示例#1
0
mitk::TestDICOMLoading::ImageList mitk::TestDICOMLoading::LoadFiles( const StringContainer& files )
{
  for (StringContainer::const_iterator iter = files.begin();
       iter != files.end();
       ++iter)
  {
    MITK_DEBUG << "File " << *iter;
  }

  ImageList result;

  DicomSeriesReader::FileNamesGrouping seriesInFiles = DicomSeriesReader::GetSeries( files, true );

  // TODO sort series UIDs, implementation of map iterator might differ on different platforms (or verify this is a standard topic??)
  for (DicomSeriesReader::FileNamesGrouping::const_iterator seriesIter = seriesInFiles.begin();
       seriesIter != seriesInFiles.end();
       ++seriesIter)
  {
    StringContainer files = seriesIter->second.GetFilenames();

    DataNode::Pointer node = DicomSeriesReader::LoadDicomSeries( files );

    if (node.IsNotNull())
    {
      Image::Pointer image = dynamic_cast<mitk::Image*>( node->GetData() );

      result.push_back( image );
    }
    else
    {
    }
  }

  return result;
}
void mitk::BinaryThresholdULTool::CreateNewSegmentationFromThreshold(DataNode* node)
{
  if (node)
  {
    Image::Pointer feedBackImage = dynamic_cast<Image*>( m_ThresholdFeedbackNode->GetData() );
    if (feedBackImage.IsNotNull())
    {
      // create a new image of the same dimensions and smallest possible pixel type
      DataNode::Pointer emptySegmentation = GetTargetSegmentationNode();

      if (emptySegmentation)
      {
        // actually perform a thresholding and ask for an organ type
        for (unsigned int timeStep = 0; timeStep < feedBackImage->GetTimeSteps(); ++timeStep)
        {
          try
          {
            ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New();
            timeSelector->SetInput( feedBackImage );
            timeSelector->SetTimeNr( timeStep );
            timeSelector->UpdateLargestPossibleRegion();
            Image::Pointer feedBackImage3D = timeSelector->GetOutput();

            if (feedBackImage3D->GetDimension() == 2)
            {
              AccessFixedDimensionByItk_2( feedBackImage3D, ITKSetVolume, 2, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep );
            }
            else
            {
              AccessFixedDimensionByItk_2( feedBackImage3D, ITKSetVolume, 3, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep );
            }

          }
          catch(...)
          {
            Tool::ErrorMessage("Error accessing single time steps of the original image. Cannot create segmentation.");
          }
        }

        //since we are maybe working on a smaller image, pad it to the size of the original image
        if (m_OriginalImageNode.GetPointer() != m_NodeForThresholding.GetPointer())
        {
          mitk::PadImageFilter::Pointer padFilter = mitk::PadImageFilter::New();

          padFilter->SetInput(0, dynamic_cast<mitk::Image*> (emptySegmentation->GetData()));
          padFilter->SetInput(1, dynamic_cast<mitk::Image*> (m_OriginalImageNode->GetData()));
          padFilter->SetBinaryFilter(true);
          padFilter->SetUpperThreshold(1);
          padFilter->SetLowerThreshold(1);
          padFilter->Update();

          emptySegmentation->SetData(padFilter->GetOutput());
        }

        m_ToolManager->SetWorkingData( emptySegmentation );
        m_ToolManager->GetWorkingData(0)->Modified();
      }
    }
  }
}
示例#3
0
void mitk::BinaryThresholdULTool::CreateNewSegmentationFromThreshold(DataNode* node, const std::string& organName, const Color& color)
{
  if (node)
  {
    Image::Pointer image = dynamic_cast<Image*>( m_NodeForThresholding->GetData() );
    if (image.IsNotNull())
    {
      // create a new image of the same dimensions and smallest possible pixel type
      DataNode::Pointer emptySegmentation = Tool::CreateEmptySegmentationNode( image, organName, color );

      if (emptySegmentation)
      {
        // actually perform a thresholding and ask for an organ type
        for (unsigned int timeStep = 0; timeStep < image->GetTimeSteps(); ++timeStep)
        {
          try
          {
            ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New();
            timeSelector->SetInput( image );
            timeSelector->SetTimeNr( timeStep );
            timeSelector->UpdateLargestPossibleRegion();
            Image::Pointer image3D = timeSelector->GetOutput();

            AccessFixedDimensionByItk_2( image3D, ITKThresholding, 3, dynamic_cast<Image*>(emptySegmentation->GetData()), timeStep );
          }
          catch(...)
          {
            Tool::ErrorMessage("Error accessing single time steps of the original image. Cannot create segmentation.");
          }
        }

