mitk::TestDICOMLoading::ImageList mitk::TestDICOMLoading::LoadFiles( const StringContainer& files ) { for (StringContainer::const_iterator iter = files.begin(); iter != files.end(); ++iter) { MITK_DEBUG << "File " << *iter; } ImageList result; DicomSeriesReader::FileNamesGrouping seriesInFiles = DicomSeriesReader::GetSeries( files, true ); // TODO sort series UIDs, implementation of map iterator might differ on different platforms (or verify this is a standard topic??) for (DicomSeriesReader::FileNamesGrouping::const_iterator seriesIter = seriesInFiles.begin(); seriesIter != seriesInFiles.end(); ++seriesIter) { StringContainer files = seriesIter->second.GetFilenames(); DataNode::Pointer node = DicomSeriesReader::LoadDicomSeries( files ); if (node.IsNotNull()) { Image::Pointer image = dynamic_cast<mitk::Image*>( node->GetData() ); result.push_back( image ); } else { } } return result; }
void mitk::BinaryThresholdULTool::CreateNewSegmentationFromThreshold(DataNode* node) { if (node) { Image::Pointer feedBackImage = dynamic_cast<Image*>( m_ThresholdFeedbackNode->GetData() ); if (feedBackImage.IsNotNull()) { // create a new image of the same dimensions and smallest possible pixel type DataNode::Pointer emptySegmentation = GetTargetSegmentationNode(); if (emptySegmentation) { // actually perform a thresholding and ask for an organ type for (unsigned int timeStep = 0; timeStep < feedBackImage->GetTimeSteps(); ++timeStep) { try { ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New(); timeSelector->SetInput( feedBackImage ); timeSelector->SetTimeNr( timeStep ); timeSelector->UpdateLargestPossibleRegion(); Image::Pointer feedBackImage3D = timeSelector->GetOutput(); if (feedBackImage3D->GetDimension() == 2) { AccessFixedDimensionByItk_2( feedBackImage3D, ITKSetVolume, 2, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep ); } else { AccessFixedDimensionByItk_2( feedBackImage3D, ITKSetVolume, 3, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep ); } } catch(...) { Tool::ErrorMessage("Error accessing single time steps of the original image. Cannot create segmentation."); } } //since we are maybe working on a smaller image, pad it to the size of the original image if (m_OriginalImageNode.GetPointer() != m_NodeForThresholding.GetPointer()) { mitk::PadImageFilter::Pointer padFilter = mitk::PadImageFilter::New(); padFilter->SetInput(0, dynamic_cast<mitk::Image*> (emptySegmentation->GetData())); padFilter->SetInput(1, dynamic_cast<mitk::Image*> (m_OriginalImageNode->GetData())); padFilter->SetBinaryFilter(true); padFilter->SetUpperThreshold(1); padFilter->SetLowerThreshold(1); padFilter->Update(); emptySegmentation->SetData(padFilter->GetOutput()); } m_ToolManager->SetWorkingData( emptySegmentation ); m_ToolManager->GetWorkingData(0)->Modified(); } } } }
void mitk::BinaryThresholdULTool::CreateNewSegmentationFromThreshold(DataNode* node, const std::string& organName, const Color& color) { if (node) { Image::Pointer image = dynamic_cast<Image*>( m_NodeForThresholding->GetData() ); if (image.IsNotNull()) { // create a new image of the same dimensions and smallest possible pixel type DataNode::Pointer emptySegmentation = Tool::CreateEmptySegmentationNode( image, organName, color ); if (emptySegmentation) { // actually perform a thresholding and ask for an organ type for (unsigned int timeStep = 0; timeStep < image->GetTimeSteps(); ++timeStep) { try { ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New(); timeSelector->SetInput( image ); timeSelector->SetTimeNr( timeStep ); timeSelector->UpdateLargestPossibleRegion(); Image::Pointer image3D = timeSelector->GetOutput(); AccessFixedDimensionByItk_2( image3D, ITKThresholding, 3, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep ); } catch(...) { Tool::ErrorMessage("Error accessing single time steps of the original image. Cannot create segmentation."); } } //since we are maybe working on a smaller image, pad it to the size of the original image if (m_OriginalImageNode.GetPointer() != m_NodeForThresholding.GetPointer()) { mitk::PadImageFilter::Pointer padFilter = mitk::PadImageFilter::New(); padFilter->SetInput(0, dynamic_cast<mitk::Image*> (emptySegmentation->GetData())); padFilter->SetInput(1, dynamic_cast<mitk::Image*> (m_OriginalImageNode->GetData())); padFilter->SetBinaryFilter(true); padFilter->SetUpperThreshold(1); padFilter->SetLowerThreshold(1); padFilter->Update(); emptySegmentation->SetData(padFilter->GetOutput()); } if (DataStorage* ds = m_ToolManager->GetDataStorage()) { ds->Add( emptySegmentation, m_OriginalImageNode ); } m_ToolManager->SetWorkingData( emptySegmentation ); } } } }
void mitk::PlanarFigureInteractor::AddPoint(StateMachineAction*, InteractionEvent* interactionEvent) { const mitk::InteractionPositionEvent* positionEvent = dynamic_cast<mitk::InteractionPositionEvent*>( interactionEvent ); if ( positionEvent == nullptr ) return; const DataNode::Pointer node = this->GetDataNode(); const BaseData::Pointer data = node->GetData(); /* * Added check for "initiallyplaced" due to bug 13097: * * There are two possible cases in which a point can be inserted into a PlanarPolygon: * * 1. The figure is currently drawn -> the point will be appended at the end of the figure * 2. A point is inserted at a userdefined position after the initial placement of the figure is finished * * In the second case we need to determine the proper insertion index. In the first case the index always has * to be -1 so that the point is appended to the end. * * These changes are necessary because of a mac os x specific issue: If a users draws a PlanarPolygon then the * next point to be added moves according to the mouse position. If then the user left clicks in order to add * a point one would assume the last move position is identical to the left click position. This is actually the * case for windows and linux but somehow NOT for mac. Because of the insertion logic of a new point in the * PlanarFigure then for mac the wrong current selected point is determined. * * With this check here this problem can be avoided. However a redesign of the insertion logic should be considered */ bool isFigureFinished = false; data->GetPropertyList()->GetBoolProperty("initiallyplaced", isFigureFinished); bool selected = false; bool isEditable = true; node->GetBoolProperty("selected", selected); node->GetBoolProperty("planarfigure.iseditable", isEditable); if ( !selected || !isEditable ) { return; } mitk::PlanarFigure *planarFigure = dynamic_cast<mitk::PlanarFigure *>(data.GetPointer()); // We can't derive a new control point from a polyline of a Bezier curve // as all control points contribute to each polyline point. if (dynamic_cast<PlanarBezierCurve*>(planarFigure) != nullptr && isFigureFinished) return; const mitk::PlaneGeometry *planarFigureGeometry = planarFigure->GetPlaneGeometry(); const mitk::AbstractTransformGeometry *abstractTransformGeometry = dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) ); if ( abstractTransformGeometry != nullptr) return; // If the planarFigure already has reached the maximum number if ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() ) { return; } // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D, projectedPoint; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return; } // TODO: check segment of polyline we clicked in int nextIndex = -1; // We only need to check which position to insert the control point // when interacting with a PlanarPolygon. For all other types // new control points will always be appended const mitk::BaseRenderer *renderer = interactionEvent->GetSender(); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); if (dynamic_cast<mitk::PlanarPolygon*>(planarFigure) && isFigureFinished) { nextIndex = this->IsPositionOverFigure( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, projectedPoint ); } // Add point as new control point if ( planarFigure->IsPreviewControlPointVisible() ) { point2D = planarFigure->GetPreviewControlPoint(); } planarFigure->AddControlPoint( point2D, planarFigure->GetControlPointForPolylinePoint( nextIndex, 0 ) ); if ( planarFigure->IsPreviewControlPointVisible() ) { planarFigure->SelectControlPoint( nextIndex ); planarFigure->ResetPreviewContolPoint(); } // Re-evaluate features planarFigure->EvaluateFeatures(); //this->LogPrintPlanarFigureQuantities( planarFigure ); // Update rendered scene renderer->GetRenderingManager()->RequestUpdateAll(); }
