void Partitioner::single_partition_range (MeshBase::element_iterator it, MeshBase::element_iterator end) { LOG_SCOPE("single_partition_range()", "Partitioner"); for ( ; it != end; ++it) { Elem * elem = *it; elem->processor_id() = 0; // Assign all this element's nodes to processor 0 as well. for (unsigned int n=0; n<elem->n_nodes(); ++n) elem->node_ptr(n)->processor_id() = 0; } }
void Partitioner::set_node_processor_ids(MeshBase & mesh) { LOG_SCOPE("set_node_processor_ids()","Partitioner"); // This function must be run on all processors at once libmesh_parallel_only(mesh.comm()); // If we have any unpartitioned elements at this // stage there is a problem libmesh_assert (MeshTools::n_elem(mesh.unpartitioned_elements_begin(), mesh.unpartitioned_elements_end()) == 0); // const dof_id_type orig_n_local_nodes = mesh.n_local_nodes(); // libMesh::err << "[" << mesh.processor_id() << "]: orig_n_local_nodes=" // << orig_n_local_nodes << std::endl; // Build up request sets. Each node is currently owned by a processor because // it is connected to an element owned by that processor. However, during the // repartitioning phase that element may have been assigned a new processor id, but // it is still resident on the original processor. We need to know where to look // for new ids before assigning new ids, otherwise we may be asking the wrong processors // for the wrong information. // // The only remaining issue is what to do with unpartitioned nodes. Since they are required // to live on all processors we can simply rely on ourselves to number them properly. std::vector<std::vector<dof_id_type> > requested_node_ids(mesh.n_processors()); // Loop over all the nodes, count the ones on each processor. We can skip ourself std::vector<dof_id_type> ghost_nodes_from_proc(mesh.n_processors(), 0); MeshBase::node_iterator node_it = mesh.nodes_begin(); const MeshBase::node_iterator node_end = mesh.nodes_end(); for (; node_it != node_end; ++node_it) { Node * node = *node_it; libmesh_assert(node); const processor_id_type current_pid = node->processor_id(); if (current_pid != mesh.processor_id() && current_pid != DofObject::invalid_processor_id) { libmesh_assert_less (current_pid, ghost_nodes_from_proc.size()); ghost_nodes_from_proc[current_pid]++; } } // We know how many objects live on each processor, so reserve() // space for each. for (processor_id_type pid=0; pid != mesh.n_processors(); ++pid) requested_node_ids[pid].reserve(ghost_nodes_from_proc[pid]); // We need to get the new pid for each node from the processor // which *currently* owns the node. We can safely skip ourself for (node_it = mesh.nodes_begin(); node_it != node_end; ++node_it) { Node * node = *node_it; libmesh_assert(node); const processor_id_type current_pid = node->processor_id(); if (current_pid != mesh.processor_id() && current_pid != DofObject::invalid_processor_id) { libmesh_assert_less (current_pid, requested_node_ids.size()); libmesh_assert_less (requested_node_ids[current_pid].size(), ghost_nodes_from_proc[current_pid]); requested_node_ids[current_pid].push_back(node->id()); } // Unset any previously-set node processor ids node->invalidate_processor_id(); } // Loop over all the active elements MeshBase::element_iterator elem_it = mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = mesh.active_elements_end(); for ( ; elem_it != elem_end; ++elem_it) { Elem * elem = *elem_it; libmesh_assert(elem); libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id); // For each node, set the processor ID to the min of // its current value and this Element's processor id. // // TODO: we would probably get better parallel partitioning if // we did something like "min for even numbered nodes, max for // odd numbered". We'd need to be careful about how that would // affect solution ordering for I/O, though. for (unsigned