        //since we are maybe working on a smaller image, pad it to the size of the original image
        if (m_OriginalImageNode.GetPointer() != m_NodeForThresholding.GetPointer())
        {
          mitk::PadImageFilter::Pointer padFilter = mitk::PadImageFilter::New();

          padFilter->SetInput(0, dynamic_cast<mitk::Image*> (emptySegmentation->GetData()));
          padFilter->SetInput(1, dynamic_cast<mitk::Image*> (m_OriginalImageNode->GetData()));
          padFilter->SetBinaryFilter(true);
          padFilter->SetUpperThreshold(1);
          padFilter->SetLowerThreshold(1);
          padFilter->Update();

          emptySegmentation->SetData(padFilter->GetOutput());
        }

        if (DataStorage* ds = m_ToolManager->GetDataStorage())
        {
          ds->Add( emptySegmentation, m_OriginalImageNode );
        }

        m_ToolManager->SetWorkingData( emptySegmentation );
      }
    }
  }
}
void mitk::PlanarFigureInteractor::AddPoint(StateMachineAction*, InteractionEvent* interactionEvent)
{
  const mitk::InteractionPositionEvent* positionEvent = dynamic_cast<mitk::InteractionPositionEvent*>( interactionEvent );
  if ( positionEvent == nullptr )
    return;

  const DataNode::Pointer node = this->GetDataNode();
  const BaseData::Pointer data = node->GetData();

  /*
  * Added check for "initiallyplaced" due to bug 13097:
  *
  * There are two possible cases in which a point can be inserted into a PlanarPolygon:
  *
  * 1. The figure is currently drawn -> the point will be appended at the end of the figure
  * 2. A point is inserted at a userdefined position after the initial placement of the figure is finished
  *
  * In the second case we need to determine the proper insertion index. In the first case the index always has
  * to be -1 so that the point is appended to the end.
  *
  * These changes are necessary because of a mac os x specific issue: If a users draws a PlanarPolygon then the
  * next point to be added moves according to the mouse position. If then the user left clicks in order to add
  * a point one would assume the last move position is identical to the left click position. This is actually the
  * case for windows and linux but somehow NOT for mac. Because of the insertion logic of a new point in the
  * PlanarFigure then for mac the wrong current selected point is determined.
  *
  * With this check here this problem can be avoided. However a redesign of the insertion logic should be considered
  */

  bool isFigureFinished = false;
  data->GetPropertyList()->GetBoolProperty("initiallyplaced", isFigureFinished);

  bool selected = false;
  bool isEditable = true;

  node->GetBoolProperty("selected", selected);
  node->GetBoolProperty("planarfigure.iseditable", isEditable);

  if ( !selected || !isEditable )
  {
    return;
  }

  mitk::PlanarFigure *planarFigure = dynamic_cast<mitk::PlanarFigure *>(data.GetPointer());

  // We can't derive a new control point from a polyline of a Bezier curve
  // as all control points contribute to each polyline point.
  if (dynamic_cast<PlanarBezierCurve*>(planarFigure) != nullptr && isFigureFinished)
    return;

  const mitk::PlaneGeometry *planarFigureGeometry = planarFigure->GetPlaneGeometry();
  const mitk::AbstractTransformGeometry *abstractTransformGeometry =
    dynamic_cast< AbstractTransformGeometry * >( planarFigure->GetGeometry( 0 ) );

  if ( abstractTransformGeometry != nullptr)
    return;

  // If the planarFigure already has reached the maximum number
  if ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() )
  {
    return;
  }

  // Extract point in 2D world coordinates (relative to PlaneGeometry of
  // PlanarFigure)
  Point2D point2D, projectedPoint;
  if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) )
  {
    return;
  }

  // TODO: check segment of polyline we clicked in
  int nextIndex = -1;

  // We only need to check which position to insert the control point
  // when interacting with a PlanarPolygon. For all other types
  // new control points will always be appended

  const mitk::BaseRenderer *renderer = interactionEvent->GetSender();
  const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry();

  if (dynamic_cast<mitk::PlanarPolygon*>(planarFigure) && isFigureFinished)
  {
    nextIndex = this->IsPositionOverFigure(
      positionEvent,
      planarFigure,
      planarFigureGeometry,
      projectionPlane,
      projectedPoint
      );
  }


  // Add point as new control point

  if ( planarFigure->IsPreviewControlPointVisible() )
  {
    point2D = planarFigure->GetPreviewControlPoint();
  }

  planarFigure->AddControlPoint( point2D, planarFigure->GetControlPointForPolylinePoint( nextIndex, 0 ) );

  if ( planarFigure->IsPreviewControlPointVisible() )
  {
    planarFigure->SelectControlPoint( nextIndex );
    planarFigure->ResetPreviewContolPoint();
  }

