void Matrix::NativePostRotate(
    /* [in] */ Int64 nObj,
    /* [in] */ Float degrees)
{
    SkMatrix* obj = reinterpret_cast<SkMatrix*>(nObj);
    obj->postRotate(degrees);
}
void anchor_handle_renderer::draw_anchor (SkCanvas &canvas, const SkRect &rect, SkPaint &paint) const
{
  switch (m_node_type)
  {
    case handle_type::DIAMOND:
    {
      canvas.save ();
      canvas.translate (rect.centerX (), rect.centerY ());
      canvas.rotate (45);
      SkRect moved_rect = rect;
      moved_rect.offset (-rect.centerX (), -rect.centerY ());
      paint.setAntiAlias (true);
      canvas.drawRect (moved_rect, paint);
      canvas.restore ();
      break;
    }
    case handle_type::SQUARE:
      canvas.drawRect (rect, paint);
      break;
    case handle_type::CIRCLE:
      canvas.drawOval (rect, paint);
      break;
    case handle_type::DOUBLE_HEADED_ARROW:
    case handle_type::ROTATE_ARROW:
      SkPath path = qt2skia::path (*m_paths.at (m_node_type));
      SkMatrix trans;
      trans.setIdentity ();
      trans.postRotate (m_rotation_angle, 32, 32); // TODO: change all these to use info from path_storage (bounding box and center (possibly should be made 0))
      trans.postConcat (qt2skia::matrix (geom::rect2rect (QRectF (0, 0, 64, 64), qt2skia::rect (rect))));
      path.transform (trans);
      paint.setAntiAlias (true);
      canvas.drawPath (path, paint);
      break;
  }
}
Example #3
0
void OsmAnd::MapRasterizer_P::rasterizePolylineIcons(
    const Context& context,
    SkCanvas& canvas,
    const SkPath& path,
    const MapStyleEvaluationResult& evalResult)
{
    bool ok;

    QString pathIconName;
    ok = evalResult.getStringValue(context.env->styleBuiltinValueDefs->id_OUTPUT_PATH_ICON, pathIconName);
    if (!ok || pathIconName.isEmpty())
        return;

    float pathIconStep = 0.0f;
    ok = evalResult.getFloatValue(context.env->styleBuiltinValueDefs->id_OUTPUT_PATH_ICON_STEP, pathIconStep);
    if (!ok || pathIconStep <= 0.0f)
        return;

    std::shared_ptr<const SkBitmap> pathIcon;
    ok = context.env->obtainMapIcon(pathIconName, pathIcon);
    if (!ok || !pathIcon)
        return;

    SkMatrix mIconTransform;
    mIconTransform.setIdentity();
    mIconTransform.setTranslate(-0.5f * pathIcon->width(), -0.5f * pathIcon->height());
    mIconTransform.postRotate(90.0f);

    SkPathMeasure pathMeasure(path, false);

    const auto length = pathMeasure.getLength();
    auto iconOffset = 0.5f * pathIconStep;
    const auto iconInstancesCount = static_cast<int>((length - iconOffset) / pathIconStep) + 1;
    if (iconInstancesCount < 1)
        return;

    SkMatrix mIconInstanceTransform;
    for (auto iconInstanceIdx = 0; iconInstanceIdx < iconInstancesCount; iconInstanceIdx++, iconOffset += pathIconStep)
    {
        SkMatrix mPinPoint;
        ok = pathMeasure.getMatrix(iconOffset, &mPinPoint);
        if (!ok)
            break;

        mIconInstanceTransform.setConcat(mPinPoint, mIconTransform);
        canvas.save();
        canvas.concat(mIconInstanceTransform);
        canvas.drawBitmap(*pathIcon, 0, 0, &_defaultPaint);
        canvas.restore();
    }
}
static void r9(SkLayerRasterizer* rast, SkPaint& p) {
    rast->addLayer(p);
    
