Example #1
0
/**
 * The actual processing of data, in separate thread if GUI enabled.
 */
int process(void* unused) {

  // incrementally process data
  slam.set_properties(prop);
  incremental_slam();

  toc("all");

  if (!prop.quiet) {
    if (!batch_processing) {
      cout << endl;
    }
    double accumulated = tictoc("setup") + tictoc("incremental")
        + tictoc("batch");
    cout << "Accumulated computation time: " << accumulated << "s" << endl;
    cout << "(Overall execution time: " << tictoc("all") << "s)" << endl;
    slam.print_stats();
    cout << endl;
  }

  if (save_stats) {
    cout << "Saving statistics to " << fname_stats << endl;
    save_statistics(fname_stats);
    cout << endl;
  }
  if (write_result) {
    cout << "Saving result to " << fname_result << endl;
    slam.save(fname_result);
    cout << endl;
  }

#ifdef USE_GUI
  if (use_gui) {
    while (true) {
      if (viewer.exit_requested()) {
        exit(0);
      }
      SDL_Delay(100);
    }
  }
#endif

  exit(0);
}
Example #2
0
/**
 * Incrementally process factors.
 */
void incremental_slam() {
  unsigned int step = 0;


  unsigned int next_step = step;
  // step by step after reading log file
  for (; loader->more_data(&next_step); step = next_step) {
    check_quit();

    double t0 = tic();

    tic("setup");

    // add new variables and constraints for current step
    for (unsigned int s = step; s < next_step; s++) {
      for (list<Node*>::const_iterator it = loader->nodes(s).begin();
          it != loader->nodes(s).end(); it++) {
        if (prop.verbose)
          cout << **it << endl;
        slam.add_node(*it);
      }
      for (list<Factor*>::const_iterator it = loader->factors(s).begin();
          it != loader->factors(s).end(); it++) {
        if (prop.verbose)
          cout << **it << endl;
        slam.add_factor(*it);
      }
    }

    toc("setup");
    tic("incremental");

    if (!(batch_processing || no_optimization)) {
      slam.update();
    }

    toc("incremental");

    if (save_stats) {
      stats.resize(step + 1);
      stats[step].time = toc(t0);
      stats[step].chi2 = slam.normalized_chi2();
      stats[step].nnz = slam.get_R().nnz();
      stats[step].local_chi2 = slam.local_chi2(100); // last 100 constraints
      stats[step].nnodes = slam.get_nodes().size();
      stats[step].nconstraints = slam.get_factors().size();
    }

    // visualization is not counted in timing
    if (!(batch_processing || no_optimization)) {
      visualize(step);
    }
  }

  visualize(step - 1);

  if (!no_optimization) {
    if (batch_processing) {
      tic("batch");
      slam.batch_optimization();
      toc("batch");
    } else {
      // end with a batch step/relinearization
      prop.mod_batch = 1;
      slam.set_properties(prop);
      tic("final");
      slam.update();
      toc("final");
    }
  }

  visualize(step - 1);
}
Example #3
0
int main() {
  // setup a simple graph
  // known poses
  Pose2d x0 (0,  0,   M_PI/9.0);
  Pose2d x1 (10, 10,  0.0     );
  Pose2d x2 (20, 20,  M_PI/6.0);
  Pose2d x3 (30, 30, -M_PI/4.0);
  Pose2d x4 (40, 40, -M_PI/8.0);
  // known landmarks
  Point2d la (100, 100);
  
  // mesurements
  Pose2d z0 = x0;
  Pose2d z01 = x1.ominus(x0);
  Pose2d z12 = x2.ominus(x1);
  Pose2d z23 = x3.ominus(x2);
  Pose2d z34 = x4.ominus(x3);
  Pose2d z13 = x3.ominus(x1);
  // landmark measurement
  Point2d z1a = x1.transform_to(la);
    
  // add noise to measurements
  double sigma = 0.01;
  MatrixXd Q = sigma*sigma*eye(3);
  Noise Qsqinf = Information(Q.inverse());
  MatrixXd Q2 = sigma*sigma*eye(2);
  Noise Q2sqinf = Information(Q2.inverse());
  z0  = add_noise(z0,  sigma);
  z01 = add_noise(z01, sigma);
  z12 = add_noise(z12, sigma);
  z23 = add_noise(z23, sigma);
  z34 = add_noise(z34, sigma);
  z13 = add_noise(z13, sigma);
  z1a = add_noise(z1a, sigma);
  