  // Re-evaluate features
  planarFigure->EvaluateFeatures();
  //this->LogPrintPlanarFigureQuantities( planarFigure );

  // Update rendered scene
  renderer->GetRenderingManager()->RequestUpdateAll();
}
void QmitkCreatePolygonModelAction::Run(const QList<DataNode::Pointer> &selectedNodes)
{
  DataNode::Pointer selectedNode = selectedNodes[0];
  Image::Pointer image = dynamic_cast<mitk::Image *>(selectedNode->GetData());

  if (image.IsNull())
  {
    return;
  }

  try
  {
    // Get preference properties for smoothing and decimation
    IPreferencesService::Pointer prefService = Platform::GetServiceRegistry().GetServiceById<IPreferencesService>(IPreferencesService::ID);
    IPreferences::Pointer segPref = prefService->GetSystemPreferences()->Node("/org.mitk.views.segmentation");

    bool smoothingHint = segPref->GetBool("smoothing hint", true);
    ScalarType smoothing = segPref->GetDouble("smoothing value", 1.0);
    ScalarType decimation = segPref->GetDouble("decimation rate", 0.5);

    if (smoothingHint)
    {
      smoothing = 0.0;
      Vector3D spacing = image->GetGeometry()->GetSpacing();

      for (Vector3D::Iterator iter = spacing.Begin(); iter != spacing.End(); ++iter)
        smoothing = max(smoothing, *iter);
    }

    ShowSegmentationAsSurface::Pointer surfaceFilter = ShowSegmentationAsSurface::New();

    // Activate callback functions
    itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
    successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
    surfaceFilter->AddObserver(ResultAvailable(), successCommand);

    itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
    errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
    surfaceFilter->AddObserver(ProcessingError(), errorCommand);

    // set filter parameter
    surfaceFilter->SetDataStorage(*m_DataStorage);
    surfaceFilter->SetPointerParameter("Input", image);
    surfaceFilter->SetPointerParameter("Group node", selectedNode);
    surfaceFilter->SetParameter("Show result", true);
    surfaceFilter->SetParameter("Sync visibility", false);
    surfaceFilter->SetParameter("Median kernel size", 3u);
    surfaceFilter->SetParameter("Decimate mesh", m_IsDecimated);
    surfaceFilter->SetParameter("Decimation rate", (float) decimation);

    if (m_IsSmoothed)
    {
      surfaceFilter->SetParameter("Apply median", true);
      surfaceFilter->SetParameter("Smooth", true);
      surfaceFilter->SetParameter("Gaussian SD", sqrtf(smoothing)); // use sqrt to account for setting of variance in preferences
      StatusBar::GetInstance()->DisplayText("Smoothed surface creation started in background...");
    }
    else
    {
      surfaceFilter->SetParameter("Apply median", false);
      surfaceFilter->SetParameter("Smooth", false);
      StatusBar::GetInstance()->DisplayText("Surface creation started in background...");
    }

    surfaceFilter->StartAlgorithm();
  }
  catch(...)
  {
    MITK_ERROR << "Surface creation failed!";
  }
}
void QmitkCreatePolygonModelAction::Run(const QList<DataNode::Pointer> &selectedNodes)
{
  DataNode::Pointer selectedNode = selectedNodes[0];
  Image::Pointer image = dynamic_cast<mitk::Image *>(selectedNode->GetData());
  
  if (image.IsNull())
    return;

  try
  {
    if (!m_IsSmoothed)
    {
      ShowSegmentationAsSurface::Pointer surfaceFilter = ShowSegmentationAsSurface::New();

      itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
      successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
      surfaceFilter->AddObserver(ResultAvailable(), successCommand);

      itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
      errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
      surfaceFilter->AddObserver(ProcessingError(), errorCommand);

      surfaceFilter->SetDataStorage(*m_DataStorage);
      surfaceFilter->SetPointerParameter("Input", image);
      surfaceFilter->SetPointerParameter("Group node", selectedNode);
      surfaceFilter->SetParameter("Show result", true);
      surfaceFilter->SetParameter("Sync visibility", false);
      surfaceFilter->SetParameter("Smooth", false);
      surfaceFilter->SetParameter("Apply median", false);
      surfaceFilter->SetParameter("Median kernel size", 3u);
      surfaceFilter->SetParameter("Gaussian SD", 1.5f);
      surfaceFilter->SetParameter("Decimate mesh", m_IsDecimated);
      surfaceFilter->SetParameter("Decimation rate", 0.8f);

