int main() { // instance of the main class that manages and optimizes the pose graph Slam slam; // locally remember poses vector<Pose2d_Node*> pose_nodes; Noise noise3 = Information(100. * eye(3)); Noise noise2 = Information(100. * eye(2)); // create a first pose (a node) Pose2d_Node* new_pose_node = new Pose2d_Node(); // add it to the graph slam.add_node(new_pose_node); // also remember it locally pose_nodes.push_back(new_pose_node); // create a prior measurement (a factor) Pose2d origin(0., 0., 0.); Pose2d_Factor* prior = new Pose2d_Factor(pose_nodes[0], origin, noise3); // add it to the graph slam.add_factor(prior); for (int i=1; i<4; i++) { // next pose Pose2d_Node* new_pose_node = new Pose2d_Node(); slam.add_node(new_pose_node); pose_nodes.push_back(new_pose_node); // connect to previous with odometry measurement Pose2d odometry(1., 0., 0.); // x,y,theta Pose2d_Pose2d_Factor* constraint = new Pose2d_Pose2d_Factor(pose_nodes[i-1], pose_nodes[i], odometry, noise3); slam.add_factor(constraint); } // create a landmark Point2d_Node* new_point_node = new Point2d_Node(); slam.add_node(new_point_node); // create a pose and the landmark by a measurement Point2d measure(5., 3.); // x,y Pose2d_Point2d_Factor* measurement = new Pose2d_Point2d_Factor(pose_nodes[1], new_point_node, measure, noise2); slam.add_factor(measurement); // optimize the graph slam.batch_optimization(); // accessing the current estimate of a specific pose cout << "Pose 2: " << pose_nodes[2]->value() << endl; // printing the complete graph cout << endl << "Full graph:" << endl; slam.write(cout); return 0; }
int main() { // setup a simple graph // known poses Pose2d x0 (0, 0, M_PI/9.0); Pose2d x1 (10, 10, 0.0 ); Pose2d x2 (20, 20, M_PI/6.0); Pose2d x3 (30, 30, -M_PI/4.0); Pose2d x4 (40, 40, -M_PI/8.0); // known landmarks Point2d la (100, 100); // mesurements Pose2d z0 = x0; Pose2d z01 = x1.ominus(x0); Pose2d z12 = x2.ominus(x1); Pose2d z23 = x3.ominus(x2); Pose2d z34 = x4.ominus(x3); Pose2d z13 = x3.ominus(x1); // landmark measurement Point2d z1a = x1.transform_to(la); // add noise to measurements double sigma = 0.01; MatrixXd Q = sigma*sigma*eye(3); Noise Qsqinf = Information(Q.inverse()); MatrixXd Q2 = sigma*sigma*eye(2); Noise Q2sqinf = Information(Q2.inverse()); z0 = add_noise(z0, sigma); z01 = add_noise(z01, sigma); z12 = add_noise(z12, sigma); z23 = add_noise(z23, sigma); z34 = add_noise(z34, sigma); z13 = add_noise(z13, sigma); z1a = add_noise(z1a, sigma); // nodes Pose2d_Node* n0 = new Pose2d_Node(); Pose2d_Node* n1 = new Pose2d_Node(); Pose2d_Node* n2 = new Pose2d_Node(); Pose2d_Node* n3 = new Pose2d_Node(); Pose2d_Node* n4 = new Pose2d_Node(); Point2d_Node* na = new Point2d_Node(); // make graph Slam slam; Properties prop; prop.verbose = true; prop.quiet = false; prop.method = GAUSS_NEWTON; slam.set_properties(prop); // add nodes to graph slam.add_node(n0); slam.add_node(n1); slam.add_node(n2), slam.add_node(n3); slam.add_node(n4); slam.add_node(na); // create factors and add them to the graph Pose2d_Factor* z0f = new Pose2d_Factor(n0, z0, Qsqinf); slam.add_factor(z0f); Pose2d_Pose2d_Factor* z01f = new Pose2d_Pose2d_Factor(n0, n1, z01, Qsqinf); slam.add_factor(z01f); Pose2d_Pose2d_Factor* z12f = new Pose2d_Pose2d_Factor(n1, n2, z12, Qsqinf); slam.add_factor(z12f); Pose2d_Pose2d_Factor* z23f = new Pose2d_Pose2d_Factor(n2, n3, z23, Qsqinf); slam.add_factor(z23f); Pose2d_Pose2d_Factor* z34f = new Pose2d_Pose2d_Factor(n3, n4, z34, Qsqinf); slam.add_factor(z34f); Pose2d_Pose2d_Factor* z13f = new Pose2d_Pose2d_Factor(n1, n3, z13, Qsqinf); slam.add_factor(z13f); Pose2d_Point2d_Factor* z1af = new Pose2d_Point2d_Factor(n1, na, z1a, Q2sqinf); slam.add_factor(z1af); slam.batch_optimization(); slam.print_stats(); ofstream f; f.open ("before.graph"); slam.write(f); f.close(); //slam.print_graph(); //print_all(slam); // get true marginal distribution over p(x0, x2, x3, x4) list<Node*> nodes_subset; nodes_subset.push_back(n0); nodes_subset.push_back(n2); nodes_subset.push_back(n3); nodes_subset.push_back(n4); MatrixXd P_true = slam.covariances().marginal(nodes_subset); //MatrixXd L_true = get_info (&slam); VectorXd mu_true(12); mu_true.segment<3>(0) = n0->value().vector(); mu_true.segment<3>(3) = n2->value().vector(); mu_true.segment<3>(6) = n3->value().vector(); mu_true.segment<3>(9) = n4->value().vector(); // remove node 1 using GLC ======================================== bool sparse = true; // sparse approximate or dense exact vector<Factor*> felim = glc_elim_factors (n1); //usefull for local managment of factors //vector<Factor*> fnew = glc_remove_node (slam, n1, sparse); // not root shifted GLC_RootShift rs; vector<Factor*> fnew = glc_remove_node (slam, n1, sparse, &rs); // root shifted // ================================================================ cout << felim.size() << " factor(s) removed." << endl; cout << fnew.size() << " new GLC factor(s) added." << endl; slam.batch_optimization(); slam.print_stats(); f.open ("after.graph"); slam.write(f); f.close(); // get glc marginal distribution over p(x0, x2, x3, x4) MatrixXd P_glc = slam.covariances().marginal(nodes_subset); //MatrixXd L_glc = get_info (&slam); VectorXd mu_glc(12); mu_glc.segment<3>(0) = n0->value().vector(); mu_glc.segment<3>(3) = n2->value().vector(); mu_glc.segment<3>(6) = n3->value().vector(); mu_glc.segment<3>(9) = n4->value().vector(); // calcualte the KLD int n = mu_glc.size(); double A = (P_glc.inverse() * P_true).trace(); VectorXd du = mu_glc - mu_true; // deal with difference in angles for(int i=0; i<du.size(); i++) { if(i % 3 == 2) du(i) = standardRad(du(i)); } double B = du.transpose() * P_glc.inverse() * du; double C = log(P_true.determinant()) - log(P_glc.determinant()); double kld = 0.5*(A + B - C - n); cout << "KLD: " << kld << endl; return 0; }