if (PrimitiveTypeSize < CFNumberSize)
      os << (CFNumberSize - PrimitiveTypeSize)
      << " bits of the CFNumber value will "
      << (isCreate ? "be garbage." : "overwrite adjacent storage.");
    else
      os << (PrimitiveTypeSize - CFNumberSize)
      << " bits of the integer value will be "
      << (isCreate ? "lost." : "garbage.");

    if (!BT)
      BT.reset(new APIMisuse(this, "Bad use of CFNumber APIs"));

    auto report = llvm::make_unique<BugReport>(*BT, os.str(), N);
    report->addRange(CE->getArg(2)->getSourceRange());
    C.emitReport(std::move(report));
  }
}
bool BuiltinFunctionChecker::evalCall(const CallExpr *CE,
                                      CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  const LocationContext *LCtx = C.getLocationContext();
  if (!FD)
    return false;

  switch (FD->getBuiltinID()) {
  default:
    return false;

  case Builtin::BI__builtin_unpredictable:
  case Builtin::BI__builtin_expect:
  case Builtin::BI__builtin_assume_aligned:
  case Builtin::BI__builtin_addressof: {
    // For __builtin_unpredictable, __builtin_expect, and
    // __builtin_assume_aligned, just return the value of the subexpression.
    // __builtin_addressof is going from a reference to a pointer, but those
    // are represented the same way in the analyzer.
    assert (CE->arg_begin() != CE->arg_end());
    SVal X = state->getSVal(*(CE->arg_begin()), LCtx);
    C.addTransition(state->BindExpr(CE, LCtx, X));
    return true;
  }

  case Builtin::BI__builtin_alloca_with_align:
  case Builtin::BI__builtin_alloca: {
    // FIXME: Refactor into StoreManager itself?
    MemRegionManager& RM = C.getStoreManager().getRegionManager();
    const AllocaRegion* R =
      RM.getAllocaRegion(CE, C.blockCount(), C.getLocationContext());

    // Set the extent of the region in bytes. This enables us to use the
    // SVal of the argument directly. If we save the extent in bits, we
    // cannot represent values like symbol*8.
    DefinedOrUnknownSVal Size =
        state->getSVal(*(CE->arg_begin()), LCtx).castAs<DefinedOrUnknownSVal>();

    SValBuilder& svalBuilder = C.getSValBuilder();
    DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
    DefinedOrUnknownSVal extentMatchesSizeArg =
      svalBuilder.evalEQ(state, Extent, Size);
    state = state->assume(extentMatchesSizeArg, true);
    assert(state && "The region should not have any previous constraints");

    C.addTransition(state->BindExpr(CE, LCtx, loc::MemRegionVal(R)));
    return true;
  }

  case Builtin::BI__builtin_object_size: {
    // This must be resolvable at compile time, so we defer to the constant
    // evaluator for a value.
    SVal V = UnknownVal();
    llvm::APSInt Result;
    if (CE->EvaluateAsInt(Result, C.getASTContext(), Expr::SE_NoSideEffects)) {
      // Make sure the result has the correct type.
      SValBuilder &SVB = C.getSValBuilder();
      BasicValueFactory &BVF = SVB.getBasicValueFactory();
      BVF.getAPSIntType(CE->getType()).apply(Result);
      V = SVB.makeIntVal(Result);
    }

    C.addTransition(state->BindExpr(CE, LCtx, V));
    return true;
  }
  }
}
void CFNumberCreateChecker::checkPreStmt(const CallExpr *CE,
                                         CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;

  ASTContext &Ctx = C.getASTContext();
  if (!II)
    II = &Ctx.Idents.get("CFNumberCreate");

  if (FD->getIdentifier() != II || CE->getNumArgs() != 3)
    return;

  // Get the value of the "theType" argument.
  const LocationContext *LCtx = C.getLocationContext();
  SVal TheTypeVal = state->getSVal(CE->getArg(1), LCtx);

  // FIXME: We really should allow ranges of valid theType values, and
  //   bifurcate the state appropriately.
  Optional<nonloc::ConcreteInt> V = TheTypeVal.getAs<nonloc::ConcreteInt>();
  if (!V)
    return;

  uint64_t NumberKind = V->getValue().getLimitedValue();
  Optional<uint64_t> OptTargetSize = GetCFNumberSize(Ctx, NumberKind);

  // FIXME: In some cases we can emit an error.
  if (!OptTargetSize)
    return;

  uint64_t TargetSize = *OptTargetSize;

  // Look at the value of the integer being passed by reference.  Essentially
  // we want to catch cases where the value passed in is not equal to the
  // size of the type being created.
  SVal TheValueExpr = state->getSVal(CE->getArg(2), LCtx);

  // FIXME: Eventually we should handle arbitrary locations.  We can do this
  //  by having an enhanced memory model that does low-level typing.
  Optional<loc::MemRegionVal> LV = TheValueExpr.getAs<loc::MemRegionVal>();
  if (!LV)
    return;

  const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts());
  if (!R)
    return;

  QualType T = Ctx.getCanonicalType(R->getValueType());

  // FIXME: If the pointee isn't an integer type, should we flag a warning?
  //  People can do weird stuff with pointers.

  if (!T->isIntegralOrEnumerationType())
    return;

  uint64_t SourceSize = Ctx.getTypeSize(T);

  // CHECK: is SourceSize == TargetSize
  if (SourceSize == TargetSize)
    return;

