Example #1
0
void
MonitorRecMutexTest::run()
{
    Monitor<RecMutex> monitor;
    MonitorRecMutexTestThreadPtr t;
    MonitorRecMutexTestThread2Ptr t2;
    MonitorRecMutexTestThread2Ptr t3;
    ThreadControl control;
    ThreadControl control2;


    {
        Monitor<RecMutex>::Lock lock(monitor);

        Monitor<RecMutex>::TryLock lock2(monitor);
        test(lock2.acquired());
        
        // TEST: TryLock
        
        Monitor<RecMutex>::TryLock tlock(monitor);
        test(tlock.acquired());
        
        // TEST: Start thread, try to acquire the mutex.
        t = new MonitorRecMutexTestThread(monitor);
        control = t->start();
        
        // TEST: Wait until the tryLock has been tested.
        t->waitTryLock();
    }

    //
    // TEST: Once the mutex has been released, the thread should
    // acquire the mutex and then terminate.
    //
    control.join();

    // TEST: notify() wakes one consumer.
    t2 = new MonitorRecMutexTestThread2(monitor);
    control = t2->start();
    t3 = new MonitorRecMutexTestThread2(monitor);
    control2 = t3->start();

    // Give the thread time to start waiting.
    ThreadControl::sleep(Time::seconds(1));

    {
        Monitor<RecMutex>::Lock lock(monitor);
        monitor.notify();
    }

    // Give one thread time to terminate
    ThreadControl::sleep(Time::seconds(1));

    test((t2->finished && !t3->finished) || (t3->finished && !t2->finished));

    {
        Monitor<RecMutex>::Lock lock(monitor);
        monitor.notify();
    }
    control.join();
    control2.join();

    // TEST: notifyAll() wakes one consumer.
    t2 = new MonitorRecMutexTestThread2(monitor);
    control = t2->start();
    t3 = new MonitorRecMutexTestThread2(monitor);
    control2 = t3->start();

    // Give the threads time to start waiting.
    ThreadControl::sleep(Time::seconds(1));

    {
        Monitor<RecMutex>::Lock lock(monitor);
        monitor.notifyAll();
    }

    control.join();
    control2.join();

    // TEST: timedWait
    {
        Monitor<RecMutex>::Lock lock(monitor);
        test(!monitor.timedWait(Time::milliSeconds(500)));
    }
}
Example #2
0
int main(int argc, char **argv) {

  int port = 9091;
  string serverType = "thread-pool";
  string protocolType = "binary";
  size_t workerCount = 4;
  size_t clientCount = 20;
  size_t loopCount = 50000;
  TType loopType  = T_VOID;
  string callName = "echoVoid";
  bool runServer = true;
  bool logRequests = false;
  string requestLogPath = "./requestlog.tlog";
  bool replayRequests = false;

  ostringstream usage;

  usage <<
    argv[0] << " [--port=<port number>] [--server] [--server-type=<server-type>] [--protocol-type=<protocol-type>] [--workers=<worker-count>] [--clients=<client-count>] [--loop=<loop-count>]" << endl <<
    "\tclients        Number of client threads to create - 0 implies no clients, i.e. server only.  Default is " << clientCount << endl <<
    "\thelp           Prints this help text." << endl <<
    "\tcall           Service method to call.  Default is " << callName << endl <<
    "\tloop           The number of remote thrift calls each client makes.  Default is " << loopCount << endl <<
    "\tport           The port the server and clients should bind to for thrift network connections.  Default is " << port << endl <<
    "\tserver         Run the Thrift server in this process.  Default is " << runServer << endl <<
    "\tserver-type    Type of server, \"simple\" or \"thread-pool\".  Default is " << serverType << endl <<
    "\tprotocol-type  Type of protocol, \"binary\", \"ascii\", or \"xml\".  Default is " << protocolType << endl <<
    "\tlog-request    Log all request to ./requestlog.tlog. Default is " << logRequests << endl <<
    "\treplay-request Replay requests from log file (./requestlog.tlog) Default is " << replayRequests << endl <<
    "\tworkers        Number of thread pools workers.  Only valid for thread-pool server type.  Default is " << workerCount << endl;


  map<string, string>  args;

  for (int ix = 1; ix < argc; ix++) {

    string arg(argv[ix]);

    if (arg.compare(0,2, "--") == 0) {

      size_t end = arg.find_first_of("=", 2);

      string key = string(arg, 2, end - 2);