int n=0; n<elem->n_nodes(); ++n) elem->node_ptr(n)->processor_id() = std::min(elem->node_ptr(n)->processor_id(), elem->processor_id()); } // And loop over the subactive elements, but don't reassign // nodes that are already active on another processor. MeshBase::element_iterator sub_it = mesh.subactive_elements_begin(); const MeshBase::element_iterator sub_end = mesh.subactive_elements_end(); for ( ; sub_it != sub_end; ++sub_it) { Elem * elem = *sub_it; libmesh_assert(elem); libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id); for (unsigned int n=0; n<elem->n_nodes(); ++n) if (elem->node_ptr(n)->processor_id() == DofObject::invalid_processor_id) elem->node_ptr(n)->processor_id() = elem->processor_id(); } // Same for the inactive elements -- we will have already gotten most of these // nodes, *except* for the case of a parent with a subset of children which are // ghost elements. In that case some of the parent nodes will not have been // properly handled yet MeshBase::element_iterator not_it = mesh.not_active_elements_begin(); const MeshBase::element_iterator not_end = mesh.not_active_elements_end(); for ( ; not_it != not_end; ++not_it) { Elem * elem = *not_it; libmesh_assert(elem); libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id); for (unsigned int n=0; n<elem->n_nodes(); ++n) if (elem->node_ptr(n)->processor_id() == DofObject::invalid_processor_id) elem->node_ptr(n)->processor_id() = elem->processor_id(); } // We can't assert that all nodes are connected to elements, because // a DistributedMesh with NodeConstraints might have pulled in some // remote nodes solely for evaluating those constraints. // MeshTools::libmesh_assert_connected_nodes(mesh); // For such nodes, we'll do a sanity check later when making sure // that we successfully reset their processor ids to something // valid. // Next set node ids from other processors, excluding self for (processor_id_type p=1; p != mesh.n_processors(); ++p) { // Trade my requests with processor procup and procdown processor_id_type procup = cast_int<processor_id_type> ((mesh.processor_id() + p) % mesh.n_processors()); processor_id_type procdown = cast_int<processor_id_type> ((mesh.n_processors() + mesh.processor_id() - p) % mesh.n_processors()); std::vector<dof_id_type> request_to_fill; mesh.comm().send_receive(procup, requested_node_ids[procup], procdown, request_to_fill); // Fill those requests in-place for (std::size_t i=0; i != request_to_fill.size(); ++i) { Node & node = mesh.node_ref(request_to_fill[i]); const processor_id_type new_pid = node.processor_id(); // We may have an invalid processor_id() on nodes that have been // "detatched" from coarsened-away elements but that have not yet // themselves been removed. // libmesh_assert_not_equal_to (new_pid, DofObject::invalid_processor_id); // libmesh_assert_less (new_pid, mesh.n_partitions()); // this is the correct test -- request_to_fill[i] = new_pid; // the number of partitions may } // not equal the number of processors // Trade back the results std::vector<dof_id_type> filled_request; mesh.comm().send_receive(procdown, request_to_fill, procup, filled_request); libmesh_assert_equal_to (filled_request.size(), requested_node_ids[procup].size()); // And copy the id changes we've now been informed of for (std::size_t i=0; i != filled_request.size(); ++i) { Node & node = mesh.node_ref(requested_node_ids[procup][i]); // this is the correct test -- the number of partitions may // not equal the number of processors // But: we may have an invalid processor_id() on nodes that // have been "detatched" from coarsened-away elements but // that have not yet themselves been removed. // libmesh_assert_less (filled_request[i], mesh.n_partitions()); node.processor_id(cast_int<processor_id_type>(filled_request[i])); } } #ifdef DEBUG MeshTools::libmesh_assert_valid_procids<Node>(mesh); #endif }