void QmitkCreatePolygonModelAction::Run(const QList<DataNode::Pointer> &selectedNodes) { DataNode::Pointer selectedNode = selectedNodes[0]; Image::Pointer image = dynamic_cast<mitk::Image *>(selectedNode->GetData()); if (image.IsNull()) { return; } try { // Get preference properties for smoothing and decimation IPreferencesService::Pointer prefService = Platform::GetServiceRegistry().GetServiceById<IPreferencesService>(IPreferencesService::ID); IPreferences::Pointer segPref = prefService->GetSystemPreferences()->Node("/org.mitk.views.segmentation"); bool smoothingHint = segPref->GetBool("smoothing hint", true); ScalarType smoothing = segPref->GetDouble("smoothing value", 1.0); ScalarType decimation = segPref->GetDouble("decimation rate", 0.5); if (smoothingHint) { smoothing = 0.0; Vector3D spacing = image->GetGeometry()->GetSpacing(); for (Vector3D::Iterator iter = spacing.Begin(); iter != spacing.End(); ++iter) smoothing = max(smoothing, *iter); } ShowSegmentationAsSurface::Pointer surfaceFilter = ShowSegmentationAsSurface::New(); // Activate callback functions itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(ResultAvailable(), successCommand); itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(ProcessingError(), errorCommand); // set filter parameter surfaceFilter->SetDataStorage(*m_DataStorage); surfaceFilter->SetPointerParameter("Input", image); surfaceFilter->SetPointerParameter("Group node", selectedNode); surfaceFilter->SetParameter("Show result", true); surfaceFilter->SetParameter("Sync visibility", false); surfaceFilter->SetParameter("Median kernel size", 3u); surfaceFilter->SetParameter("Decimate mesh", m_IsDecimated); surfaceFilter->SetParameter("Decimation rate", (float) decimation); if (m_IsSmoothed) { surfaceFilter->SetParameter("Apply median", true); surfaceFilter->SetParameter("Smooth", true); surfaceFilter->SetParameter("Gaussian SD", sqrtf(smoothing)); // use sqrt to account for setting of variance in preferences StatusBar::GetInstance()->DisplayText("Smoothed surface creation started in background..."); } else { surfaceFilter->SetParameter("Apply median", false); surfaceFilter->SetParameter("Smooth", false); StatusBar::GetInstance()->DisplayText("Surface creation started in background..."); } surfaceFilter->StartAlgorithm(); } catch(...) { MITK_ERROR << "Surface creation failed!"; } }
void QmitkCreatePolygonModelAction::Run(const QList<DataNode::Pointer> &selectedNodes) { DataNode::Pointer selectedNode = selectedNodes[0]; Image::Pointer image = dynamic_cast<mitk::Image *>(selectedNode->GetData()); if (image.IsNull()) return; try { if (!m_IsSmoothed) { ShowSegmentationAsSurface::Pointer surfaceFilter = ShowSegmentationAsSurface::New(); itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(ResultAvailable(), successCommand); itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(ProcessingError(), errorCommand); surfaceFilter->SetDataStorage(*m_DataStorage); surfaceFilter->SetPointerParameter("Input", image); surfaceFilter->SetPointerParameter("Group node", selectedNode); surfaceFilter->SetParameter("Show result", true); surfaceFilter->SetParameter("Sync visibility", false); surfaceFilter->SetParameter("Smooth", false); surfaceFilter->SetParameter("Apply median", false); surfaceFilter->SetParameter("Median kernel size", 3u); surfaceFilter->SetParameter("Gaussian SD", 1.5f); surfaceFilter->SetParameter("Decimate mesh", m_IsDecimated); surfaceFilter->SetParameter("Decimation rate", 