      if (end != string::npos) {
        args[key] = string(arg, end + 1);
      } else {
        args[key] = "true";
      }
    } else {
      throw invalid_argument("Unexcepted command line token: "+arg);
    }
  }

  try {

    if (!args["clients"].empty()) {
      clientCount = atoi(args["clients"].c_str());
    }

    if (!args["help"].empty()) {
      cerr << usage.str();
      return 0;
    }

    if (!args["loop"].empty()) {
      loopCount = atoi(args["loop"].c_str());
    }

    if (!args["call"].empty()) {
      callName = args["call"];
    }

    if (!args["port"].empty()) {
      port = atoi(args["port"].c_str());
    }

    if (!args["server"].empty()) {
      runServer = args["server"] == "true";
    }

    if (!args["log-request"].empty()) {
      logRequests = args["log-request"] == "true";
    }

    if (!args["replay-request"].empty()) {
      replayRequests = args["replay-request"] == "true";
    }

    if (!args["server-type"].empty()) {
      serverType = args["server-type"];

      if (serverType == "simple") {

      } else if (serverType == "thread-pool") {

      } else if (serverType == "threaded") {

      } else {

        throw invalid_argument("Unknown server type "+serverType);
      }
    }

    if (!args["workers"].empty()) {
      workerCount = atoi(args["workers"].c_str());
    }

  } catch(std::exception& e) {
    cerr << e.what() << endl;
    cerr << usage;
  }

  shared_ptr<PosixThreadFactory> threadFactory = shared_ptr<PosixThreadFactory>(new PosixThreadFactory());

  // Dispatcher
  shared_ptr<Server> serviceHandler(new Server());

  if (replayRequests) {
    shared_ptr<Server> serviceHandler(new Server());
    shared_ptr<ServiceProcessor> serviceProcessor(new ServiceProcessor(serviceHandler));

    // Transports
    shared_ptr<TFileTransport> fileTransport(new TFileTransport(requestLogPath));
    fileTransport->setChunkSize(2 * 1024 * 1024);
    fileTransport->setMaxEventSize(1024 * 16);
    fileTransport->seekToEnd();

    // Protocol Factory
    shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());

    TFileProcessor fileProcessor(serviceProcessor,
                                 protocolFactory,
                                 fileTransport);

    fileProcessor.process(0, true);
    exit(0);
  }


  if (runServer) {

    shared_ptr<ServiceProcessor> serviceProcessor(new ServiceProcessor(serviceHandler));

    // Transport
    shared_ptr<TServerSocket> serverSocket(new TServerSocket(port));

    // Transport Factory
    shared_ptr<TTransportFactory> transportFactory(new TBufferedTransportFactory());

    // Protocol Factory
    shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());

    if (logRequests) {
      // initialize the log file
      shared_ptr<TFileTransport> fileTransport(new TFileTransport(requestLogPath));
      fileTransport->setChunkSize(2 * 1024 * 1024);
      fileTransport->setMaxEventSize(1024 * 16);

      transportFactory =
        shared_ptr<TTransportFactory>(new TPipedTransportFactory(fileTransport));
    }

    shared_ptr<Thread> serverThread;

    if (serverType == "simple") {

      serverThread = threadFactory->newThread(shared_ptr<TServer>(new TSimpleServer(serviceProcessor, serverSocket, transportFactory, protocolFactory)));

    } else if (serverType == "threaded") {

      serverThread = threadFactory->newThread(shared_ptr<TServer>(new TThreadedServer(serviceProcessor, serverSocket, transportFactory, protocolFactory)));

    } else if (serverType == "thread-pool") {

      shared_ptr<ThreadManager> threadManager = ThreadManager::newSimpleThreadManager(workerCount);

      threadManager->threadFactory(threadFactory);
      threadManager->start();
      serverThread = threadFactory->newThread(shared_ptr<TServer>(new TThreadPoolServer(serviceProcessor, serverSocket, transportFactory, protocolFactory, threadManager)));
    }

    cerr << "Starting the server on port " << port << endl;

    serverThread->start();

