Example #1
0
// initializes a species with a leader genome and an ID number
Species::Species(const Genome& a_Genome, int a_ID)
{
    m_ID     = a_ID;

    // copy the initializing genome locally.
    // it is now the representative of the species.
    m_Representative = a_Genome;
    m_BestGenome = a_Genome;

    // add the first and only one individual
    m_Individuals.push_back(a_Genome);

    m_Age = 0;
    m_GensNoImprovement = 0;
    m_OffspringRqd = 0;
    m_BestFitness = a_Genome.GetFitness();
    m_BestSpecies = true;

    // Choose a random color
    RNG rng;
    rng.TimeSeed();
    m_R = static_cast<int>(rng.RandFloat() * 255);
    m_G = static_cast<int>(rng.RandFloat() * 255);
    m_B = static_cast<int>(rng.RandFloat() * 255);
}
Example #2
0
// returns an individual randomly selected from the best N%
Genome Species::GetIndividual(Parameters& a_Parameters, RNG& a_RNG) const
{
    ASSERT(m_Individuals.size() > 0);

    // Make a pool of only evaluated individuals!
    std::vector<Genome> t_Evaluated;
    for(unsigned int i=0; i<m_Individuals.size(); i++)
    {
        if (m_Individuals[i].IsEvaluated())
            t_Evaluated.push_back( m_Individuals[i] );
    }

    ASSERT(t_Evaluated.size() > 0);

    if (t_Evaluated.size() == 1)
    {
        return (t_Evaluated[0]);
    }
    else if (t_Evaluated.size() == 2)
    {
        return (t_Evaluated[ Rounded(a_RNG.RandFloat()) ]);
    }

    // Warning!!!! The individuals must be sorted by best fitness for this to work
    int t_chosen_one=0;

    // Here might be introduced better selection scheme, but this works OK for now
    if (!a_Parameters.RouletteWheelSelection)
    {   //start with the last one just for comparison sake
        int temp_genome;
        
        
        int t_num_parents = static_cast<int>( floor((a_Parameters.SurvivalRate * (static_cast<double>(t_Evaluated.size())))+1.0));
       
        ASSERT(t_num_parents>0);
        if (t_num_parents>=t_Evaluated.size())
          t_num_parents = t_Evaluated.size()-1;
        t_chosen_one = a_RNG.RandInt(0, t_num_parents);
        for (unsigned int i = 0; i < a_Parameters.TournamentSize; i++)
        {
            temp_genome = a_RNG.RandInt(0, t_num_parents);
            
            if (m_Individuals[temp_genome].GetFitness() > m_Individuals[t_chosen_one].GetFitness())
            {
                t_chosen_one = temp_genome;
            }
        }
        
    }
    else
    {
        // roulette wheel selection
        std::vector<double> t_probs;
        for(unsigned int i=0; i<t_Evaluated.size(); i++)
            t_probs.push_back( t_Evaluated[i].GetFitness() );
        t_chosen_one = a_RNG.Roulette(t_probs);
    }

    return (t_Evaluated[t_chosen_one]);
}
Example #3
0
// Mutates a genome
void Species::MutateGenome( bool t_baby_is_clone, Population &a_Pop, Genome &t_baby, Parameters& a_Parameters, RNG& a_RNG )
{
#if 1
    // NEW version:
    // All mutations are mutually exclusive - can't have 2 mutations at once
    // for example a weight mutation and time constants mutation
    // or add link and add node and then weight mutation
    // We will perform roulette wheel selection to choose the type of mutation and will mutate the baby
    // This method guarantees that the baby will be mutated at least with one mutation
    enum MutationTypes {ADD_NODE = 0, ADD_LINK, REMOVE_NODE, REMOVE_LINK, CHANGE_ACTIVATION_FUNCTION,
                        MUTATE_WEIGHTS, MUTATE_ACTIVATION_A, MUTATE_ACTIVATION_B, MUTATE_TIMECONSTS, MUTATE_BIASES
                       };
    std::vector<int> t_muts;
    std::vector<double> t_mut_probs;

    // ADD_NODE;
    t_mut_probs.push_back( a_Parameters.MutateAddNeuronProb );

    // ADD_LINK;
    t_mut_probs.push_back( a_Parameters.MutateAddLinkProb );

    // REMOVE_NODE;
    t_mut_probs.push_back( a_Parameters.MutateRemSimpleNeuronProb );

    // REMOVE_LINK;
    t_mut_probs.push_back( a_Parameters.MutateRemLinkProb );