0.8f); StatusBar::GetInstance()->DisplayText("Surface creation started in background..."); surfaceFilter->StartAlgorithm(); } else { ShowSegmentationAsSmoothedSurface::Pointer surfaceFilter = ShowSegmentationAsSmoothedSurface::New(); itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(mitk::ResultAvailable(), successCommand); itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New(); errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone); surfaceFilter->AddObserver(mitk::ProcessingError(), errorCommand); surfaceFilter->SetDataStorage(*m_DataStorage); surfaceFilter->SetPointerParameter("Input", image); surfaceFilter->SetPointerParameter("Group node", selectedNode); berry::IWorkbenchPart::Pointer activePart = berry::PlatformUI::GetWorkbench()->GetActiveWorkbenchWindow()->GetActivePage()->GetActivePart(); mitk::IRenderWindowPart* renderPart = dynamic_cast<mitk::IRenderWindowPart*>(activePart.GetPointer()); mitk::SliceNavigationController* timeNavController = 0; if (renderPart != 0) { timeNavController = renderPart->GetRenderingManager()->GetTimeNavigationController(); } int timeNr = timeNavController != 0 ? timeNavController->GetTime()->GetPos() : 0; surfaceFilter->SetParameter("TimeNr", timeNr); IPreferencesService::Pointer prefService = Platform::GetServiceRegistry().GetServiceById<IPreferencesService>(IPreferencesService::ID); IPreferences::Pointer segPref = prefService->GetSystemPreferences()->Node("/org.mitk.views.segmentation"); bool smoothingHint = segPref->GetBool("smoothing hint", true); float smoothing = (float)segPref->GetDouble("smoothing value", 1.0); float decimation = (float)segPref->GetDouble("decimation rate", 0.5); float closing = (float)segPref->GetDouble("closing ratio", 0.0); if (smoothingHint) { smoothing = 0.0; Vector3D spacing = image->GetGeometry()->GetSpacing(); for (Vector3D::Iterator iter = spacing.Begin(); iter != spacing.End(); ++iter) smoothing = max(smoothing, *iter); } surfaceFilter->SetParameter("Smoothing", smoothing); surfaceFilter->SetParameter("Decimation", decimation); surfaceFilter->SetParameter("Closing", closing); ProgressBar::GetInstance()->AddStepsToDo(8); StatusBar::GetInstance()->DisplayText("Smoothed surface creation started in background..."); try { surfaceFilter->StartAlgorithm(); } catch (...) { MITK_ERROR<<"Error creating smoothed polygon model: Not enough memory!"; } } } catch(...) { MITK_ERROR << "Surface creation failed!"; } }
std::vector<itk::SmartPointer<BaseData> > BaseDICOMReaderService::Read() { std::vector<BaseData::Pointer> result; //special handling of Philips 3D US DICOM. //Copied from DICOMSeriesReaderService std::string fileName = this->GetLocalFileName(); if (DicomSeriesReader::IsPhilips3DDicom(fileName)) { MITK_INFO << "it is a Philips3D US Dicom file" << std::endl; mitk::LocaleSwitch localeSwitch("C"); std::locale previousCppLocale(std::cin.getloc()); std::locale l("C"); std::cin.imbue(l); DataNode::Pointer node = DataNode::New(); mitk::DicomSeriesReader::StringContainer stringvec; stringvec.push_back(fileName); if (DicomSeriesReader::LoadDicomSeries(stringvec, *node)) { BaseData::Pointer data = node->GetData(); StringProperty::Pointer nameProp = StringProperty::New(itksys::SystemTools::GetFilenameName(fileName)); data->GetPropertyList()->SetProperty("name", nameProp); result.push_back(data); } std::cin.imbue(previousCppLocale); return result; } //Normal DICOM handling (It wasn't a Philips 3D US) mitk::StringList relevantFiles = this->GetRelevantFiles(); mitk::DICOMFileReader::Pointer reader = this->GetReader(relevantFiles); reader->SetAdditionalTagsOfInterest(mitk::GetCurrentDICOMTagsOfInterest()); reader->SetTagLookupTableToPropertyFunctor(mitk::GetDICOMPropertyForDICOMValuesFunctor); reader->SetInputFiles(relevantFiles); reader->AnalyzeInputFiles(); reader->LoadImages(); for (unsigned int i = 0; i < reader->GetNumberOfOutputs(); ++i) { const mitk::DICOMImageBlockDescriptor& desc = reader->GetOutput(i); mitk::BaseData::Pointer data = desc.GetMitkImage().GetPointer(); std::string nodeName = "Unnamed_DICOM"; std::string studyDescription = desc.GetPropertyAsString("studyDescription"); std::string seriesDescription = desc.GetPropertyAsString("seriesDescription"); if (!studyDescription.empty()) { nodeName = studyDescription; } if (!seriesDescription.empty()) { if (!studyDescription.empty()) { nodeName += "/"; } nodeName += seriesDescription; } StringProperty::Pointer nameProp = StringProperty::New(nodeName); data->SetProperty("name", nameProp); result.push_back(data); } return result; }