void MeshTools::Subdivision::add_boundary_ghosts(MeshBase & mesh) { static const Real tol = 1e-5; // add the mirrored ghost elements (without using iterators, because the mesh is modified in the course) std::vector<Tri3Subdivision *> ghost_elems; std::vector<Node *> ghost_nodes; const unsigned int n_elem = mesh.n_elem(); for (unsigned int eid = 0; eid < n_elem; ++eid) { Elem * elem = mesh.elem_ptr(eid); libmesh_assert_equal_to(elem->type(), TRI3SUBDIVISION); // If the triangle happens to be in a corner (two boundary // edges), we perform a counter-clockwise loop by mirroring the // previous triangle until we come back to the original // triangle. This prevents degenerated triangles in the mesh // corners and guarantees that the node in the middle of the // loop is of valence=6. for (unsigned int i = 0; i < elem->n_sides(); ++i) { libmesh_assert_not_equal_to(elem->neighbor(i), elem); if (elem->neighbor(i) == libmesh_nullptr && elem->neighbor(next[i]) == libmesh_nullptr) { Elem * nelem = elem; unsigned int k = i; for (unsigned int l=0;l<4;l++) { // this is the vertex to be mirrored Point point = nelem->point(k) + nelem->point(next[k]) - nelem->point(prev[k]); // Check if the proposed vertex doesn't coincide // with one of the existing vertices. This is // necessary because for some triangulations, it can // happen that two mirrored ghost vertices coincide, // which would then lead to a zero size ghost // element below. Node * node = libmesh_nullptr; for (unsigned int j = 0; j < ghost_nodes.size(); ++j) { if ((*ghost_nodes[j] - point).norm() < tol * (elem->point(k) - point).norm()) { node = ghost_nodes[j]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); // add the first new ghost element to the list just as in the non-corner case if (l == 0) ghost_elems.push_back(newelem); newelem->set_node(0) = nelem->node_ptr(next[k]); newelem->set_node(1) = nelem->node_ptr(k); newelem->set_node(2) = node; newelem->set_neighbor(0, nelem); newelem->set_ghost(true); if (l>0) newelem->set_neighbor(2, libmesh_nullptr); nelem->set_neighbor(k, newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(nelem->node_ptr(k), 1); mesh.get_boundary_info().add_node(nelem->node_ptr(next[k]), 1); mesh.get_boundary_info().add_node(nelem->node_ptr(prev[k]), 1); mesh.get_boundary_info().add_node(node, 1); nelem = newelem; k = 2 ; } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = elem->node_ptr(next[i]); newelem->set_node(1) = nelem->node_ptr(2); newelem->set_node(2) = elem->node_ptr(prev[i]); newelem->set_neighbor(0, nelem); nelem->set_neighbor(2, newelem); newelem->set_ghost(true); newelem->set_neighbor(2, elem); elem->set_neighbor(next[i],newelem); mesh.add_elem(newelem); break; } } for (unsigned int i = 0; i < elem->n_sides(); ++i) { libmesh_assert_not_equal_to(elem->neighbor(i), elem); if (elem->neighbor(i) == libmesh_nullptr) { // this is the vertex to be mirrored Point point = elem->point(i) + elem->point(next[i]) - elem->point(prev[i]); // Check if the proposed vertex doesn't coincide with // one of the existing vertices. This is necessary // because for some triangulations, it can happen that // two mirrored ghost vertices coincide, which would // then lead to a zero size ghost element below. Node * node = libmesh_nullptr; for (unsigned int j = 0; j < ghost_nodes.size(); ++j) { if ((*ghost_nodes[j] - point).norm() < tol * (elem->point(i) - point).norm()) { node = ghost_nodes[j]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); ghost_elems.push_back(newelem); newelem->set_node(0) = elem->node_ptr(next[i]); newelem->set_node(1) = elem->node_ptr(i); newelem->set_node(2) = node; newelem->set_neighbor(0, elem); newelem->set_ghost(true); elem->set_neighbor(i, newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(elem->node_ptr(i), 