void ElemCutter::find_intersection_points(const Elem & elem, const std::vector<Real> & vertex_distance_func) { _intersection_pts.clear(); for (unsigned int e=0; e<elem.n_edges(); e++) { std::unique_ptr<const Elem> edge (elem.build_edge_ptr(e)); // find the element nodes el0, el1 that map unsigned int el0 = elem.get_node_index(edge->node_ptr(0)), el1 = elem.get_node_index(edge->node_ptr(1)); libmesh_assert (elem.is_vertex(el0)); libmesh_assert (elem.is_vertex(el1)); libmesh_assert_less (el0, vertex_distance_func.size()); libmesh_assert_less (el1, vertex_distance_func.size()); const Real d0 = vertex_distance_func[el0], d1 = vertex_distance_func[el1]; // if this egde has a 0 crossing if (d0*d1 < 0.) { libmesh_assert_not_equal_to (d0, d1); // then find d_star in [0,1], the // distance from el0 to el1 where the 0 lives. const Real d_star = d0 / (d0 - d1); // Prevent adding nodes trivially close to existing // nodes. const Real endpoint_tol = 0.01; if ( (d_star > endpoint_tol) && (d_star < (1.-endpoint_tol)) ) { const Point x_star = (edge->point(0)*(1-d_star) + edge->point(1)*d_star); std::cout << "adding cut point (d_star, x_star) = " << d_star << " , " << x_star << std::endl; _intersection_pts.push_back (x_star); } } } }
//----------------------------------------------------------------- // Mesh refinement methods bool MeshRefinement::limit_level_mismatch_at_edge (const unsigned int max_mismatch) { // This function must be run on all processors at once parallel_only(); bool flags_changed = false; // Maps holding the maximum element level that touches an edge std::map<std::pair<unsigned int, unsigned int>, unsigned char> max_level_at_edge; std::map<std::pair<unsigned int, unsigned int>, unsigned char> max_p_level_at_edge; // Loop over all the active elements & fill the maps { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { const Elem* elem = *elem_it; const unsigned char elem_level = elem->level() + ((elem->refinement_flag() == Elem::REFINE) ? 1 : 0); const unsigned char elem_p_level = elem->p_level() + ((elem->p_refinement_flag() == Elem::REFINE) ? 1 : 0); // Set the max_level at each edge for (unsigned int n=0; n<elem->n_edges(); n++) { AutoPtr<Elem> edge = elem->build_edge(n); unsigned int childnode0 = edge->node(0); unsigned int childnode1 = edge->node(1); if (childnode1 < childnode0) std::swap(childnode0, childnode1); for (const Elem *p = elem; p != NULL; p = p->parent()) { AutoPtr<Elem> pedge = p->build_edge(n); unsigned int node0 = pedge->node(0); unsigned int node1 = pedge->node(1); if (node1 < node0) std::swap(node0, node1); // If elem does not share this edge with its ancestor // p, refinement levels of elements sharing p's edge // are not restricted by refinement levels of elem. // Furthermore, elem will not share this edge with any // of p's ancestors, so we can safely break out of the // for loop early. if (node0 != childnode0 && node1 != childnode1) break; childnode0 = node0; childnode1 = node1; std::pair<unsigned int, unsigned int> edge_key = std::make_pair(node0, node1); if (max_level_at_edge.find(edge_key) == max_level_at_edge.end()) { max_level_at_edge[edge_key] = elem_level; max_p_level_at_edge[edge_key] = elem_p_level; } else { max_level_at_edge[edge_key] = std::max (max_level_at_edge[edge_key], elem_level); max_p_level_at_edge[edge_key] = std::max (max_p_level_at_edge[edge_key], elem_p_level); } } } } } // Now loop over the active elements and flag the elements // who violate the requested level mismatch { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; const unsigned int elem_level = elem->level(); const unsigned int elem_p_level = elem->p_level(); // Skip the element if it is already fully flagged if (elem->refinement_flag() == Elem::REFINE && elem->p_refinement_flag() == Elem::REFINE) continue; // Loop over the nodes, check for possible mismatch for (unsigned int n=0; n<elem->n_edges(); n++) { AutoPtr<Elem> edge = elem->build_edge(n); unsigned int node0 = edge->node(0); unsigned int node1 = edge->node(1); if (node1 < node0) std::swap(node0, node1); std::pair<unsigned int, unsigned int> edge_key = std::make_pair(node0, node1); // Flag the element for refinement if it violates // the requested level mismatch if ( (elem_level + max_mismatch) < max_level_at_edge[edge_key] && elem->refinement_flag() != Elem::REFINE) { elem->set_refinement_flag (Elem::REFINE); flags_changed = true; } if ( (elem_p_level + max_mismatch) < max_p_level_at_edge[edge_key] && elem->p_refinement_flag() != Elem::REFINE) { elem->set_p_refinement_flag (Elem::REFINE); flags_changed = true; } } } } // If flags changed on any processor then they changed globally CommWorld.max(flags_changed); return flags_changed; }
void unpack(std::vector<largest_id_type>::const_iterator in, Elem** out, MeshBase* mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = static_cast<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = static_cast<unsigned int>(*in++); // int 2: refinement flag const int rflag = *in++; libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState refinement_flag = static_cast<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = *in++; libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = static_cast<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = *in++; libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = static_cast<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = static_cast<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = static_cast<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = static_cast<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = static_cast<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id const dof_id_type parent_id = static_cast<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id const unsigned int which_child_am_i = static_cast<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem *elem = mesh->query_elem(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unqiue id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node(i) == static_cast<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); libmesh_assert (!level || elem->parent() != NULL); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child(which_child_am_i) == elem); #endif // Our neighbor links should be "close to" correct - we may have // to update them, but we can check for some inconsistencies. for (unsigned int n=0; n != elem->n_neighbors(); ++n) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor(n)); continue; } Elem *neigh = mesh->query_elem(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor(n) == neigh || elem->neighbor(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem *parent = NULL; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, static_cast<dof_id_type>(-1)); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element definitely should have children, assign // remote_elem to all of them for now, for consistency. Later // unpacked elements may overwrite that. if (!elem->active()) for (unsigned int c=0; c != elem->n_children(); ++c) elem->add_child(const_cast<RemoteElem*>(remote_elem), c); #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (static_cast<dof_id_type>(*in++)); for (unsigned int n=0; n<elem->n_neighbors(); n++) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem *neigh = mesh->query_elem(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side or edge boundary condition ids if (level == 0) { for (unsigned int s = 0; s != elem->n_sides(); ++s) { const int num_bcs = *in++; libmesh_assert_greater_equal (num_bcs, 0); for(int bc_it=0; bc_it < num_bcs; bc_it++) mesh->boundary_info->add_side (elem, s, *in++); } for (unsigned int e = 0; e != elem->n_edges(); ++e) { const int num_bcs = *in++; libmesh_assert_greater_equal (num_bcs, 0); for(int bc_it=0; bc_it < num_bcs; bc_it++) mesh->boundary_info->add_edge (elem, e, *in++); } } // Return the new element *out = elem; }