bool mitk::SceneReaderV1::LoadScene( TiXmlDocument& document, const std::string& workingDirectory, DataStorage* storage ) { assert(storage); bool error(false); // TODO prepare to detect errors (such as cycles) from wrongly written or edited xml files //Get number of elements to initialze progress bar unsigned int listSize = 0; for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node") ) { ++listSize; } ProgressBar::GetInstance()->AddStepsToDo( listSize ); // iterate all nodes // first level nodes should be <node> elements for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node") ) { // 1. if there is a <data type="..." file="..."> element, // - construct a name for the appropriate serializer // - try to instantiate this serializer via itk object factory // - if serializer could be created, use it to read the file into a BaseData object // - if successful, call the new node's SetData(..) DataNode::Pointer node = LoadBaseDataFromDataTag( element->FirstChildElement("data"), workingDirectory, error ); // create a node for the tag "data" and test if node was created // in case dataXmlElement is valid test whether it containts the "properties" child tag // and process further if and only if yes TiXmlElement *dataXmlElement = element->FirstChildElement("data"); if( dataXmlElement && dataXmlElement->FirstChildElement("properties") ) { TiXmlElement *baseDataElement = dataXmlElement->FirstChildElement("properties"); if ( node->GetData() ) { DecorateBaseDataWithProperties( node->GetData(), baseDataElement, workingDirectory); } else { MITK_WARN << "BaseData properties stored in scene file, but BaseData can't be read" << std::endl; } } // 2. check child nodes const char* uida = element->Attribute("UID"); std::string uid(""); if (uida) { uid = uida; m_NodeForID[uid] = node.GetPointer(); m_IDForNode[ node.GetPointer() ] = uid; } else { MITK_ERROR << "No UID found for current node. Node will have no parents."; error = true; } // remember node for later adding to DataStorage m_Nodes.insert( std::make_pair( node, std::list<std::string>() ) ); // 3. if there are <source> elements, remember parent objects for( TiXmlElement* source = element->FirstChildElement("source"); source != NULL; source = source->NextSiblingElement("source") ) { const char* sourceUID = source->Attribute("UID"); if (sourceUID) { m_Nodes[node].push_back( std::string(sourceUID) ); } } // 5. if there are <properties> nodes, // - instantiate the appropriate PropertyListDeSerializer // - use them to construct PropertyList objects // - add these properties to the node (if necessary, use renderwindow name) bool success = DecorateNodeWithProperties(node, element, workingDirectory); if (!success) { MITK_ERROR << "Could not load properties for node."; error = true; } ProgressBar::GetInstance()->Progress(); } // end for all <node> // remove all unknown parent UIDs for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin(); nodesIter != m_Nodes.end(); ++nodesIter) { for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin(); parentsIter != nodesIter->second.end();) { if (m_NodeForID.find( *parentsIter ) == m_NodeForID.end()) { parentsIter = nodesIter->second.erase( parentsIter ); MITK_WARN << "Found a DataNode with unknown parents. Will add it to DataStorage without any parent objects."; error = true; } else { ++parentsIter; } } } // repeat // for all created nodes unsigned int lastMapSize(0); while ( lastMapSize != m_Nodes.size()) // this is to prevent infinite loops; each iteration must at least add one node to DataStorage { lastMapSize = m_Nodes.size(); for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin(); nodesIter != m_Nodes.end(); ++nodesIter) { bool addNow(true); // if any parent node is not yet in DataStorage, skip node for now and check later for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin(); parentsIter != nodesIter->second.end(); ++parentsIter) { if ( !storage->Exists( m_NodeForID[ *parentsIter ] ) ) { addNow = false; break; } } if (addNow) { DataStorage::SetOfObjects::Pointer parents = DataStorage::SetOfObjects::New(); for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin(); parentsIter != nodesIter->second.end(); ++parentsIter) { parents->push_back( m_NodeForID[ *parentsIter ] ); } // if all parents are found in datastorage (or are unknown), add node to DataStorage storage->Add( nodesIter->first, parents ); // remove this node from m_Nodes m_Nodes.erase( nodesIter ); // break this for loop because iterators are probably invalid break; } } } // All nodes that are still in m_Nodes at this point are not part of a proper directed graph structure. We'll add such nodes without any parent information. for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin(); nodesIter != m_Nodes.end(); ++nodesIter) { storage->Add( nodesIter->first ); MITK_WARN << "Encountered node that is not part of a directed graph structure. Will be added to DataStorage without parents."; error = true; } return !error; }
void mitk::BoundingShapeVtkMapper2D::GenerateDataForRenderer(BaseRenderer *renderer) { const DataNode::Pointer node = GetDataNode(); if (node == nullptr) return; LocalStorage *localStorage = m_Impl->LocalStorageHandler.GetLocalStorage(renderer); // either update if GeometryData was modified or if the zooming was performed bool needGenerateData = localStorage->IsUpdateRequired( renderer, this, GetDataNode()); // true; // localStorage->GetLastGenerateDataTime() < node->GetMTime() || // localStorage->GetLastGenerateDataTime() < node->GetData()->GetMTime(); // //localStorage->IsGenerateDataRequired(renderer, this, GetDataNode()); double scale = renderer->GetScaleFactorMMPerDisplayUnit(); if (std::abs(scale - localStorage->m_ZoomFactor) > 0.001) { localStorage->m_ZoomFactor = scale; needGenerateData = true; } if (needGenerateData) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if (!visible) { localStorage->m_Actor->VisibilityOff(); return; } GeometryData::Pointer shape = static_cast<GeometryData *>(node->GetData()); if (shape == nullptr) return; mitk::BaseGeometry::Pointer geometry = shape->GetGeometry(); mitk::Vector3D spacing = geometry->GetSpacing(); // calculate cornerpoints and extent from geometry with visualization offset std::vector<Point3D> cornerPoints = GetCornerPoints(geometry, true); Point3D p0 = cornerPoints[0]; Point3D p1 = cornerPoints[1]; Point3D p2 = cornerPoints[2]; Point3D p4 = cornerPoints[4]; Point3D extent; extent[0] = sqrt((p0[0] - p4[0]) * (p0[0] - p4[0]) + (p0[1] - p4[1]) * (p0[1] - p4[1]) + (p0[2] - p4[2]) * (p0[2] - p4[2])); extent[1] = sqrt((p0[0] - p2[0]) * (p0[0] - p2[0]) + (p0[1] - p2[1]) * (p0[1] - p2[1]) + (p0[2] - p2[2]) * (p0[2] - p2[2])); extent[2] = sqrt((p0[0] - p1[0]) * (p0[0] - p1[0]) + (p0[1] - p1[1]) * (p0[1] - p1[1]) + (p0[2] - p1[2]) * (p0[2] - p1[2])); // calculate center based on half way of the distance between two opposing cornerpoints mitk::Point3D center = CalcAvgPoint(cornerPoints[7], cornerPoints[0]); if (m_Impl->HandlePropertyList.size() == 6) { // set handle positions Point3D pointLeft = CalcAvgPoint(cornerPoints[5], cornerPoints[6]); Point3D pointRight = CalcAvgPoint(cornerPoints[1], cornerPoints[2]); Point3D pointTop = CalcAvgPoint(cornerPoints[0], cornerPoints[6]); Point3D pointBottom = CalcAvgPoint(cornerPoints[7], cornerPoints[1]); Point3D pointFront = CalcAvgPoint(cornerPoints[2], cornerPoints[7]); Point3D pointBack = CalcAvgPoint(cornerPoints[4], cornerPoints[1]); m_Impl->HandlePropertyList[0].SetPosition(pointLeft); m_Impl->HandlePropertyList[1].SetPosition(pointRight); m_Impl->HandlePropertyList[2].SetPosition(pointTop); m_Impl->HandlePropertyList[3].SetPosition(pointBottom); m_Impl->HandlePropertyList[4].SetPosition(pointFront); m_Impl->HandlePropertyList[5].SetPosition(pointBack); } // caculate face normals double result0[3], result1[3], result2[3]; double a[3], b[3]; a[0] = (cornerPoints[5][0] - cornerPoints[6][0]); a[1] = (cornerPoints[5][1] - cornerPoints[6][1]); a[2] = (cornerPoints[5][2] - cornerPoints[6][2]); b[0] = (cornerPoints[5][0] - cornerPoints[4][0]); b[1] = (cornerPoints[5][1] - cornerPoints[4][1]); b[2] = (cornerPoints[5][2] - cornerPoints[4][2]); vtkMath::Cross(a, b, result0); a[0] = (cornerPoints[0][0] - cornerPoints[6][0]); a[1] = (cornerPoints[0][1] - cornerPoints[6][1]); a[2] = (cornerPoints[0][2] - cornerPoints[6][2]); b[0] = (cornerPoints[0][0] - cornerPoints[2][0]); b[1] = (cornerPoints[0][1] - cornerPoints[2][1]); b[2] = (cornerPoints[0][2] - cornerPoints[2][2]); vtkMath::Cross(a, b, result1); a[0] = (cornerPoints[2][0] - cornerPoints[7][0]); a[1] = (cornerPoints[2][1] - cornerPoints[7][1]); a[2] = (cornerPoints[2][2] - cornerPoints[7][2]); b[0] = (cornerPoints[2][0] - cornerPoints[6][0]); b[1] = (cornerPoints[2][1] - cornerPoints[6][1]); b[2] = (cornerPoints[2][2] - cornerPoints[6][2]); vtkMath::Cross(a, b, result2); vtkMath::Normalize(result0); vtkMath::Normalize(result1); vtkMath::Normalize(result2); // create cube for rendering bounding box auto cube = vtkCubeSource::New(); cube->SetXLength(extent[0] / spacing[0]); cube->SetYLength(extent[1] / spacing[1]); cube->SetZLength(extent[2] / spacing[2]); // calculates translation based on offset+extent not on the transformation matrix vtkSmartPointer<vtkMatrix4x4> imageTransform = geometry->GetVtkTransform()->GetMatrix(); auto translation = vtkSmartPointer<vtkTransform>::New(); translation->Translate(center[0] - imageTransform->GetElement(0, 3), center[1] - imageTransform->GetElement(1, 3), center[2] - imageTransform->GetElement(2, 3)); auto transform = vtkSmartPointer<vtkTransform>::New(); transform->SetMatrix(imageTransform); transform->PostMultiply(); transform->Concatenate(translation); transform->Update(); cube->Update(); auto transformFilter = vtkSmartPointer<vtkTransformFilter>::New(); transformFilter->SetInputData(cube->GetOutput()); transformFilter->SetTransform(transform); transformFilter->Update(); cube->Delete(); vtkSmartPointer<vtkPolyData> polydata = transformFilter->GetPolyDataOutput(); if (polydata == nullptr || (polydata->GetNumberOfPoints() < 1)) { localStorage->m_Actor->VisibilityOff(); localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); return; } // estimate current image plane to decide whether the cube is visible or not const PlaneGeometry *planeGeometry = renderer->GetCurrentWorldPlaneGeometry(); if ((planeGeometry == nullptr) || (!planeGeometry->IsValid()) || (!planeGeometry->HasReferenceGeometry())) return; double origin[3]; origin[0] = planeGeometry->GetOrigin()[0]; origin[1] = planeGeometry->GetOrigin()[1]; origin[2] = planeGeometry->GetOrigin()[2]; double normal[3]; normal[0] = planeGeometry->GetNormal()[0]; normal[1] = planeGeometry->GetNormal()[1]; normal[2] = planeGeometry->GetNormal()[2]; // MITK_INFO << "normal1 " << normal[0] << " " << normal[1] << " " << normal[2]; localStorage->m_CuttingPlane->SetOrigin(origin); localStorage->m_CuttingPlane->SetNormal(normal); // add cube polydata to local storage localStorage->m_Cutter->SetInputData(polydata); localStorage->m_Cutter->SetGenerateCutScalars(1); localStorage->m_Cutter->Update(); if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_HandleActor)) localStorage->m_PropAssembly->RemovePart(localStorage->m_HandleActor); if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_Actor)) localStorage->m_PropAssembly->RemovePart(localStorage->m_Actor); vtkCoordinate *tcoord = vtkCoordinate::New(); tcoord->SetCoordinateSystemToWorld(); localStorage->m_HandleMapper->SetTransformCoordinate(tcoord); tcoord->Delete(); if (localStorage->m_Cutter->GetOutput()->GetNumberOfPoints() > 0) // if plane is visible in the renderwindow { mitk::DoubleProperty::Pointer handleSizeProperty = dynamic_cast<mitk::DoubleProperty *>(this->GetDataNode()->GetProperty("Bounding Shape.Handle Size Factor")); ScalarType initialHandleSize; if (handleSizeProperty != nullptr) initialHandleSize = handleSizeProperty->GetValue(); else initialHandleSize = 1.0 / 40.0; mitk::Point2D displaySize = renderer->GetDisplaySizeInMM(); double handleSize = ((displaySize[0] + displaySize[1]) / 2.0) * initialHandleSize; auto appendPoly = vtkSmartPointer<vtkAppendPolyData>::New(); unsigned int i = 0; // add handles and their assigned properties to the local storage mitk::IntProperty::Pointer activeHandleId = dynamic_cast<mitk::IntProperty *>(node->GetProperty("Bounding Shape.Active Handle ID")); bool visible = false; bool selected = false; for (auto handle : localStorage->m_Handles) { Point3D handleCenter = m_Impl->HandlePropertyList[i].GetPosition(); handle->SetRadius(handleSize); handle->SetCenter(handleCenter[0], handleCenter[1], handleCenter[2]); vtkMath::Normalize(normal); double angle = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result0))); double angle1 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result1))); double angle2 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result2))); // show handles only if the corresponding face is aligned to the render window if ((((std::abs(angle - 0) < 0.001) || (std::abs(angle - 180) < 0.001)) && i != 0 && i != 1) || (((std::abs(angle1 - 0) < 0.001) || (std::abs(angle1 - 180) < 0.001)) && i != 2 && i != 3) || (((std::abs(angle2 - 0) < 0.001) || (std::abs(angle2 - 180) < 0.001)) && i != 4 && i != 5)) { if (activeHandleId == nullptr) { appendPoly->AddInputConnection(handle->GetOutputPort()); } else { if ((activeHandleId->GetValue() != m_Impl->HandlePropertyList[i].GetIndex())) { appendPoly->AddInputConnection(handle->GetOutputPort()); } else { handle->Update(); localStorage->m_SelectedHandleMapper->SetInputData(handle->GetOutput()); localStorage->m_SelectedHandleActor->VisibilityOn(); selected = true; } } visible = true; } i++; } if (visible) { appendPoly->Update(); } else { localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); } auto stripper = vtkSmartPointer<vtkStripper>::New(); stripper->SetInputData(localStorage->m_Cutter->GetOutput()); stripper->Update(); auto cutPolyData = vtkSmartPointer<vtkPolyData>::New(); cutPolyData->SetPoints(stripper->GetOutput()->GetPoints()); cutPolyData->SetPolys(stripper->GetOutput()->GetLines()); localStorage->m_Actor->GetMapper()->SetInputDataObject(cutPolyData); mitk::ColorProperty::Pointer selectedColor = dynamic_cast<mitk::ColorProperty *>(node->GetProperty("color")); if (selectedColor != nullptr) { mitk::Color color = selectedColor->GetColor(); localStorage->m_Actor->GetProperty()->SetColor(color[0], color[1], color[2]); } if (activeHandleId != nullptr) { localStorage->m_HandleActor->GetProperty()->SetColor(1, 0, 0); } else { localStorage->m_HandleActor->GetProperty()->SetColor(1, 1, 1); } localStorage->m_HandleActor->GetMapper()->SetInputDataObject(appendPoly->GetOutput()); // add parts to the overall storage localStorage->m_PropAssembly->AddPart(localStorage->m_Actor); localStorage->m_PropAssembly->AddPart(localStorage->m_HandleActor); if (selected) { localStorage->m_PropAssembly->AddPart(localStorage->m_SelectedHandleActor); } localStorage->m_PropAssembly->VisibilityOn(); localStorage->m_Actor->VisibilityOn(); localStorage->m_HandleActor->VisibilityOn(); } else { localStorage->m_PropAssembly->VisibilityOff(); localStorage->m_Actor->VisibilityOff(); localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); localStorage->UpdateGenerateDataTime(); } localStorage->UpdateGenerateDataTime(); } }