void Matrix::NativePostRotate( /* [in] */ Int64 nObj, /* [in] */ Float degrees) { SkMatrix* obj = reinterpret_cast<SkMatrix*>(nObj); obj->postRotate(degrees); }
void anchor_handle_renderer::draw_anchor (SkCanvas &canvas, const SkRect &rect, SkPaint &paint) const { switch (m_node_type) { case handle_type::DIAMOND: { canvas.save (); canvas.translate (rect.centerX (), rect.centerY ()); canvas.rotate (45); SkRect moved_rect = rect; moved_rect.offset (-rect.centerX (), -rect.centerY ()); paint.setAntiAlias (true); canvas.drawRect (moved_rect, paint); canvas.restore (); break; } case handle_type::SQUARE: canvas.drawRect (rect, paint); break; case handle_type::CIRCLE: canvas.drawOval (rect, paint); break; case handle_type::DOUBLE_HEADED_ARROW: case handle_type::ROTATE_ARROW: SkPath path = qt2skia::path (*m_paths.at (m_node_type)); SkMatrix trans; trans.setIdentity (); trans.postRotate (m_rotation_angle, 32, 32); // TODO: change all these to use info from path_storage (bounding box and center (possibly should be made 0)) trans.postConcat (qt2skia::matrix (geom::rect2rect (QRectF (0, 0, 64, 64), qt2skia::rect (rect)))); path.transform (trans); paint.setAntiAlias (true); canvas.drawPath (path, paint); break; } }
void OsmAnd::MapRasterizer_P::rasterizePolylineIcons( const Context& context, SkCanvas& canvas, const SkPath& path, const MapStyleEvaluationResult& evalResult) { bool ok; QString pathIconName; ok = evalResult.getStringValue(context.env->styleBuiltinValueDefs->id_OUTPUT_PATH_ICON, pathIconName); if (!ok || pathIconName.isEmpty()) return; float pathIconStep = 0.0f; ok = evalResult.getFloatValue(context.env->styleBuiltinValueDefs->id_OUTPUT_PATH_ICON_STEP, pathIconStep); if (!ok || pathIconStep <= 0.0f) return; std::shared_ptr<const SkBitmap> pathIcon; ok = context.env->obtainMapIcon(pathIconName, pathIcon); if (!ok || !pathIcon) return; SkMatrix mIconTransform; mIconTransform.setIdentity(); mIconTransform.setTranslate(-0.5f * pathIcon->width(), -0.5f * pathIcon->height()); mIconTransform.postRotate(90.0f); SkPathMeasure pathMeasure(path, false); const auto length = pathMeasure.getLength(); auto iconOffset = 0.5f * pathIconStep; const auto iconInstancesCount = static_cast<int>((length - iconOffset) / pathIconStep) + 1; if (iconInstancesCount < 1) return; SkMatrix mIconInstanceTransform; for (auto iconInstanceIdx = 0; iconInstanceIdx < iconInstancesCount; iconInstanceIdx++, iconOffset += pathIconStep) { SkMatrix mPinPoint; ok = pathMeasure.getMatrix(iconOffset, &mPinPoint); if (!ok) break; mIconInstanceTransform.setConcat(mPinPoint, mIconTransform); canvas.save(); canvas.concat(mIconInstanceTransform); canvas.drawBitmap(*pathIcon, 0, 0, &_defaultPaint); canvas.restore(); } }
static void r9(SkLayerRasterizer* rast, SkPaint& p) { rast->addLayer(p); SkMatrix lattice; lattice.setScale(SK_Scalar1, SK_Scalar1*6, 0, 0); lattice.postRotate(SkIntToScalar(30), 0, 0); p.setPathEffect(new Line2DPathEffect(SK_Scalar1*2, lattice))->unref(); p.setXfermodeMode(SkXfermode::kClear_Mode); rast->addLayer(p); p.setPathEffect(NULL); p.setXfermode(NULL); p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(SK_Scalar1); rast->addLayer(p); }
static void r9(SkLayerRasterizer::Builder* rastBuilder, SkPaint& p) { rastBuilder->addLayer(p); SkMatrix lattice; lattice.setScale(SK_Scalar1, SK_Scalar1*6, 0, 0); lattice.postRotate(SkIntToScalar(30), 0, 0); p.setPathEffect(SkLine2DPathEffect::Make(SK_Scalar1*2, lattice)); p.setXfermodeMode(SkXfermode::kClear_Mode); rastBuilder->addLayer(p); p.setPathEffect(nullptr); p.setXfermode(nullptr); p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(SK_Scalar1); rastBuilder->addLayer(p); }
void onOnceBeforeDraw() override { const SkRect bounds = SkRect::MakeXYWH(100, 100, 100, 100); SkPictureRecorder recorder; draw_something(recorder.beginRecording(bounds), bounds); fPicture = recorder.finishRecordingAsPicture(); // extract enough just for the oval. const SkISize size = SkISize::Make(100, 100); auto srgbColorSpace = SkColorSpace::MakeSRGB(); SkMatrix matrix; matrix.setTranslate(-100, -100); fImage0 = SkImage::MakeFromPicture(fPicture, size, &matrix, nullptr, SkImage::BitDepth::kU8, srgbColorSpace); matrix.postTranslate(-50, -50); matrix.postRotate(45); matrix.postTranslate(50, 50); fImage1 = SkImage::MakeFromPicture(fPicture, size, &matrix, nullptr, SkImage::BitDepth::kU8, srgbColorSpace); }
