/** * Calculate covariances for both points and poses up to the given time step. */ void covariances(unsigned int step, list<MatrixXd>& point_marginals, list<MatrixXd>& pose_marginals) { // make sure return arguments are empty point_marginals.clear(); pose_marginals.clear(); // combining everything into one call is faster, // as it avoids recalculating commonly needed entries Covariances::node_lists_t node_lists; for (unsigned int i = 0; i < step; i++) { list<Node*> entry; entry.push_back(loader->pose_nodes()[i]); node_lists.push_back(entry); } for (unsigned int i = 0; i < loader->num_points(step); i++) { list<Node*> entry; entry.push_back(loader->point_nodes()[i]); node_lists.push_back(entry); } pose_marginals = slam.covariances().marginal(node_lists); // split into points and poses if (pose_marginals.size() > 0) { list<MatrixXd>::iterator center = pose_marginals.begin(); for (unsigned int i = 0; i < step; i++, center++) ; point_marginals.splice(point_marginals.begin(), pose_marginals, center, pose_marginals.end()); } }
int main(int argc, const char* argv[]) { Pose2d origin; Noise noise = SqrtInformation(10. * eye(3)); Pose2d_Node* pose_node_1 = new Pose2d_Node(); // create node slam.add_node(pose_node_1); // add it to the Slam graph Pose2d_Factor* prior = new Pose2d_Factor(pose_node_1, origin, noise); // create prior measurement, an factor slam.add_factor(prior); // add it to the Slam graph Pose2d_Node* pose_node_2 = new Pose2d_Node(); // create node slam.add_node(pose_node_2); // add it to the Slam graph Pose2d delta(1., 0., 0.); Pose2d_Pose2d_Factor* odo = new Pose2d_Pose2d_Factor(pose_node_1, pose_node_2, delta, noise); slam.add_factor(odo); slam.batch_optimization(); #if 0 const Covariances& covariances = slam.covariances(); #else // operate on a copy (just an example, cloning is useful for running // covariance recovery in a separate thread) const Covariances& covariances = slam.covariances().clone(); #endif // recovering the full covariance matrix cout << "Full covariance matrix:" << endl; MatrixXd cov_full = covariances.marginal(slam.get_nodes()); cout << cov_full << endl << endl; // sanity checking by inverting the information matrix, not using R SparseSystem Js = slam.jacobian(); MatrixXd J(Js.num_cols(), Js.num_cols()); for (int r=0; r<Js.num_cols(); r++) { for (int c=0; c<Js.num_cols(); c++) { J(r,c) = Js(r,c); } } MatrixXd H = J.transpose() * J; MatrixXd cov_full2 = H.inverse(); cout << cov_full2 << endl; // recovering the block-diagonals only of the full covariance matrix cout << "Block-diagonals only:" << endl; Covariances::node_lists_t node_lists; list<Node*> nodes; nodes.push_back(pose_node_1); node_lists.push_back(nodes); nodes.clear(); nodes.push_back(pose_node_2); node_lists.push_back(nodes); list<MatrixXd> cov_blocks = covariances.marginal(node_lists); int i = 1; for (list<MatrixXd>::iterator it = cov_blocks.begin(); it!=cov_blocks.end(); it++, i++) { cout << "block " << i << endl; cout << *it << endl; } // recovering individual entries, here the right block column cout << "Right block column:" << endl; Covariances::node_pair_list_t node_pair_list; node_pair_list.push_back(make_pair(pose_node_1, pose_node_2)); node_pair_list.push_back(make_pair(pose_node_2, pose_node_2)); list<MatrixXd> cov_entries = covariances.access(node_pair_list); for (list<MatrixXd>::iterator it = cov_entries.begin(); it!=cov_entries.end(); it++) { cout << *it << endl; } }