    // CHANGE_ACTIVATION_FUNCTION;
    t_mut_probs.push_back( a_Parameters.MutateNeuronActivationTypeProb );

    // MUTATE_WEIGHTS;
    t_mut_probs.push_back( a_Parameters.MutateWeightsProb );

    // MUTATE_ACTIVATION_A;
    t_mut_probs.push_back( a_Parameters.MutateActivationAProb );

    // MUTATE_ACTIVATION_B;
    t_mut_probs.push_back( a_Parameters.MutateActivationBProb );

    // MUTATE_TIMECONSTS;
    t_mut_probs.push_back( a_Parameters.MutateNeuronTimeConstantsProb );

    // MUTATE_BIASES;
    t_mut_probs.push_back( a_Parameters.MutateNeuronBiasesProb );

    // Special consideration for phased searching - do not allow certain mutations depending on the search mode
    // also don't use additive mutations if we just want to get rid of the clones
    if ((a_Pop.GetSearchMode() == SIMPLIFYING) || t_baby_is_clone)
    {
        t_mut_probs[ADD_NODE] = 0; // add node
        t_mut_probs[ADD_LINK] = 0; // add link
    }
    if ((a_Pop.GetSearchMode() == COMPLEXIFYING) || t_baby_is_clone)
    {
        t_mut_probs[REMOVE_NODE] = 0; // rem node
        t_mut_probs[REMOVE_LINK] = 0; // rem link
    }

    bool t_mutation_success = false;

    // repeat until successful
    while (t_mutation_success == false)
    {
        int ChosenMutation = a_RNG.Roulette(t_mut_probs);

        // Now mutate based on the choice
        switch(ChosenMutation)
        {
        case ADD_NODE:
            t_mutation_success = t_baby.Mutate_AddNeuron(a_Pop.AccessInnovationDatabase(), a_Parameters, a_RNG);
            break;

        case ADD_LINK:
            t_mutation_success = t_baby.Mutate_AddLink(a_Pop.AccessInnovationDatabase(), a_Parameters, a_RNG);
            break;

        case REMOVE_NODE:
            t_mutation_success = t_baby.Mutate_RemoveSimpleNeuron(a_Pop.AccessInnovationDatabase(), a_RNG);
            break;

        case REMOVE_LINK:
        {
            // Keep doing this mutation until it is sure that the baby will not
            // end up having dead ends or no links
            Genome t_saved_baby = t_baby;
            bool t_no_links = false, t_has_dead_ends = false;

            int t_tries = 128;
            do
            {
                t_tries--;
                if (t_tries <= 0)
                {
                    t_saved_baby = t_baby;
                    break; // give up
                }

                t_saved_baby = t_baby;
                t_mutation_success = t_saved_baby.Mutate_RemoveLink(a_RNG);

                t_no_links = t_has_dead_ends = false;

                if (t_saved_baby.NumLinks() == 0)
                    t_no_links = true;

                t_has_dead_ends = t_saved_baby.HasDeadEnds();

            }
            while(t_no_links || t_has_dead_ends);

            t_baby = t_saved_baby;

            // debugger trap
            if (t_baby.NumLinks() == 0)
            {
                std::cerr << "No links in baby after mutation" << std::endl;
            }
            if (t_baby.HasDeadEnds())
            {
                std::cerr << "Dead ends in baby after mutation" << std::endl;
            }
        }
        break;

        case CHANGE_ACTIVATION_FUNCTION:
            t_baby.Mutate_NeuronActivation_Type(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        case MUTATE_WEIGHTS:
            t_baby.Mutate_LinkWeights(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        case MUTATE_ACTIVATION_A:
            t_baby.Mutate_NeuronActivations_A(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        case MUTATE_ACTIVATION_B:
            t_baby.Mutate_NeuronActivations_B(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        case MUTATE_TIMECONSTS:
            t_baby.Mutate_NeuronTimeConstants(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        case MUTATE_BIASES:
            t_baby.Mutate_NeuronBiases(a_Parameters, a_RNG);
            t_mutation_success = true;
            break;

        default:
            t_mutation_success = false;
            break;
        }
    }