    SkMatrix    lattice;
    lattice.setScale(SK_Scalar1, SK_Scalar1*6, 0, 0);
    lattice.postRotate(SkIntToScalar(30), 0, 0);
    p.setPathEffect(new Line2DPathEffect(SK_Scalar1*2, lattice))->unref();
    p.setXfermodeMode(SkXfermode::kClear_Mode);
    rast->addLayer(p);

    p.setPathEffect(NULL);
    p.setXfermode(NULL);
    p.setStyle(SkPaint::kStroke_Style);
    p.setStrokeWidth(SK_Scalar1);
    rast->addLayer(p);
}
Example #5
0
static void r9(SkLayerRasterizer::Builder* rastBuilder, SkPaint& p) {
    rastBuilder->addLayer(p);

    SkMatrix    lattice;
    lattice.setScale(SK_Scalar1, SK_Scalar1*6, 0, 0);
    lattice.postRotate(SkIntToScalar(30), 0, 0);
    p.setPathEffect(SkLine2DPathEffect::Make(SK_Scalar1*2, lattice));
    p.setXfermodeMode(SkXfermode::kClear_Mode);
    rastBuilder->addLayer(p);

    p.setPathEffect(nullptr);
    p.setXfermode(nullptr);
    p.setStyle(SkPaint::kStroke_Style);
    p.setStrokeWidth(SK_Scalar1);
    rastBuilder->addLayer(p);
}
Example #6
0
    void onOnceBeforeDraw() override {
        const SkRect bounds = SkRect::MakeXYWH(100, 100, 100, 100);
        SkPictureRecorder recorder;
        draw_something(recorder.beginRecording(bounds), bounds);
        fPicture = recorder.finishRecordingAsPicture();

        // extract enough just for the oval.
        const SkISize size = SkISize::Make(100, 100);
        auto srgbColorSpace = SkColorSpace::MakeSRGB();

        SkMatrix matrix;
        matrix.setTranslate(-100, -100);
        fImage0 = SkImage::MakeFromPicture(fPicture, size, &matrix, nullptr,
                                           SkImage::BitDepth::kU8, srgbColorSpace);
        matrix.postTranslate(-50, -50);
        matrix.postRotate(45);
        matrix.postTranslate(50, 50);
        fImage1 = SkImage::MakeFromPicture(fPicture, size, &matrix, nullptr,
                                           SkImage::BitDepth::kU8, srgbColorSpace);
    }
Example #7
0
static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
    SkMatrix mat;

    const float kRotation0 = 15.5f;
    const float kRotation1 = -50.f;
    const float kScale0 = 5000.f;

    const int kTripleCount = 1000;
    const int kMatrixCount = 1000;
    SkRandom rand;

    SkScalar randTriples[3*kTripleCount];
    for (int i = 0; i < 3*kTripleCount; ++i) {
        randTriples[i] = rand.nextRangeF(-3000.f, 3000.f);
    }

    SkMatrix mats[kMatrixCount];
    for (int i = 0; i < kMatrixCount; ++i) {
        for (int j = 0; j < 9; ++j) {
            mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
        }
    }

    // identity
    {
    mat.reset();
    SkScalar dst[3*kTripleCount];
    mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3));
    }

    // zero matrix
    {
    mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
    SkScalar dst[3*kTripleCount];
    mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    SkScalar zeros[3] = {0.f, 0.f, 0.f};
    for (int i = 0; i < kTripleCount; ++i) {
        REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3));
    }
    }

    // zero point
    {
    SkScalar zeros[3] = {0.f, 0.f, 0.f};
    for (int i = 0; i < kMatrixCount; ++i) {
        SkScalar dst[3];
        mats[i].mapHomogeneousPoints(dst, zeros, 1);
        REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3));
    }
    }

    // doesn't crash with null dst, src, count == 0
    {
    mats[0].mapHomogeneousPoints(NULL, NULL, 0);
    }