      StatusBar::GetInstance()->DisplayText("Surface creation started in background...");

      surfaceFilter->StartAlgorithm();
    }
    else
    {
      ShowSegmentationAsSmoothedSurface::Pointer surfaceFilter = ShowSegmentationAsSmoothedSurface::New();

      itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer successCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
      successCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
      surfaceFilter->AddObserver(mitk::ResultAvailable(), successCommand);

      itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::Pointer errorCommand = itk::SimpleMemberCommand<QmitkCreatePolygonModelAction>::New();
      errorCommand->SetCallbackFunction(this, &QmitkCreatePolygonModelAction::OnSurfaceCalculationDone);
      surfaceFilter->AddObserver(mitk::ProcessingError(), errorCommand);

      surfaceFilter->SetDataStorage(*m_DataStorage);
      surfaceFilter->SetPointerParameter("Input", image);
      surfaceFilter->SetPointerParameter("Group node", selectedNode);

      berry::IWorkbenchPart::Pointer activePart =
          berry::PlatformUI::GetWorkbench()->GetActiveWorkbenchWindow()->GetActivePage()->GetActivePart();
      mitk::IRenderWindowPart* renderPart = dynamic_cast<mitk::IRenderWindowPart*>(activePart.GetPointer());
      mitk::SliceNavigationController* timeNavController = 0;
      if (renderPart != 0)
      {
        timeNavController = renderPart->GetRenderingManager()->GetTimeNavigationController();
      }

      int timeNr = timeNavController != 0 ? timeNavController->GetTime()->GetPos() : 0;
      surfaceFilter->SetParameter("TimeNr", timeNr);

      IPreferencesService::Pointer prefService = Platform::GetServiceRegistry().GetServiceById<IPreferencesService>(IPreferencesService::ID);
      IPreferences::Pointer segPref = prefService->GetSystemPreferences()->Node("/org.mitk.views.segmentation");

      bool smoothingHint = segPref->GetBool("smoothing hint", true);
      float smoothing = (float)segPref->GetDouble("smoothing value", 1.0);
      float decimation = (float)segPref->GetDouble("decimation rate", 0.5);
      float closing = (float)segPref->GetDouble("closing ratio", 0.0);
      
      if (smoothingHint)
      {
        smoothing = 0.0;
        Vector3D spacing = image->GetGeometry()->GetSpacing();
        
        for (Vector3D::Iterator iter = spacing.Begin(); iter != spacing.End(); ++iter)
          smoothing = max(smoothing, *iter);
      }

      surfaceFilter->SetParameter("Smoothing", smoothing);
      surfaceFilter->SetParameter("Decimation", decimation);
      surfaceFilter->SetParameter("Closing", closing);

      ProgressBar::GetInstance()->AddStepsToDo(8);
      StatusBar::GetInstance()->DisplayText("Smoothed surface creation started in background...");

      try {
        surfaceFilter->StartAlgorithm();
      } catch (...)
      {
        MITK_ERROR<<"Error creating smoothed polygon model: Not enough memory!";
      }
    }
  }
  catch(...)
  {
    MITK_ERROR << "Surface creation failed!";
  }
}
std::vector<itk::SmartPointer<BaseData> > BaseDICOMReaderService::Read()
{
  std::vector<BaseData::Pointer> result;

  //special handling of Philips 3D US DICOM.
  //Copied from DICOMSeriesReaderService

  std::string fileName = this->GetLocalFileName();
  if (DicomSeriesReader::IsPhilips3DDicom(fileName))
  {
      MITK_INFO << "it is a Philips3D US Dicom file" << std::endl;
      mitk::LocaleSwitch localeSwitch("C");
      std::locale previousCppLocale(std::cin.getloc());
      std::locale l("C");
      std::cin.imbue(l);

      DataNode::Pointer node = DataNode::New();
      mitk::DicomSeriesReader::StringContainer stringvec;
      stringvec.push_back(fileName);
      if (DicomSeriesReader::LoadDicomSeries(stringvec, *node))
      {
          BaseData::Pointer data = node->GetData();
          StringProperty::Pointer nameProp = StringProperty::New(itksys::SystemTools::GetFilenameName(fileName));
          data->GetPropertyList()->SetProperty("name", nameProp);
          result.push_back(data);
      }
      std::cin.imbue(previousCppLocale);
      return result;
  }