#else

    // Old version of the function - added just to test various ways to do mutation

    bool t_mutation_success = false;
    // repeat until successful
    while (t_mutation_success == false)
    {
        if (a_RNG.RandFloat() < a_Parameters.MutateAddNeuronProb)
            t_mutation_success = t_baby.Mutate_AddNeuron(a_Pop.AccessInnovationDatabase(), a_Parameters, a_RNG);
        else
        if (a_RNG.RandFloat() < a_Parameters.MutateAddLinkProb)
            t_mutation_success = t_baby.Mutate_AddLink(a_Pop.AccessInnovationDatabase(), a_Parameters, a_RNG);
        else
        {
            /*if (a_RNG.RandFloat() < a_Parameters.MutateNeuronActivationTypeProb)
            {
                t_baby.Mutate_NeuronActivation_Type(a_Parameters, a_RNG);
                t_mutation_success = true;
            }*/

            if (a_RNG.RandFloat() < a_Parameters.MutateWeightsProb)
            {
                t_baby.Mutate_LinkWeights(a_Parameters, a_RNG);
                t_mutation_success = true;
                break;
            }

            /*case MUTATE_ACTIVATION_A:
                t_baby.Mutate_NeuronActivations_A(a_Parameters, a_RNG);
                t_mutation_success = true;
                break;

            case MUTATE_ACTIVATION_B:
                t_baby.Mutate_NeuronActivations_B(a_Parameters, a_RNG);
                t_mutation_success = true;
                break;

            case MUTATE_TIMECONSTS:
                t_baby.Mutate_NeuronTimeConstants(a_Parameters, a_RNG);
                t_mutation_success = true;
                break;

            case MUTATE_BIASES:
                t_baby.Mutate_NeuronBiases(a_Parameters, a_RNG);
                t_mutation_success = true;
                break;*/
        }
    }

#endif
}
Example #4
0
Genome Species::ReproduceOne(Population& a_Pop, Parameters& a_Parameters, RNG& a_RNG)
{
    Genome t_baby; // for storing the result

    //////////////////////////
    // Reproduction

    // Spawn only one baby

    // this tells us if the baby is a result of mating
    bool t_mated = false;


    // There must be individuals there..
    ASSERT(NumIndividuals() > 0);

    // for a species of size 1 we can only mutate
    // NOTE: but does it make sense since we know this is the champ?
    if (NumIndividuals() == 1)
    {
        t_baby = GetIndividual(a_Parameters, a_RNG);
        t_mated = false;
    }
    // else we can mate
    else
    {
        Genome t_mom = GetIndividual(a_Parameters, a_RNG);

        // choose whether to mate at all
        // Do not allow crossover when in simplifying phase
        if ((a_RNG.RandFloat() < a_Parameters.CrossoverRate) && (a_Pop.GetSearchMode() != SIMPLIFYING))
        {
            // get the father
            Genome t_dad;
            bool t_interspecies = false;

            // There is a probability that the father may come from another species
            if ((a_RNG.RandFloat() < a_Parameters.InterspeciesCrossoverRate) && (a_Pop.m_Species.size()>1))
            {
                // Find different species (random one) // !!!!!!!!!!!!!!!!!
                // But the different species must have at least one evaluated individual
                int t_diffspec = 0;
                int t_giveup = 64;
                do
                {
                    t_diffspec = a_RNG.RandInt(0, static_cast<int>(a_Pop.m_Species.size()-1));
                }
                while ((a_Pop.m_Species[t_diffspec].m_AverageFitness == 0) && (t_giveup--));

                if (a_Pop.m_Species[t_diffspec].m_AverageFitness == 0)
                    t_dad = GetIndividual(a_Parameters, a_RNG);
                else
                    t_dad = a_Pop.m_Species[t_diffspec].GetIndividual(a_Parameters, a_RNG);

                t_interspecies = true;
            }
            else
            {
                // Mate within species
                t_dad = GetIndividual(a_Parameters, a_RNG);

                // The other parent should be a different one
                // number of tries to find different parent
                int t_tries = 32;
                while(((t_mom.GetID() == t_dad.GetID()) || ((!a_Parameters.AllowClones) && (t_mom.CompatibilityDistance(t_dad, a_Parameters) <= 0.00001)) ) && (t_tries--))
                {
                    t_dad = GetIndividual(a_Parameters, a_RNG);
                }
                t_interspecies = false;
            }

            // OK we have both mom and dad so mate them
            // Choose randomly one of two types of crossover
            if (a_RNG.RandFloat() < a_Parameters.MultipointCrossoverRate)
            {
                t_baby = t_mom.Mate( t_dad, false, t_interspecies, a_RNG);
            }
            else
            {
                t_baby = t_mom.Mate( t_dad, true, t_interspecies, a_RNG);
            }
            t_mated = true;
        }
        // don't mate - reproduce the mother asexually
        else
        {
            t_baby = t_mom;
            t_mated = false;
        }
    }