int main() { // setup a simple graph // known poses Pose2d x0 (0, 0, M_PI/9.0); Pose2d x1 (10, 10, 0.0 ); Pose2d x2 (20, 20, M_PI/6.0); Pose2d x3 (30, 30, -M_PI/4.0); Pose2d x4 (40, 40, -M_PI/8.0); // known landmarks Point2d la (100, 100); // mesurements Pose2d z0 = x0; Pose2d z01 = x1.ominus(x0); Pose2d z12 = x2.ominus(x1); Pose2d z23 = x3.ominus(x2); Pose2d z34 = x4.ominus(x3); Pose2d z13 = x3.ominus(x1); // landmark measurement Point2d z1a = x1.transform_to(la); // add noise to measurements double sigma = 0.01; MatrixXd Q = sigma*sigma*eye(3); Noise Qsqinf = Information(Q.inverse()); MatrixXd Q2 = sigma*sigma*eye(2); Noise Q2sqinf = Information(Q2.inverse()); z0 = add_noise(z0, sigma); z01 = add_noise(z01, sigma); z12 = add_noise(z12, sigma); z23 = add_noise(z23, sigma); z34 = add_noise(z34, sigma); z13 = add_noise(z13, sigma); z1a = add_noise(z1a, sigma); // nodes Pose2d_Node* n0 = new Pose2d_Node(); Pose2d_Node* n1 = new Pose2d_Node(); Pose2d_Node* n2 = new Pose2d_Node(); Pose2d_Node* n3 = new Pose2d_Node(); Pose2d_Node* n4 = new Pose2d_Node(); Point2d_Node* na = new Point2d_Node(); // make graph Slam slam; Properties prop; prop.verbose = true; prop.quiet = false; prop.method = GAUSS_NEWTON; slam.set_properties(prop); // add nodes to graph slam.add_node(n0); slam.add_node(n1); slam.add_node(n2), slam.add_node(n3); slam.add_node(n4); slam.add_node(na); // create factors and add them to the graph Pose2d_Factor* z0f = new Pose2d_Factor(n0, z0, Qsqinf); slam.add_factor(z0f); Pose2d_Pose2d_Factor* z01f = new Pose2d_Pose2d_Factor(n0, n1, z01, Qsqinf); slam.add_factor(z01f); Pose2d_Pose2d_Factor* z12f = new Pose2d_Pose2d_Factor(n1, n2, z12, Qsqinf); slam.add_factor(z12f); Pose2d_Pose2d_Factor* z23f = new Pose2d_Pose2d_Factor(n2, n3, z23, Qsqinf); slam.add_factor(z23f); Pose2d_Pose2d_Factor* z34f = new Pose2d_Pose2d_Factor(n3, n4, z34, Qsqinf); slam.add_factor(z34f); Pose2d_Pose2d_Factor* z13f = new Pose2d_Pose2d_Factor(n1, n3, z13, Qsqinf); slam.add_factor(z13f); Pose2d_Point2d_Factor* z1af = new Pose2d_Point2d_Factor(n1, na, z1a, Q2sqinf); slam.add_factor(z1af); slam.batch_optimization(); slam.print_stats(); ofstream f; f.open ("before.graph"); slam.write(f); f.close(); //slam.print_graph(); //print_all(slam); // get true marginal distribution over p(x0, x2, x3, x4) list<Node*> nodes_subset; nodes_subset.push_back(n0); nodes_subset.push_back(n2); nodes_subset.push_back(n3); nodes_subset.push_back(n4); MatrixXd P_true = slam.covariances().marginal(nodes_subset); //MatrixXd L_true = get_info (&slam); VectorXd mu_true(12); mu_true.segment<3>(0) = n0->value().vector(); mu_true.segment<3>(3) = n2->value().vector(); mu_true.segment<3>(6) = n3->value().vector(); mu_true.segment<3>(9) = n4->value().vector(); // remove node 1 using GLC ======================================== bool sparse = true; // sparse approximate or dense exact vector<Factor*> felim = glc_elim_factors (n1); //usefull for local managment of factors //vector<Factor*> fnew = glc_remove_node (slam, n1, sparse); // not root shifted GLC_RootShift rs; vector<Factor*> fnew = glc_remove_node (slam, n1, sparse, &rs); // root shifted // ================================================================ cout << felim.size() << " factor(s) removed." << endl; cout << fnew.size() << " new GLC factor(s) added." << endl; slam.batch_optimization(); slam.print_stats(); f.open ("after.graph"); slam.write(f); f.close(); // get glc marginal distribution over p(x0, x2, x3, x4) MatrixXd P_glc = slam.covariances().marginal(nodes_subset); //MatrixXd L_glc = get_info (&slam); VectorXd mu_glc(12); mu_glc.segment<3>(0) = n0->value().vector(); mu_glc.segment<3>(3) = n2->value().vector(); mu_glc.segment<3>(6) = n3->value().vector(); mu_glc.segment<3>(9) = n4->value().vector(); // calcualte the KLD int n = mu_glc.size(); double A = (P_glc.inverse() * P_true).trace(); VectorXd du = mu_glc - mu_true; // deal with difference in angles for(int i=0; i<du.size(); i++) { if(i % 3 == 2) du(i) = standardRad(du(i)); } double B = du.transpose() * P_glc.inverse() * du; double C = log(P_true.determinant()) - log(P_glc.determinant()); double kld = 0.5*(A + B - C - n); cout << "KLD: " << kld << endl; return 0; }