  // nodes
  Pose2d_Node*  n0 = new Pose2d_Node();
  Pose2d_Node*  n1 = new Pose2d_Node();
  Pose2d_Node*  n2 = new Pose2d_Node();
  Pose2d_Node*  n3 = new Pose2d_Node();
  Pose2d_Node*  n4 = new Pose2d_Node();
  Point2d_Node* na = new Point2d_Node();
  
  // make graph
  Slam slam;
  Properties prop;
  prop.verbose = true; prop.quiet = false; prop.method = GAUSS_NEWTON;
  slam.set_properties(prop);
  
  // add nodes to graph
  slam.add_node(n0);
  slam.add_node(n1);
  slam.add_node(n2),
  slam.add_node(n3);
  slam.add_node(n4);
  slam.add_node(na);
    
  // create factors and add them to the graph
  Pose2d_Factor* z0f = new Pose2d_Factor(n0, z0, Qsqinf);
  slam.add_factor(z0f);
  Pose2d_Pose2d_Factor* z01f = new Pose2d_Pose2d_Factor(n0, n1, z01, Qsqinf);
  slam.add_factor(z01f);
  Pose2d_Pose2d_Factor* z12f = new Pose2d_Pose2d_Factor(n1, n2, z12, Qsqinf);
  slam.add_factor(z12f);
  Pose2d_Pose2d_Factor* z23f = new Pose2d_Pose2d_Factor(n2, n3, z23, Qsqinf);
  slam.add_factor(z23f);
  Pose2d_Pose2d_Factor* z34f = new Pose2d_Pose2d_Factor(n3, n4, z34, Qsqinf);
  slam.add_factor(z34f);
  Pose2d_Pose2d_Factor* z13f = new Pose2d_Pose2d_Factor(n1, n3, z13, Qsqinf);
  slam.add_factor(z13f);
  Pose2d_Point2d_Factor* z1af = new Pose2d_Point2d_Factor(n1, na, z1a, Q2sqinf);
  slam.add_factor(z1af);
  
  slam.batch_optimization();
  slam.print_stats();
  ofstream f; f.open ("before.graph"); slam.write(f); f.close();
  //slam.print_graph();
  //print_all(slam);
  
  // get true marginal distribution over p(x0, x2, x3, x4)
  list<Node*> nodes_subset;
  nodes_subset.push_back(n0);
  nodes_subset.push_back(n2);
  nodes_subset.push_back(n3);
  nodes_subset.push_back(n4);
  MatrixXd P_true = slam.covariances().marginal(nodes_subset);
  //MatrixXd L_true = get_info (&slam);
  VectorXd mu_true(12);
  mu_true.segment<3>(0) = n0->value().vector();
  mu_true.segment<3>(3) = n2->value().vector();
  mu_true.segment<3>(6) = n3->value().vector();
  mu_true.segment<3>(9) = n4->value().vector();  
  
  // remove node 1 using GLC ========================================
  bool sparse = true;  // sparse approximate or dense exact
  vector<Factor*> felim = glc_elim_factors (n1); //usefull for local managment of factors
  //vector<Factor*> fnew = glc_remove_node (slam, n1, sparse); // not root shifted
  GLC_RootShift rs;
  vector<Factor*> fnew = glc_remove_node (slam, n1, sparse, &rs); // root shifted
  // ================================================================
  cout << felim.size() << " factor(s) removed." << endl;
  cout << fnew.size() << " new GLC factor(s) added." << endl;
  slam.batch_optimization();
  slam.print_stats();
  f.open ("after.graph"); slam.write(f); f.close();

  // get glc marginal distribution over p(x0, x2, x3, x4)
  MatrixXd P_glc = slam.covariances().marginal(nodes_subset);
  //MatrixXd L_glc = get_info (&slam);
  VectorXd mu_glc(12);
  mu_glc.segment<3>(0) = n0->value().vector();
  mu_glc.segment<3>(3) = n2->value().vector();
  mu_glc.segment<3>(6) = n3->value().vector();
  mu_glc.segment<3>(9) = n4->value().vector();  

  // calcualte the KLD
  int n = mu_glc.size();
  double A = (P_glc.inverse() * P_true).trace();
  VectorXd du = mu_glc - mu_true;
  // deal with difference in angles
  for(int i=0; i<du.size(); i++) {
    if(i % 3 == 2)
      du(i) = standardRad(du(i));
  }   
  double B = du.transpose() * P_glc.inverse() * du;
  double C = log(P_true.determinant()) - log(P_glc.determinant());
  double kld = 0.5*(A + B - C - n);
  cout << "KLD: " << kld << endl;
  
  return 0;
}