  //Normal DICOM handling (It wasn't a Philips 3D US)
  mitk::StringList relevantFiles = this->GetRelevantFiles();

  mitk::DICOMFileReader::Pointer reader = this->GetReader(relevantFiles);

  reader->SetAdditionalTagsOfInterest(mitk::GetCurrentDICOMTagsOfInterest());
  reader->SetTagLookupTableToPropertyFunctor(mitk::GetDICOMPropertyForDICOMValuesFunctor);
  reader->SetInputFiles(relevantFiles);
  reader->AnalyzeInputFiles();
  reader->LoadImages();

  for (unsigned int i = 0; i < reader->GetNumberOfOutputs(); ++i)
  {
    const mitk::DICOMImageBlockDescriptor& desc = reader->GetOutput(i);
    mitk::BaseData::Pointer data = desc.GetMitkImage().GetPointer();

    std::string nodeName = "Unnamed_DICOM";

    std::string studyDescription = desc.GetPropertyAsString("studyDescription");
    std::string seriesDescription = desc.GetPropertyAsString("seriesDescription");

    if (!studyDescription.empty())
    {
      nodeName = studyDescription;
    }

    if (!seriesDescription.empty())
    {
      if (!studyDescription.empty())
      {
        nodeName += "/";
      }
      nodeName += seriesDescription;
    }

    StringProperty::Pointer nameProp = StringProperty::New(nodeName);
    data->SetProperty("name", nameProp);

    result.push_back(data);
  }

  return result;
}
示例#8
0
bool mitk::SceneReaderV1::LoadScene( TiXmlDocument& document, const std::string& workingDirectory, DataStorage* storage )
{
  assert(storage);
  bool error(false);

  // TODO prepare to detect errors (such as cycles) from wrongly written or edited xml files

  //Get number of elements to initialze progress bar
  unsigned int listSize = 0;
  for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node") )
  {
    ++listSize;
  }

  ProgressBar::GetInstance()->AddStepsToDo( listSize );

  // iterate all nodes
  // first level nodes should be <node> elements
  for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node") )
  {
    //   1. if there is a <data type="..." file="..."> element,
    //        - construct a name for the appropriate serializer
    //        - try to instantiate this serializer via itk object factory
    //        - if serializer could be created, use it to read the file into a BaseData object
    //        - if successful, call the new node's SetData(..)
    DataNode::Pointer node = LoadBaseDataFromDataTag( element->FirstChildElement("data"), workingDirectory, error );

    // create a node for the tag "data" and test if node was created
    // in case dataXmlElement is valid test whether it containts the "properties" child tag
    // and process further if and only if yes
    TiXmlElement *dataXmlElement = element->FirstChildElement("data");
    if( dataXmlElement && dataXmlElement->FirstChildElement("properties") )
    {
      TiXmlElement *baseDataElement = dataXmlElement->FirstChildElement("properties");
      if ( node->GetData() )
      {
        DecorateBaseDataWithProperties( node->GetData(), baseDataElement, workingDirectory);
      }
      else
      {
        MITK_WARN << "BaseData properties stored in scene file, but BaseData can't be read" << std::endl;
      }
    }

    //   2. check child nodes
    const char* uida = element->Attribute("UID");
    std::string uid("");

    if (uida)
    {
      uid = uida;
      m_NodeForID[uid] = node.GetPointer();
      m_IDForNode[ node.GetPointer() ] = uid;
    }
    else
    {
      MITK_ERROR << "No UID found for current node. Node will have no parents.";
      error = true;
    }

    // remember node for later adding to DataStorage
    m_Nodes.insert( std::make_pair( node, std::list<std::string>() ) );

    //   3. if there are <source> elements, remember parent objects
    for( TiXmlElement* source = element->FirstChildElement("source"); source != NULL; source = source->NextSiblingElement("source") )
    {
      const char* sourceUID = source->Attribute("UID");
      if (sourceUID)
      {
        m_Nodes[node].push_back( std::string(sourceUID) );
      }
    }


    //   5. if there are <properties> nodes,
    //        - instantiate the appropriate PropertyListDeSerializer
    //        - use them to construct PropertyList objects
    //        - add these properties to the node (if necessary, use renderwindow name)
    bool success = DecorateNodeWithProperties(node, element, workingDirectory);
    if (!success)
    {
      MITK_ERROR << "Could not load properties for node.";
      error = true;
    }

    ProgressBar::GetInstance()->Progress();

  } // end for all <node>

  // remove all unknown parent UIDs
  for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin();
       nodesIter != m_Nodes.end();
       ++nodesIter)
  {
    for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
         parentsIter != nodesIter->second.end();)
    {
      if (m_NodeForID.find( *parentsIter ) == m_NodeForID.end())
      {
        parentsIter = nodesIter->second.erase( parentsIter );
        MITK_WARN << "Found a DataNode with unknown parents. Will add it to DataStorage without any parent objects.";
        error = true;
      }
      else
      {
        ++parentsIter;
      }
    }
  }