  // Generate an error.  Only generate a sink error node
  // if 'SourceSize < TargetSize'; otherwise generate a non-fatal error node.
  //
  // FIXME: We can actually create an abstract "CFNumber" object that has
  //  the bits initialized to the provided values.
  //
  ExplodedNode *N = SourceSize < TargetSize ? C.generateErrorNode()
                                            : C.generateNonFatalErrorNode();
  if (N) {
    SmallString<128> sbuf;
    llvm::raw_svector_ostream os(sbuf);

    os << (SourceSize == 8 ? "An " : "A ")
       << SourceSize << " bit integer is used to initialize a CFNumber "
                        "object that represents "
       << (TargetSize == 8 ? "an " : "a ")
       << TargetSize << " bit integer. ";

    if (SourceSize < TargetSize)
      os << (TargetSize - SourceSize)
      << " bits of the CFNumber value will be garbage." ;
    else
      os << (SourceSize - TargetSize)
      << " bits of the input integer will be lost.";

    if (!BT)
      BT.reset(new APIMisuse(this, "Bad use of CFNumberCreate"));

    auto report = llvm::make_unique<BugReport>(*BT, os.str(), N);
    report->addRange(CE->getArg(2)->getSourceRange());
    C.emitReport(std::move(report));
  }
}
void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE,
                                          CheckerContext &C) const {
  // If the CallExpr doesn't have exactly 1 argument just give up checking.
  if (CE->getNumArgs() != 1)
    return;

  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;

  if (!BT) {
    ASTContext &Ctx = C.getASTContext();
    Retain = &Ctx.Idents.get("CFRetain");
    Release = &Ctx.Idents.get("CFRelease");
    MakeCollectable = &Ctx.Idents.get("CFMakeCollectable");
    Autorelease = &Ctx.Idents.get("CFAutorelease");
    BT.reset(new APIMisuse(
        this, "null passed to CF memory management function"));
  }

  // Check if we called CFRetain/CFRelease/CFMakeCollectable/CFAutorelease.
  const IdentifierInfo *FuncII = FD->getIdentifier();
  if (!(FuncII == Retain || FuncII == Release || FuncII == MakeCollectable ||
        FuncII == Autorelease))
    return;

  // FIXME: The rest of this just checks that the argument is non-null.
  // It should probably be refactored and combined with NonNullParamChecker.

  // Get the argument's value.
  const Expr *Arg = CE->getArg(0);
  SVal ArgVal = state->getSVal(Arg, C.getLocationContext());
  Optional<DefinedSVal> DefArgVal = ArgVal.getAs<DefinedSVal>();
  if (!DefArgVal)
    return;

  // Get a NULL value.
  SValBuilder &svalBuilder = C.getSValBuilder();
  DefinedSVal zero =
      svalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();

  // Make an expression asserting that they're equal.
  DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);

  // Are they equal?
  ProgramStateRef stateTrue, stateFalse;
  std::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);

  if (stateTrue && !stateFalse) {
    ExplodedNode *N = C.generateErrorNode(stateTrue);
    if (!N)
      return;

    const char *description;
    if (FuncII == Retain)
      description = "Null pointer argument in call to CFRetain";
    else if (FuncII == Release)
      description = "Null pointer argument in call to CFRelease";
    else if (FuncII == MakeCollectable)
      description = "Null pointer argument in call to CFMakeCollectable";
    else if (FuncII == Autorelease)
      description = "Null pointer argument in call to CFAutorelease";
    else
      llvm_unreachable("impossible case");

    auto report = llvm::make_unique<BugReport>(*BT, description, N);
    report->addRange(Arg->getSourceRange());
    bugreporter::trackNullOrUndefValue(N, Arg, *report);
    C.emitReport(std::move(report));
    return;
  }

  // From here on, we know the argument is non-null.
  C.addTransition(stateFalse);
}
void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE,
                                          CheckerContext &C) const {
  // If the CallExpr doesn't have exactly 1 argument just give up checking.
  if (CE->getNumArgs() != 1)
    return;

  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;
  
  if (!BT) {
    ASTContext &Ctx = C.getASTContext();
    Retain = &Ctx.Idents.get("CFRetain");
    Release = &Ctx.Idents.get("CFRelease");
    BT.reset(new APIMisuse("null passed to CFRetain/CFRelease"));
  }

  // Check if we called CFRetain/CFRelease.
  const IdentifierInfo *FuncII = FD->getIdentifier();
  if (!(FuncII == Retain || FuncII == Release))
    return;

  // FIXME: The rest of this just checks that the argument is non-null.
  // It should probably be refactored and combined with AttrNonNullChecker.

  // Get the argument's value.
  const Expr *Arg = CE->getArg(0);
  SVal ArgVal = state->getSVal(Arg, C.getLocationContext());
  DefinedSVal *DefArgVal = dyn_cast<DefinedSVal>(&ArgVal);
  if (!DefArgVal)
    return;

  // Get a NULL value.
  SValBuilder &svalBuilder = C.getSValBuilder();
  DefinedSVal zero = cast<DefinedSVal>(svalBuilder.makeZeroVal(Arg->getType()));

  // Make an expression asserting that they're equal.
  DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);

  // Are they equal?
  ProgramStateRef stateTrue, stateFalse;
  llvm::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);

  if (stateTrue && !stateFalse) {
    ExplodedNode *N = C.generateSink(stateTrue);
    if (!N)
      return;

    const char *description = (FuncII == Retain)
                            ? "Null pointer argument in call to CFRetain"
                            : "Null pointer argument in call to CFRelease";

    BugReport *report = new BugReport(*BT, description, N);
    report->addRange(Arg->getSourceRange());
    report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, Arg,
                                                                    report));
    C.EmitReport(report);
    return;
  }

  // From here on, we know the argument is non-null.
  C.addTransition(stateFalse);
}