static void test_matrix_homogeneous(skiatest::Reporter* reporter) { SkMatrix mat; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; const float kScale0 = 5000.f; const int kTripleCount = 1000; const int kMatrixCount = 1000; SkRandom rand; SkScalar randTriples[3*kTripleCount]; for (int i = 0; i < 3*kTripleCount; ++i) { randTriples[i] = rand.nextRangeF(-3000.f, 3000.f); } SkMatrix mats[kMatrixCount]; for (int i = 0; i < kMatrixCount; ++i) { for (int j = 0; j < 9; ++j) { mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); } } // identity { mat.reset(); SkScalar dst[3*kTripleCount]; mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3)); } // zero matrix { mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); SkScalar dst[3*kTripleCount]; mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); SkScalar zeros[3] = {0.f, 0.f, 0.f}; for (int i = 0; i < kTripleCount; ++i) { REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3)); } } // zero point { SkScalar zeros[3] = {0.f, 0.f, 0.f}; for (int i = 0; i < kMatrixCount; ++i) { SkScalar dst[3]; mats[i].mapHomogeneousPoints(dst, zeros, 1); REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3)); } } // doesn't crash with null dst, src, count == 0 { mats[0].mapHomogeneousPoints(NULL, NULL, 0); } // uniform scale of point { mat.setScale(kScale0, kScale0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // rotation of point { mat.setRotate(kRotation0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // rotation, scale, rotation of point { mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); SkScalar dst[3]; SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; SkPoint pnt; pnt.set(src[0], src[1]); mat.mapHomogeneousPoints(dst, src, 1); mat.mapPoints(&pnt, &pnt, 1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); } // compare with naive approach { for (int i = 0; i < kMatrixCount; ++i) { for (int j = 0; j < kTripleCount; ++j) { SkScalar dst[3]; mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1); REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst)); } } } }
static void test_matrix_decomposition(skiatest::Reporter* reporter) { SkMatrix mat; SkPoint rotation1, scale, rotation2; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; const float kScale0 = 5000.f; const float kScale1 = 0.001f; // identity mat.reset(); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // make sure it doesn't crash if we pass in NULLs REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL)); // rotation only mat.setRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale only mat.setScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // anisotropic scale only mat.setScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then uniform scale mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale then rotation mat.setScale(kScale0, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then uniform scale+reflection mat.setRotate(kRotation0); mat.postScale(kScale1, -kScale1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale+reflection, then rotate mat.setScale(kScale0, -kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then anisotropic scale mat.setRotate(kRotation1); mat.postScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then anisotropic scale mat.setRotate(90); mat.postScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // anisotropic scale then rotation mat.setScale(kScale1, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // anisotropic scale then rotation mat.setScale(kScale1, kScale0); mat.postRotate(90); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation, uniform scale, then different rotation mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation, anisotropic scale, then different rotation mat.setRotate(kRotation0); mat.postScale(kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation, anisotropic scale + reflection, then different rotation mat.setRotate(kRotation0); mat.postScale(-kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // try some random matrices SkRandom rand; for (int m = 0; m < 1000; ++m) { SkScalar rot0 = rand.nextRangeF(-180, 180); SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); SkScalar rot1 = rand.nextRangeF(-180, 180); mat.setRotate(rot0); mat.postScale(sx, sy); mat.postRotate(rot1); if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); } else { // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); } } // translation shouldn't affect this mat.postTranslate(-1000.f, 1000.f); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // perspective shouldn't affect this mat[SkMatrix::kMPersp0] = 12.f; mat[SkMatrix::kMPersp1] = 4.f; mat[SkMatrix::kMPersp2] = 1872.f; REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // degenerate matrices // mostly zero entries mat.reset(); mat[SkMatrix::kMScaleX] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); mat.reset(); mat[SkMatrix::kMScaleY] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); mat.reset(); // linearly dependent entries mat[SkMatrix::kMScaleX] = 1.f; mat[SkMatrix::kMSkewX] = 2.f; mat[SkMatrix::kMSkewY] = 4.f; mat[SkMatrix::kMScaleY] = 8.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); }