    // uniform scale of point
    {
    mat.setScale(kScale0, kScale0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // rotation of point
    {
    mat.setRotate(kRotation0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // rotation, scale, rotation of point
    {
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    mat.postRotate(kRotation0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // compare with naive approach
    {
    for (int i = 0; i < kMatrixCount; ++i) {
        for (int j = 0; j < kTripleCount; ++j) {
            SkScalar dst[3];
            mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1);
            REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst));
        }
    }
    }

}
Example #8
0
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
    SkMatrix mat;
    SkPoint rotation1, scale, rotation2;

    const float kRotation0 = 15.5f;
    const float kRotation1 = -50.f;
    const float kScale0 = 5000.f;
    const float kScale1 = 0.001f;

    // identity
    mat.reset();
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    // make sure it doesn't crash if we pass in NULLs
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));

    // rotation only
    mat.setRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // uniform scale only
    mat.setScale(kScale0, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // anisotropic scale only
    mat.setScale(kScale1, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation then uniform scale
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // uniform scale then rotation
    mat.setScale(kScale0, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation then uniform scale+reflection
    mat.setRotate(kRotation0);
    mat.postScale(kScale1, -kScale1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // uniform scale+reflection, then rotate
    mat.setScale(kScale0, -kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation then anisotropic scale
    mat.setRotate(kRotation1);
    mat.postScale(kScale1, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation then anisotropic scale
    mat.setRotate(90);
    mat.postScale(kScale1, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // anisotropic scale then rotation
    mat.setScale(kScale1, kScale0);
    mat.postRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // anisotropic scale then rotation
    mat.setScale(kScale1, kScale0);
    mat.postRotate(90);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation, uniform scale, then different rotation
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    mat.postRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation, anisotropic scale, then different rotation
    mat.setRotate(kRotation0);
    mat.postScale(kScale1, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // rotation, anisotropic scale + reflection, then different rotation
    mat.setRotate(kRotation0);
    mat.postScale(-kScale1, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // try some random matrices
    SkRandom rand;
    for (int m = 0; m < 1000; ++m) {
        SkScalar rot0 = rand.nextRangeF(-180, 180);
        SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
        SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
        SkScalar rot1 = rand.nextRangeF(-180, 180);
        mat.setRotate(rot0);
        mat.postScale(sx, sy);
        mat.postRotate(rot1);

        if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
            REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
        } else {
            // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
            SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
                               mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
            REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
        }
    }

    // translation shouldn't affect this
    mat.postTranslate(-1000.f, 1000.f);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // perspective shouldn't affect this
    mat[SkMatrix::kMPersp0] = 12.f;
    mat[SkMatrix::kMPersp1] = 4.f;
    mat[SkMatrix::kMPersp2] = 1872.f;
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));

    // degenerate matrices
    // mostly zero entries
    mat.reset();
    mat[SkMatrix::kMScaleX] = 0.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    mat.reset();
    mat[SkMatrix::kMScaleY] = 0.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    mat.reset();
    // linearly dependent entries
    mat[SkMatrix::kMScaleX] = 1.f;
    mat[SkMatrix::kMSkewX] = 2.f;
    mat[SkMatrix::kMSkewY] = 4.f;
    mat[SkMatrix::kMScaleY] = 8.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
}
Example #9
0
static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
    SkMatrix mat;

    // identity
    mat.setIdentity();
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // translation only
    mat.reset();
    mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with same size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with one negative
    mat.reset();
    mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scale with same size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective x
    mat.reset();
    mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective y
    mat.reset();
    mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // rotate
    for (int angle = 0; angle < 360; ++angle) {
        mat.reset();
        mat.setRotate(SkIntToScalar(angle));
        REPORTER_ASSERT(reporter, mat.isSimilarity());
    }

    // see if there are any accumulated precision issues
    mat.reset();
    for (int i = 1; i < 360; i++) {
        mat.postRotate(SkIntToScalar(1));
    }
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + translate
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + non-uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero except perspective
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scales zero, only skews
    mat.setAll(0, SK_Scalar1, 0,
               SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
}
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
    SkMatrix mat;
    SkScalar rotation0, scaleX, scaleY, rotation1;

    const float kRotation0 = 15.5f;
    const float kRotation1 = -50.f;
    const float kScale0 = 5000.f;
    const float kScale1 = 0.001f;