/*    if (t_baby.HasDeadEnds())
    {
        std::cout << "Dead ends in baby after crossover" << std::endl;
//        int p;
//        std::cin >> p;
    }*/

    // OK we have the baby, so let's mutate it.
    bool t_baby_is_clone = false;

    if ((!t_mated) || (a_RNG.RandFloat() < a_Parameters.OverallMutationRate))
        MutateGenome(t_baby_is_clone, a_Pop, t_baby, a_Parameters, a_RNG);

    // We have a new offspring now
    // give the offspring a new ID
    t_baby.SetID(a_Pop.GetNextGenomeID());
    a_Pop.IncrementNextGenomeID();

    // sort the baby's genes
    t_baby.SortGenes();

    // clear the baby's fitness
    t_baby.SetFitness(0);
    t_baby.SetAdjFitness(0);
    t_baby.SetOffspringAmount(0);

    t_baby.ResetEvaluated();

    // debug trap
/*    if (t_baby.NumLinks() == 0)
    {
        std::cout << "No links in baby after reproduction" << std::endl;
//        int p;
//        std::cin >> p;
    }

    if (t_baby.HasDeadEnds())
    {
        std::cout << "Dead ends in baby after reproduction" << std::endl;
//        int p;
//        std::cin >> p;
    }
*/
    return t_baby;
}
Example #5
0
// Reproduce mates & mutates the individuals of the species
// It may access the global species list in the population
// because some babies may turn out to belong in another species
// that have to be created.
// Also calls Birth() for every new baby
void Species::Reproduce(Population &a_Pop, Parameters& a_Parameters, RNG& a_RNG)
{
    Genome t_baby; // temp genome for reproduction

    int t_offspring_count = Rounded(GetOffspringRqd());

    // no offspring?! yikes.. dead species!
    if (t_offspring_count == 0)
    {
        // maybe do something else?
        return;
    }

    //////////////////////////
    // Reproduction

    // Spawn t_offspring_count babies
    bool t_champ_chosen = false;
    bool t_baby_exists_in_pop = false;
    while(t_offspring_count--)
    {
    	bool t_new_individual = true;

        // if the champ was not chosen, do it now..
        if (!t_champ_chosen)
        {
            t_baby = m_Individuals[0];
            t_champ_chosen = true;
            t_new_individual = false;
        }
        // or if it was, then proceed with the others
        else
        {
            do // - while the baby already exists somewhere in the new population
            {
                // this tells us if the baby is a result of mating
                bool t_mated = false;

                // There must be individuals there..
                ASSERT(NumIndividuals() > 0);

                // for a species of size 1 we can only mutate
                // NOTE: but does it make sense since we know this is the champ?
                if (NumIndividuals() == 1)
                {
                    t_baby = GetIndividual(a_Parameters, a_RNG);
                    t_mated = false;
                }
                // else we can mate
                else
                {
                    do // keep trying to mate until a good offspring is produced
                    {
                        Genome t_mom = GetIndividual(a_Parameters, a_RNG);

                        // choose whether to mate at all
                        // Do not allow crossover when in simplifying phase
                        if ((a_RNG.RandFloat() < a_Parameters.CrossoverRate) && (a_Pop.GetSearchMode() != SIMPLIFYING))
                        {
                            // get the father
                            Genome t_dad;
                            bool t_interspecies = false;

                            // There is a probability that the father may come from another species
                            if ((a_RNG.RandFloat() < a_Parameters.InterspeciesCrossoverRate) && (a_Pop.m_Species.size()>1))
                            {
                                // Find different species (random one) // !!!!!!!!!!!!!!!!!
                                int t_diffspec = a_RNG.RandInt(0, static_cast<int>(a_Pop.m_Species.size()-1));
                                t_dad = a_Pop.m_Species[t_diffspec].GetIndividual(a_Parameters, a_RNG);
                                t_interspecies = true;
                            }
                            else
                            {
                                // Mate within species
                                t_dad = GetIndividual(a_Parameters, a_RNG);

                                // The other parent should be a different one
                                // number of tries to find different parent
                                int t_tries = 32;
                                if (!a_Parameters.AllowClones)
                                    while(((t_mom.GetID() == t_dad.GetID()) || (t_mom.CompatibilityDistance(t_dad, a_Parameters) < 0.00001) ) && (t_tries--))
                                    {
                                        t_dad = GetIndividual(a_Parameters, a_RNG);
                                    }
                                else
                                    while(((t_mom.GetID() == t_dad.GetID()) ) && (t_tries--))
                                    {
                                        t_dad = GetIndividual(a_Parameters, a_RNG);
                                    }
                                t_interspecies = false;
                            }