    // If we aren't running clients, just wait forever for external clients

    if (clientCount == 0) {
      serverThread->join();
    }
  }

  if (clientCount > 0) {

    Monitor monitor;

    size_t threadCount = 0;

    set<shared_ptr<Thread> > clientThreads;

    if (callName == "echoVoid") { loopType = T_VOID;}
    else if (callName == "echoByte") { loopType = T_BYTE;}
    else if (callName == "echoI32") { loopType = T_I32;}
    else if (callName == "echoI64") { loopType = T_I64;}
    else if (callName == "echoString") { loopType = T_STRING;}
    else {throw invalid_argument("Unknown service call "+callName);}

    for (size_t ix = 0; ix < clientCount; ix++) {

      shared_ptr<TSocket> socket(new TSocket("127.0.0.1", port));
      shared_ptr<TBufferedTransport> bufferedSocket(new TBufferedTransport(socket, 2048));
      shared_ptr<TProtocol> protocol(new TBinaryProtocol(bufferedSocket));
      shared_ptr<ServiceClient> serviceClient(new ServiceClient(protocol));

      clientThreads.insert(threadFactory->newThread(shared_ptr<ClientThread>(new ClientThread(socket, serviceClient, monitor, threadCount, loopCount, loopType))));
    }

    for (std::set<shared_ptr<Thread> >::const_iterator thread = clientThreads.begin(); thread != clientThreads.end(); thread++) {
      (*thread)->start();
    }

    int64_t time00;
    int64_t time01;

    {Synchronized s(monitor);
      threadCount = clientCount;

      cerr << "Launch "<< clientCount << " client threads" << endl;

      time00 =  Util::currentTime();

      monitor.notifyAll();

      while(threadCount > 0) {
        monitor.wait();
      }

      time01 =  Util::currentTime();
    }

    int64_t firstTime = 9223372036854775807LL;
    int64_t lastTime = 0;

    double averageTime = 0;
    int64_t minTime = 9223372036854775807LL;
    int64_t maxTime = 0;

    for (set<shared_ptr<Thread> >::iterator ix = clientThreads.begin(); ix != clientThreads.end(); ix++) {

      shared_ptr<ClientThread> client = dynamic_pointer_cast<ClientThread>((*ix)->runnable());

      int64_t delta = client->_endTime - client->_startTime;

      assert(delta > 0);

      if (client->_startTime < firstTime) {
        firstTime = client->_startTime;
      }

      if (client->_endTime > lastTime) {
        lastTime = client->_endTime;
      }

      if (delta < minTime) {
        minTime = delta;
      }

      if (delta > maxTime) {
        maxTime = delta;
      }

      averageTime+= delta;
    }

    averageTime /= clientCount;


    cout <<  "workers :" << workerCount << ", client : " << clientCount << ", loops : " << loopCount << ", rate : " << (clientCount * loopCount * 1000) / ((double)(time01 - time00)) << endl;

    count_map count = serviceHandler->getCount();
    count_map::iterator iter;
    for (iter = count.begin(); iter != count.end(); ++iter) {
      printf("%s => %d\n", iter->first, iter->second);
    }
    cerr << "done." << endl;
  }

  return 0;
}
void
MonitorMutexTest::run()
{
    Monitor<Mutex> monitor;
    MonitorMutexTestThreadPtr t;
    MonitorMutexTestThread2Ptr t2;
    MonitorMutexTestThread2Ptr t3;
    ThreadControl control;
    ThreadControl control2;

    {
        Monitor<Mutex>::Lock lock(monitor);

        try
        {
            Monitor<Mutex>::TryLock tlock(monitor);
            test(!tlock.acquired());
        }
        catch(const ThreadLockedException&)
        {
            //
            // pthread_mutex_trylock returns EDEADLK in FreeBSD's new threading implementation
            // as well as in Fedora Core 5.
            //
        }

        // TEST: Start thread, try to acquire the mutex.
        t = new MonitorMutexTestThread(monitor);
        control = t->start();

        // TEST: Wait until the tryLock has been tested.
        t->waitTryLock();
    }

    //
    // TEST: Once the mutex has been released, the thread should
    // acquire the mutex and then terminate.
    //
    control.join();

    // TEST: notify() wakes one consumer.
    t2 = new MonitorMutexTestThread2(monitor);
    control = t2->start();
    t3 = new MonitorMutexTestThread2(monitor);
    control2 = t3->start();

    // Give the thread time to start waiting.
    ThreadControl::sleep(Time::seconds(1));

    {
        Monitor<Mutex>::Lock lock(monitor);
        monitor.notify();
    }

    // Give one thread time to terminate
    ThreadControl::sleep(Time::seconds(1));

    test((t2->finished && !t3->finished) || (t3->finished && !t2->finished));

    {
        Monitor<Mutex>::Lock lock(monitor);
        monitor.notify();
    }
    control.join();
    control2.join();