    // identity
    mat.reset();
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
    // make sure it doesn't crash if we pass in NULLs
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));

    // rotation only
    mat.setRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // uniform scale only
    mat.setScale(kScale0, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // anisotropic scale only
    mat.setScale(kScale1, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // rotation then uniform scale
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // uniform scale then rotation
    mat.setScale(kScale0, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // rotation then uniform scale+reflection
    mat.setRotate(kRotation0);
    mat.postScale(kScale1, -kScale1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // uniform scale+reflection, then rotate
    mat.setScale(kScale0, -kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // rotation then anisotropic scale
    mat.setRotate(kRotation1);
    mat.postScale(kScale1, kScale0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // anisotropic scale then rotation
    mat.setScale(kScale1, kScale0);
    mat.postRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));

    // rotation, uniform scale, then different rotation
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    mat.postRotate(kRotation0);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
                                                  SkDegreesToRadians(kRotation0 + kRotation1)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
    REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));

    // rotation, anisotropic scale, then different rotation
    mat.setRotate(kRotation0);
    mat.postScale(kScale1, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    // Because of the shear/skew we won't get the same results, so we need to multiply it out.
    // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
    // calculation (in setRotate()), which adds error, so this just computes the matrix elements
    // directly.
    SkScalar c0;
    SkScalar s0 = SkScalarSinCos(rotation0, &c0);
    SkScalar c1;
    SkScalar s1 = SkScalarSinCos(rotation1, &c1);
    // We do a relative check here because large scale factors cause problems with an absolute check
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
                                                           scaleX*c0*c1 - scaleY*s0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
                                                           -scaleX*s0*c1 - scaleY*c0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
                                                           scaleX*c0*s1 + scaleY*s0*c1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
                                                           -scaleX*s0*s1 + scaleY*c0*c1));

    // try some random matrices
    SkMWCRandom rand;
    for (int m = 0; m < 1000; ++m) {
        SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
        SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
        SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
        SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
        mat.setRotate(rot0);
        mat.postScale(sx, sy);
        mat.postRotate(rot1);

        if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
            SkScalar c0;
            SkScalar s0 = SkScalarSinCos(rotation0, &c0);
            SkScalar c1;
            SkScalar s1 = SkScalarSinCos(rotation1, &c1);
            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
                                                                   scaleX*c0*c1 - scaleY*s0*s1));
            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
                                                                   -scaleX*s0*c1 - scaleY*c0*s1));
            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
                                                                   scaleX*c0*s1 + scaleY*s0*c1));
            REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
                                                                   -scaleX*s0*s1 + scaleY*c0*c1));
        } else {
            // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
            SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
                               mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
            REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
        }
    }

    // translation shouldn't affect this
    mat.postTranslate(-1000.f, 1000.f);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    s0 = SkScalarSinCos(rotation0, &c0);
    s1 = SkScalarSinCos(rotation1, &c1);
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
                                                           scaleX*c0*c1 - scaleY*s0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
                                                           -scaleX*s0*c1 - scaleY*c0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
                                                           scaleX*c0*s1 + scaleY*s0*c1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
                                                           -scaleX*s0*s1 + scaleY*c0*c1));

    // perspective shouldn't affect this
    mat[SkMatrix::kMPersp0] = 12.f;
    mat[SkMatrix::kMPersp1] = 4.f;
    mat[SkMatrix::kMPersp2] = 1872.f;
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    s0 = SkScalarSinCos(rotation0, &c0);
    s1 = SkScalarSinCos(rotation1, &c1);
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
                                                           scaleX*c0*c1 - scaleY*s0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
                                                           -scaleX*s0*c1 - scaleY*c0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
                                                           scaleX*c0*s1 + scaleY*s0*c1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
                                                           -scaleX*s0*s1 + scaleY*c0*c1));