  // repeat
  //   for all created nodes
  unsigned int lastMapSize(0);
  while ( lastMapSize != m_Nodes.size()) // this is to prevent infinite loops; each iteration must at least add one node to DataStorage
  {
    lastMapSize = m_Nodes.size();

    for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin();
         nodesIter != m_Nodes.end();
         ++nodesIter)
    {
      bool addNow(true);
      // if any parent node is not yet in DataStorage, skip node for now and check later
      for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
           parentsIter != nodesIter->second.end();
           ++parentsIter)
      {
        if ( !storage->Exists( m_NodeForID[ *parentsIter ] ) )
        {
          addNow = false;
          break;
        }
      }

      if (addNow)
      {
        DataStorage::SetOfObjects::Pointer parents = DataStorage::SetOfObjects::New();
        for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
             parentsIter != nodesIter->second.end();
             ++parentsIter)
        {
          parents->push_back( m_NodeForID[ *parentsIter ] );
        }

        // if all parents are found in datastorage (or are unknown), add node to DataStorage
        storage->Add( nodesIter->first, parents );

        // remove this node from m_Nodes
        m_Nodes.erase( nodesIter );

        // break this for loop because iterators are probably invalid
        break;
      }
    }
  }

  // All nodes that are still in m_Nodes at this point are not part of a proper directed graph structure. We'll add such nodes without any parent information.
  for (NodesAndParentsMapType::iterator nodesIter = m_Nodes.begin();
       nodesIter != m_Nodes.end();
       ++nodesIter)
  {
    storage->Add( nodesIter->first );
    MITK_WARN << "Encountered node that is not part of a directed graph structure. Will be added to DataStorage without parents.";
    error = true;
  }

  return !error;
}
void mitk::BoundingShapeVtkMapper2D::GenerateDataForRenderer(BaseRenderer *renderer)
{
  const DataNode::Pointer node = GetDataNode();
  if (node == nullptr)
    return;

  LocalStorage *localStorage = m_Impl->LocalStorageHandler.GetLocalStorage(renderer);

  // either update if GeometryData was modified or if the zooming was performed
  bool needGenerateData = localStorage->IsUpdateRequired(
    renderer, this, GetDataNode()); // true; // localStorage->GetLastGenerateDataTime() < node->GetMTime() ||
  // localStorage->GetLastGenerateDataTime() < node->GetData()->GetMTime();
  // //localStorage->IsGenerateDataRequired(renderer, this, GetDataNode());

  double scale = renderer->GetScaleFactorMMPerDisplayUnit();

  if (std::abs(scale - localStorage->m_ZoomFactor) > 0.001)
  {
    localStorage->m_ZoomFactor = scale;
    needGenerateData = true;
  }

  if (needGenerateData)
  {
    bool visible = true;
    GetDataNode()->GetVisibility(visible, renderer, "visible");

    if (!visible)
    {
      localStorage->m_Actor->VisibilityOff();
      return;
    }
    GeometryData::Pointer shape = static_cast<GeometryData *>(node->GetData());
    if (shape == nullptr)
      return;

    mitk::BaseGeometry::Pointer geometry = shape->GetGeometry();
    mitk::Vector3D spacing = geometry->GetSpacing();

    // calculate cornerpoints and extent from geometry with visualization offset
    std::vector<Point3D> cornerPoints = GetCornerPoints(geometry, true);
    Point3D p0 = cornerPoints[0];
    Point3D p1 = cornerPoints[1];
    Point3D p2 = cornerPoints[2];
    Point3D p4 = cornerPoints[4];
    Point3D extent;
    extent[0] =
      sqrt((p0[0] - p4[0]) * (p0[0] - p4[0]) + (p0[1] - p4[1]) * (p0[1] - p4[1]) + (p0[2] - p4[2]) * (p0[2] - p4[2]));
    extent[1] =
      sqrt((p0[0] - p2[0]) * (p0[0] - p2[0]) + (p0[1] - p2[1]) * (p0[1] - p2[1]) + (p0[2] - p2[2]) * (p0[2] - p2[2]));
    extent[2] =
      sqrt((p0[0] - p1[0]) * (p0[0] - p1[0]) + (p0[1] - p1[1]) * (p0[1] - p1[1]) + (p0[2] - p1[2]) * (p0[2] - p1[2]));