static void test_matrix_is_similarity(skiatest::Reporter* reporter) { SkMatrix mat; // identity mat.setIdentity(); REPORTER_ASSERT(reporter, mat.isSimilarity()); // translation only mat.reset(); mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with same size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with one negative mat.reset(); mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scale with same size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective x mat.reset(); mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective y mat.reset(); mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // rotate for (int angle = 0; angle < 360; ++angle) { mat.reset(); mat.setRotate(SkIntToScalar(angle)); REPORTER_ASSERT(reporter, mat.isSimilarity()); } // see if there are any accumulated precision issues mat.reset(); for (int i = 1; i < 360; i++) { mat.postRotate(SkIntToScalar(1)); } REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + translate mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + non-uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero except perspective mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scales zero, only skews mat.setAll(0, SK_Scalar1, 0, SK_Scalar1, 0, 0, 0, 0, SkMatrix::I()[8]); REPORTER_ASSERT(reporter, mat.isSimilarity()); }
static void test_matrix_decomposition(skiatest::Reporter* reporter) { SkMatrix mat; SkScalar rotation0, scaleX, scaleY, rotation1; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; const float kScale0 = 5000.f; const float kScale1 = 0.001f; // identity mat.reset(); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // make sure it doesn't crash if we pass in NULLs REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL)); // rotation only mat.setRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale only mat.setScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // anisotropic scale only mat.setScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then uniform scale mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale then rotation mat.setScale(kScale0, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then uniform scale+reflection mat.setRotate(kRotation0); mat.postScale(kScale1, -kScale1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // uniform scale+reflection, then rotate mat.setScale(kScale0, -kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation then anisotropic scale mat.setRotate(kRotation1); mat.postScale(kScale1, kScale0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // anisotropic scale then rotation mat.setScale(kScale1, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0))); // rotation, uniform scale, then different rotation mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0 + kRotation1))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); // rotation, anisotropic scale, then different rotation mat.setRotate(kRotation0); mat.postScale(kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); // Because of the shear/skew we won't get the same results, so we need to multiply it out. // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian // calculation (in setRotate()), which adds error, so this just computes the matrix elements // directly. SkScalar c0; SkScalar s0 = SkScalarSinCos(rotation0, &c0); SkScalar c1; SkScalar s1 = SkScalarSinCos(rotation1, &c1); // We do a relative check here because large scale factors cause problems with an absolute check REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // try some random matrices SkMWCRandom rand; for (int m = 0; m < 1000; ++m) { SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); mat.setRotate(rot0); mat.postScale(sx, sy); mat.postRotate(rot1); if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) { SkScalar c0; SkScalar s0 = SkScalarSinCos(rotation0, &c0); SkScalar c1; SkScalar s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); } else { // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); } } // translation shouldn't affect this mat.postTranslate(-1000.f, 1000.f); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // perspective shouldn't affect this mat[SkMatrix::kMPersp0] = 12.f; mat[SkMatrix::kMPersp1] = 4.f; mat[SkMatrix::kMPersp2] = 1872.f; REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // rotation, anisotropic scale + reflection, then different rotation mat.setRotate(kRotation0); mat.postScale(-kScale1, kScale0); mat.postRotate(kRotation1); REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); s0 = SkScalarSinCos(rotation0, &c0); s1 = SkScalarSinCos(rotation1, &c1); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], scaleX*c0*c1 - scaleY*s0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], -scaleX*s0*c1 - scaleY*c0*s1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], scaleX*c0*s1 + scaleY*s0*c1)); REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], -scaleX*s0*s1 + scaleY*c0*c1)); // degenerate matrices // mostly zero entries mat.reset(); mat[SkMatrix::kMScaleX] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); mat.reset(); mat[SkMatrix::kMScaleY] = 0.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); mat.reset(); // linearly dependent entries mat[SkMatrix::kMScaleX] = 1.f; mat[SkMatrix::kMSkewX] = 2.f; mat[SkMatrix::kMSkewY] = 4.f; mat[SkMatrix::kMScaleY] = 8.f; REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); }