1); mesh.get_boundary_info().add_node(elem->node_ptr(next[i]), 1); mesh.get_boundary_info().add_node(elem->node_ptr(prev[i]), 1); mesh.get_boundary_info().add_node(node, 1); } } } // add the missing ghost elements (connecting new ghost nodes) std::vector<Tri3Subdivision *> missing_ghost_elems; std::vector<Tri3Subdivision *>::iterator ghost_el = ghost_elems.begin(); const std::vector<Tri3Subdivision *>::iterator end_ghost_el = ghost_elems.end(); for (; ghost_el != end_ghost_el; ++ghost_el) { Tri3Subdivision * elem = *ghost_el; libmesh_assert(elem->is_ghost()); for (unsigned int i = 0; i < elem->n_sides(); ++i) { if (elem->neighbor(i) == libmesh_nullptr && elem->neighbor(prev[i]) != libmesh_nullptr) { // go around counter-clockwise Tri3Subdivision * nb1 = static_cast<Tri3Subdivision *>(elem->neighbor(prev[i])); Tri3Subdivision * nb2 = nb1; unsigned int j = i; unsigned int n_nb = 0; while (nb1 != libmesh_nullptr && nb1->id() != elem->id()) { j = nb1->local_node_number(elem->node_id(i)); nb2 = nb1; nb1 = static_cast<Tri3Subdivision *>(nb1->neighbor(prev[j])); libmesh_assert(nb1 == libmesh_nullptr || nb1->id() != nb2->id()); n_nb++; } libmesh_assert_not_equal_to(nb2->id(), elem->id()); // Above, we merged coinciding ghost vertices. Therefore, we need // to exclude the case where there is no ghost element to add between // these two (identical) ghost nodes. if (elem->node_ptr(next[i])->id() == nb2->node_ptr(prev[j])->id()) break; // If the number of already present neighbors is less than 4, we add another extra element // so that the node in the middle of the loop ends up being of valence=6. // This case usually happens when the middle node corresponds to a corner of the original mesh, // and the extra element below prevents degenerated triangles in the mesh corners. if (n_nb < 4) { // this is the vertex to be mirrored Point point = nb2->point(j) + nb2->point(prev[j]) - nb2->point(next[j]); // Check if the proposed vertex doesn't coincide with one of the existing vertices. // This is necessary because for some triangulations, it can happen that two mirrored // ghost vertices coincide, which would then lead to a zero size ghost element below. Node * node = libmesh_nullptr; for (unsigned int k = 0; k < ghost_nodes.size(); ++k) { if ((*ghost_nodes[k] - point).norm() < tol * (nb2->point(j) - point).norm()) { node = ghost_nodes[k]; break; } } // add the new vertex only if no other is nearby if (node == libmesh_nullptr) { node = mesh.add_point(point); ghost_nodes.push_back(node); } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = nb2->node_ptr(j); newelem->set_node(1) = nb2->node_ptr(prev[j]); newelem->set_node(2) = node; newelem->set_neighbor(0, nb2); newelem->set_neighbor(1, libmesh_nullptr); newelem->set_ghost(true); nb2->set_neighbor(prev[j], newelem); mesh.add_elem(newelem); mesh.get_boundary_info().add_node(nb2->node_ptr(j), 1); mesh.get_boundary_info().add_node(nb2->node_ptr(prev[j]), 1); mesh.get_boundary_info().add_node(node, 1); nb2 = newelem; j = nb2->local_node_number(elem->node_id(i)); } Tri3Subdivision * newelem = new Tri3Subdivision(); newelem->set_node(0) = elem->node_ptr(next[i]); newelem->set_node(1) = elem->node_ptr(i); newelem->set_node(2) = nb2->node_ptr(prev[j]); newelem->set_neighbor(0, elem); newelem->set_neighbor(1, nb2); newelem->set_neighbor(2, libmesh_nullptr); newelem->set_ghost(true); elem->set_neighbor(i, newelem); nb2->set_neighbor(prev[j], newelem); missing_ghost_elems.push_back(newelem); break; } } // end side loop } // end ghost element loop // add the missing ghost elements to the mesh std::vector<Tri3Subdivision *>::iterator missing_el = missing_ghost_elems.begin(); const std::vector<Tri3Subdivision *>::iterator end_missing_el = missing_ghost_elems.end(); for (; missing_el != end_missing_el; ++missing_el) mesh.add_elem(*missing_el); }