    // calculate center based on half way of the distance between two opposing cornerpoints
    mitk::Point3D center = CalcAvgPoint(cornerPoints[7], cornerPoints[0]);

    if (m_Impl->HandlePropertyList.size() == 6)
    {
      // set handle positions
      Point3D pointLeft = CalcAvgPoint(cornerPoints[5], cornerPoints[6]);
      Point3D pointRight = CalcAvgPoint(cornerPoints[1], cornerPoints[2]);
      Point3D pointTop = CalcAvgPoint(cornerPoints[0], cornerPoints[6]);
      Point3D pointBottom = CalcAvgPoint(cornerPoints[7], cornerPoints[1]);
      Point3D pointFront = CalcAvgPoint(cornerPoints[2], cornerPoints[7]);
      Point3D pointBack = CalcAvgPoint(cornerPoints[4], cornerPoints[1]);

      m_Impl->HandlePropertyList[0].SetPosition(pointLeft);
      m_Impl->HandlePropertyList[1].SetPosition(pointRight);
      m_Impl->HandlePropertyList[2].SetPosition(pointTop);
      m_Impl->HandlePropertyList[3].SetPosition(pointBottom);
      m_Impl->HandlePropertyList[4].SetPosition(pointFront);
      m_Impl->HandlePropertyList[5].SetPosition(pointBack);
    }

    // caculate face normals
    double result0[3], result1[3], result2[3];
    double a[3], b[3];
    a[0] = (cornerPoints[5][0] - cornerPoints[6][0]);
    a[1] = (cornerPoints[5][1] - cornerPoints[6][1]);
    a[2] = (cornerPoints[5][2] - cornerPoints[6][2]);

    b[0] = (cornerPoints[5][0] - cornerPoints[4][0]);
    b[1] = (cornerPoints[5][1] - cornerPoints[4][1]);
    b[2] = (cornerPoints[5][2] - cornerPoints[4][2]);

    vtkMath::Cross(a, b, result0);

    a[0] = (cornerPoints[0][0] - cornerPoints[6][0]);
    a[1] = (cornerPoints[0][1] - cornerPoints[6][1]);
    a[2] = (cornerPoints[0][2] - cornerPoints[6][2]);

    b[0] = (cornerPoints[0][0] - cornerPoints[2][0]);
    b[1] = (cornerPoints[0][1] - cornerPoints[2][1]);
    b[2] = (cornerPoints[0][2] - cornerPoints[2][2]);

    vtkMath::Cross(a, b, result1);

    a[0] = (cornerPoints[2][0] - cornerPoints[7][0]);
    a[1] = (cornerPoints[2][1] - cornerPoints[7][1]);
    a[2] = (cornerPoints[2][2] - cornerPoints[7][2]);

    b[0] = (cornerPoints[2][0] - cornerPoints[6][0]);
    b[1] = (cornerPoints[2][1] - cornerPoints[6][1]);
    b[2] = (cornerPoints[2][2] - cornerPoints[6][2]);

    vtkMath::Cross(a, b, result2);

    vtkMath::Normalize(result0);
    vtkMath::Normalize(result1);
    vtkMath::Normalize(result2);

    // create cube for rendering bounding box
    auto cube = vtkCubeSource::New();
    cube->SetXLength(extent[0] / spacing[0]);
    cube->SetYLength(extent[1] / spacing[1]);
    cube->SetZLength(extent[2] / spacing[2]);

    // calculates translation based on offset+extent not on the transformation matrix
    vtkSmartPointer<vtkMatrix4x4> imageTransform = geometry->GetVtkTransform()->GetMatrix();
    auto translation = vtkSmartPointer<vtkTransform>::New();
    translation->Translate(center[0] - imageTransform->GetElement(0, 3),
      center[1] - imageTransform->GetElement(1, 3),
      center[2] - imageTransform->GetElement(2, 3));

    auto transform = vtkSmartPointer<vtkTransform>::New();
    transform->SetMatrix(imageTransform);
    transform->PostMultiply();
    transform->Concatenate(translation);
    transform->Update();
    cube->Update();

    auto transformFilter = vtkSmartPointer<vtkTransformFilter>::New();
    transformFilter->SetInputData(cube->GetOutput());
    transformFilter->SetTransform(transform);
    transformFilter->Update();
    cube->Delete();

    vtkSmartPointer<vtkPolyData> polydata = transformFilter->GetPolyDataOutput();
    if (polydata == nullptr || (polydata->GetNumberOfPoints() < 1))
    {
      localStorage->m_Actor->VisibilityOff();
      localStorage->m_HandleActor->VisibilityOff();
      localStorage->m_SelectedHandleActor->VisibilityOff();
      return;
    }