    // rotation, anisotropic scale + reflection, then different rotation
    mat.setRotate(kRotation0);
    mat.postScale(-kScale1, kScale0);
    mat.postRotate(kRotation1);
    REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    s0 = SkScalarSinCos(rotation0, &c0);
    s1 = SkScalarSinCos(rotation1, &c1);
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
                                                           scaleX*c0*c1 - scaleY*s0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
                                                           -scaleX*s0*c1 - scaleY*c0*s1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
                                                           scaleX*c0*s1 + scaleY*s0*c1));
    REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
                                                           -scaleX*s0*s1 + scaleY*c0*c1));

    // degenerate matrices
    // mostly zero entries
    mat.reset();
    mat[SkMatrix::kMScaleX] = 0.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    mat.reset();
    mat[SkMatrix::kMScaleY] = 0.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
    mat.reset();
    // linearly dependent entries
    mat[SkMatrix::kMScaleX] = 1.f;
    mat[SkMatrix::kMSkewX] = 2.f;
    mat[SkMatrix::kMSkewY] = 4.f;
    mat[SkMatrix::kMScaleY] = 8.f;
    REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
}
static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
    SkMatrix mat;

    // identity
    mat.setIdentity();
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // translation only
    mat.reset();
    mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with same size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with one negative
    mat.reset();
    mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scale with same size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective x
    mat.reset();
    mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective y
    mat.reset();
    mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

#ifdef SK_SCALAR_IS_FLOAT
    /* We bypass the following tests for SK_SCALAR_IS_FIXED build.
     * The long discussion can be found in this issue:
     *     http://codereview.appspot.com/5999050/
     * In short, we haven't found a perfect way to fix the precision
     * issue, i.e. the way we use tolerance in isSimilarityTransformation
     * is incorrect. The situation becomes worse in fixed build, so
     * we disabled rotation related tests for fixed build.
     */

    // rotate
    for (int angle = 0; angle < 360; ++angle) {
        mat.reset();
        mat.setRotate(SkIntToScalar(angle));
        REPORTER_ASSERT(reporter, mat.isSimilarity());
    }

    // see if there are any accumulated precision issues
    mat.reset();
    for (int i = 1; i < 360; i++) {
        mat.postRotate(SkIntToScalar(1));
    }
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + translate
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + non-uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
#endif

    // all zero
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero except perspective
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scales zero, only skews
    mat.setAll(0, SK_Scalar1, 0,
               SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
}
Example #12
0
static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
    SkMatrix mat;

    // identity
    mat.setIdentity();
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // translation only
    mat.reset();
    mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with same size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with one negative
    mat.reset();
    mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scale with same size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective x
    mat.reset();
    mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective y
    mat.reset();
    mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // rotate
    for (int angle = 0; angle < 360; ++angle) {
        mat.reset();
        mat.setRotate(SkIntToScalar(angle));
#ifndef SK_CPU_ARM64
        REPORTER_ASSERT(reporter, mat.isSimilarity());
#else
        // 64-bit ARM devices built with -O2 and -ffp-contract=fast have a loss
        // of precision and require that we have a higher tolerance
        REPORTER_ASSERT(reporter, mat.isSimilarity(SK_ScalarNearlyZero + 0.00010113f));
#endif
    }

    // see if there are any accumulated precision issues
    mat.reset();
    for (int i = 1; i < 360; i++) {
        mat.postRotate(SkIntToScalar(1));
    }
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + translate
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + non-uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero except perspective
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scales zero, only skews
    mat.setAll(0, SK_Scalar1, 0,
               SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
}
Example #13
0
 static void postRotate__F(JNIEnv* env, jobject clazz, jlong objHandle, jfloat degrees) {
     SkMatrix* obj = reinterpret_cast<SkMatrix*>(objHandle);
     obj->postRotate(degrees);
 }