    // TEST: notifyAll() wakes one consumer.
    t2 = new MonitorMutexTestThread2(monitor);
    control = t2->start();
    t3 = new MonitorMutexTestThread2(monitor);
    control2 = t3->start();

    // Give the threads time to start waiting.
    ThreadControl::sleep(Time::seconds(1));

    {
        Monitor<Mutex>::Lock lock(monitor);
        monitor.notifyAll();
    }

    control.join();
    control2.join();

    // TEST: timedWait
    {
        Monitor<Mutex>::Lock lock(monitor);

        try
        {
            monitor.timedWait(Time::milliSeconds(-1));
            test(false);
        }
        catch(const IceUtil::InvalidTimeoutException&)
        {
        }

        test(!monitor.timedWait(Time::milliSeconds(500)));
    }
}
Example #4
0
/**
 * Block test.
 * Create pendingTaskCountMax tasks.  Verify that we block adding the
 * pendingTaskCountMax + 1th task.  Verify that we unblock when a task
 * completes
 */
static void blockTest(int64_t /*timeout*/, size_t numWorkers) {
  size_t pendingTaskMaxCount = numWorkers;

  auto threadManager =
    ThreadManager::newSimpleThreadManager(numWorkers, pendingTaskMaxCount);
  auto threadFactory = std::make_shared<PosixThreadFactory>();
  threadManager->threadFactory(threadFactory);
  threadManager->start();

  Monitor monitor;
  Monitor bmonitor;

  // Add an initial set of tasks, 1 task per worker
  bool blocked1 = true;
  size_t tasksCount1 = numWorkers;
  std::set<std::shared_ptr<BlockTask>> tasks;
  for (size_t ix = 0; ix < numWorkers; ix++) {
    auto task = std::make_shared<BlockTask>(
        &monitor, &bmonitor, &blocked1, &tasksCount1);
    tasks.insert(task);
    threadManager->add(task);
  }
  REQUIRE_EQUAL_TIMEOUT(threadManager->totalTaskCount(), numWorkers);

  // Add a second set of tasks.
  // All of these will end up pending since the first set of tasks
  // are using up all of the worker threads and are still blocked
  bool blocked2 = true;
  size_t tasksCount2 = pendingTaskMaxCount;
  for (size_t ix = 0; ix < pendingTaskMaxCount; ix++) {
    auto task = std::make_shared<BlockTask>(
        &monitor, &bmonitor, &blocked2, &tasksCount2);
    tasks.insert(task);
    threadManager->add(task);
  }

  REQUIRE_EQUAL_TIMEOUT(threadManager->totalTaskCount(),
                      numWorkers + pendingTaskMaxCount);
  REQUIRE_EQUAL_TIMEOUT(threadManager->pendingTaskCountMax(),
                      pendingTaskMaxCount);

  // Attempt to add one more task.
  // Since the pending task count is full, this should fail
  bool blocked3 = true;
  size_t tasksCount3 = 1;
  auto extraTask = std::make_shared<BlockTask>(
      &monitor, &bmonitor, &blocked3, &tasksCount3);
  ASSERT_THROW(threadManager->add(extraTask, 1), TimedOutException);

  ASSERT_THROW(threadManager->add(extraTask, -1), TooManyPendingTasksException);

  // Unblock the first set of tasks
  {
    Synchronized s(bmonitor);
    blocked1 = false;
    bmonitor.notifyAll();
  }
  // Wait for the first set of tasks to all finish
  {
    Synchronized s(monitor);
    while (tasksCount1 != 0) {
      monitor.wait();
    }
  }

  // We should be able to add the extra task now
  try {
    threadManager->add(extraTask, 1);
  } catch (const TimedOutException& e) {
    FAIL() << "Unexpected timeout adding task";
  } catch (const TooManyPendingTasksException& e) {
    FAIL() << "Unexpected failure adding task";
  }

  // Unblock the second set of tasks
  {
    Synchronized s(bmonitor);
    blocked2 = false;
    bmonitor.notifyAll();
  }
  {
    Synchronized s(monitor);
    while (tasksCount2 != 0) {
      monitor.wait();
    }
  }

  // Unblock the extra task
  {
    Synchronized s(bmonitor);
    blocked3 = false;
    bmonitor.notifyAll();
  }
  {
    Synchronized s(monitor);
    while (tasksCount3 != 0) {
      monitor.wait();
    }
  }

  CHECK_EQUAL_TIMEOUT(threadManager->totalTaskCount(), 0);
}