                            // OK we have both mom and dad so mate them
                            // Choose randomly one of two types of crossover
                            if (a_RNG.RandFloat() < a_Parameters.MultipointCrossoverRate)
                            {
                                t_baby = t_mom.Mate( t_dad, false, t_interspecies, a_RNG);
                            }
                            else
                            {
                                t_baby = t_mom.Mate( t_dad, true, t_interspecies, a_RNG);
                            }

                            t_mated = true;
                        }
                        // don't mate - reproduce the mother asexually
                        else
                        {
                            t_baby = t_mom;
                            t_mated = false;
                        }

                    } while (t_baby.HasDeadEnds() || (t_baby.NumLinks() == 0));
                    // in case of dead ends after crossover we will repeat crossover
                    // until it works
                }


                // Mutate the baby
                if ((!t_mated) || (a_RNG.RandFloat() < a_Parameters.OverallMutationRate))
                    MutateGenome(t_baby_exists_in_pop, a_Pop, t_baby, a_Parameters, a_RNG);

                // Check if this baby is already present somewhere in the offspring
                // we don't want that
                t_baby_exists_in_pop = false;
                // Unless of course, we want
                if (!a_Parameters.AllowClones)
                {
                    for(unsigned int i=0; i<a_Pop.m_TempSpecies.size(); i++)
                    {
                        for(unsigned int j=0; j<a_Pop.m_TempSpecies[i].m_Individuals.size(); j++)
                        {
                            if (
                                (t_baby.CompatibilityDistance(a_Pop.m_TempSpecies[i].m_Individuals[j], a_Parameters) < 0.00001) // identical genome?
                               )

                            {
                                t_baby_exists_in_pop = true;
                                break;
                            }
                        }
                    }
                }
            }
            while (t_baby_exists_in_pop); // end do
        }

        // Final place to test for problems
        // If there is anything wrong here, we will just
        // pick a random individual and leave him unchanged
        if ((t_baby.NumLinks() == 0) || t_baby.HasDeadEnds())
        {
            t_baby = GetIndividual(a_Parameters, a_RNG);
            t_new_individual = false;
        }

        if (t_new_individual) {
			// We have a new offspring now
			// give the offspring a new ID
			t_baby.SetID(a_Pop.GetNextGenomeID());
			a_Pop.IncrementNextGenomeID();

			// sort the baby's genes
			t_baby.SortGenes();

			// clear the baby's fitness
			t_baby.SetFitness(0);
			t_baby.SetAdjFitness(0);
			t_baby.SetOffspringAmount(0);

			t_baby.ResetEvaluated();
        }

        //////////////////////////////////
        // put the baby to its species  //
        //////////////////////////////////

        // before Reproduce() is invoked, it is assumed that a
        // clone of the population exists with the name of m_TempSpecies
        // we will store results there.
        // after all reproduction completes, the original species will be replaced back

        bool t_found = false;
        std::vector<Species>::iterator t_cur_species = a_Pop.m_TempSpecies.begin();

        // No species yet?
        if (t_cur_species == a_Pop.m_TempSpecies.end())
        {
            // create the first species and place the baby there
            a_Pop.m_TempSpecies.push_back( Species(t_baby, a_Pop.GetNextSpeciesID()));
            a_Pop.IncrementNextSpeciesID();
        }
        else
        {
            // try to find a compatible species
            Genome t_to_compare = t_cur_species->GetRepresentative();

            t_found = false;
            while((t_cur_species != a_Pop.m_TempSpecies.end()) && (!t_found))
            {
                if (t_baby.IsCompatibleWith( t_to_compare, a_Parameters))
                {
                    // found a compatible species
                    t_cur_species->AddIndividual(t_baby);
                    t_found = true; // the search is over
                }
                else
                {
                    // keep searching for a matching species
                    t_cur_species++;
                    if (t_cur_species != a_Pop.m_TempSpecies.end())
                    {
                        t_to_compare = t_cur_species->GetRepresentative();
                    }
                }
            }

            // if couldn't find a match, make a new species
            if (!t_found)
            {
                a_Pop.m_TempSpecies.push_back( Species(t_baby, a_Pop.GetNextSpeciesID()));
                a_Pop.IncrementNextSpeciesID();
            }
        }
    }
}