static void test_matrix_is_similarity(skiatest::Reporter* reporter) { SkMatrix mat; // identity mat.setIdentity(); REPORTER_ASSERT(reporter, mat.isSimilarity()); // translation only mat.reset(); mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with same size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with one negative mat.reset(); mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scale with same size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective x mat.reset(); mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective y mat.reset(); mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); #ifdef SK_SCALAR_IS_FLOAT /* We bypass the following tests for SK_SCALAR_IS_FIXED build. * The long discussion can be found in this issue: * http://codereview.appspot.com/5999050/ * In short, we haven't found a perfect way to fix the precision * issue, i.e. the way we use tolerance in isSimilarityTransformation * is incorrect. The situation becomes worse in fixed build, so * we disabled rotation related tests for fixed build. */ // rotate for (int angle = 0; angle < 360; ++angle) { mat.reset(); mat.setRotate(SkIntToScalar(angle)); REPORTER_ASSERT(reporter, mat.isSimilarity()); } // see if there are any accumulated precision issues mat.reset(); for (int i = 1; i < 360; i++) { mat.postRotate(SkIntToScalar(1)); } REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + translate mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + non-uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); #endif // all zero mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero except perspective mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scales zero, only skews mat.setAll(0, SK_Scalar1, 0, SK_Scalar1, 0, 0, 0, 0, SkMatrix::I()[8]); REPORTER_ASSERT(reporter, mat.isSimilarity()); }
static void test_matrix_is_similarity(skiatest::Reporter* reporter) { SkMatrix mat; // identity mat.setIdentity(); REPORTER_ASSERT(reporter, mat.isSimilarity()); // translation only mat.reset(); mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with same size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with one negative mat.reset(); mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scale with same size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // scale with different size at a pivot point mat.reset(); mat.setScale(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with same size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // skew with different size at a pivot point mat.reset(); mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective x mat.reset(); mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // perspective y mat.reset(); mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // rotate for (int angle = 0; angle < 360; ++angle) { mat.reset(); mat.setRotate(SkIntToScalar(angle)); #ifndef SK_CPU_ARM64 REPORTER_ASSERT(reporter, mat.isSimilarity()); #else // 64-bit ARM devices built with -O2 and -ffp-contract=fast have a loss // of precision and require that we have a higher tolerance REPORTER_ASSERT(reporter, mat.isSimilarity(SK_ScalarNearlyZero + 0.00010113f)); #endif } // see if there are any accumulated precision issues mat.reset(); for (int i = 1; i < 360; i++) { mat.postRotate(SkIntToScalar(1)); } REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + translate mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); REPORTER_ASSERT(reporter, mat.isSimilarity()); // rotate + non-uniform scale mat.reset(); mat.setRotate(SkIntToScalar(30)); mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // all zero except perspective mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); REPORTER_ASSERT(reporter, !mat.isSimilarity()); // scales zero, only skews mat.setAll(0, SK_Scalar1, 0, SK_Scalar1, 0, 0, 0, 0, SkMatrix::I()[8]); REPORTER_ASSERT(reporter, mat.isSimilarity()); }
static void postRotate__F(JNIEnv* env, jobject clazz, jlong objHandle, jfloat degrees) { SkMatrix* obj = reinterpret_cast<SkMatrix*>(objHandle); obj->postRotate(degrees); }