    // estimate current image plane to decide whether the cube is visible or not
    const PlaneGeometry *planeGeometry = renderer->GetCurrentWorldPlaneGeometry();
    if ((planeGeometry == nullptr) || (!planeGeometry->IsValid()) || (!planeGeometry->HasReferenceGeometry()))
      return;

    double origin[3];
    origin[0] = planeGeometry->GetOrigin()[0];
    origin[1] = planeGeometry->GetOrigin()[1];
    origin[2] = planeGeometry->GetOrigin()[2];

    double normal[3];
    normal[0] = planeGeometry->GetNormal()[0];
    normal[1] = planeGeometry->GetNormal()[1];
    normal[2] = planeGeometry->GetNormal()[2];

    //    MITK_INFO << "normal1 " << normal[0] << " " << normal[1] << " " << normal[2];
    localStorage->m_CuttingPlane->SetOrigin(origin);
    localStorage->m_CuttingPlane->SetNormal(normal);

    // add cube polydata to local storage
    localStorage->m_Cutter->SetInputData(polydata);
    localStorage->m_Cutter->SetGenerateCutScalars(1);
    localStorage->m_Cutter->Update();

    if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_HandleActor))
      localStorage->m_PropAssembly->RemovePart(localStorage->m_HandleActor);
    if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_Actor))
      localStorage->m_PropAssembly->RemovePart(localStorage->m_Actor);

    vtkCoordinate *tcoord = vtkCoordinate::New();
    tcoord->SetCoordinateSystemToWorld();
    localStorage->m_HandleMapper->SetTransformCoordinate(tcoord);
    tcoord->Delete();

    if (localStorage->m_Cutter->GetOutput()->GetNumberOfPoints() > 0) // if plane is visible in the renderwindow
    {
      mitk::DoubleProperty::Pointer handleSizeProperty =
        dynamic_cast<mitk::DoubleProperty *>(this->GetDataNode()->GetProperty("Bounding Shape.Handle Size Factor"));

      ScalarType initialHandleSize;
      if (handleSizeProperty != nullptr)
        initialHandleSize = handleSizeProperty->GetValue();
      else
        initialHandleSize = 1.0 / 40.0;

      mitk::Point2D displaySize = renderer->GetDisplaySizeInMM();
      double handleSize = ((displaySize[0] + displaySize[1]) / 2.0) * initialHandleSize;

      auto appendPoly = vtkSmartPointer<vtkAppendPolyData>::New();
      unsigned int i = 0;

      // add handles and their assigned properties to the local storage
      mitk::IntProperty::Pointer activeHandleId =
        dynamic_cast<mitk::IntProperty *>(node->GetProperty("Bounding Shape.Active Handle ID"));

      bool visible = false;
      bool selected = false;
      for (auto handle : localStorage->m_Handles)
      {
        Point3D handleCenter = m_Impl->HandlePropertyList[i].GetPosition();

        handle->SetRadius(handleSize);
        handle->SetCenter(handleCenter[0], handleCenter[1], handleCenter[2]);

        vtkMath::Normalize(normal);
        double angle = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result0)));
        double angle1 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result1)));
        double angle2 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result2)));

        // show handles only if the corresponding face is aligned to the render window
        if ((((std::abs(angle - 0) < 0.001) || (std::abs(angle - 180) < 0.001)) && i != 0 && i != 1) ||
          (((std::abs(angle1 - 0) < 0.001) || (std::abs(angle1 - 180) < 0.001)) && i != 2 && i != 3) ||
          (((std::abs(angle2 - 0) < 0.001) || (std::abs(angle2 - 180) < 0.001)) && i != 4 && i != 5))
        {
          if (activeHandleId == nullptr)
          {
            appendPoly->AddInputConnection(handle->GetOutputPort());
          }
          else
          {
            if ((activeHandleId->GetValue() != m_Impl->HandlePropertyList[i].GetIndex()))
            {
              appendPoly->AddInputConnection(handle->GetOutputPort());
            }
            else
            {
              handle->Update();
              localStorage->m_SelectedHandleMapper->SetInputData(handle->GetOutput());
              localStorage->m_SelectedHandleActor->VisibilityOn();
              selected = true;
            }
          }
          visible = true;
        }

        i++;
      }

      if (visible)
      {
        appendPoly->Update();
      }
      else
      {
        localStorage->m_HandleActor->VisibilityOff();
        localStorage->m_SelectedHandleActor->VisibilityOff();
      }

      auto stripper = vtkSmartPointer<vtkStripper>::New();
      stripper->SetInputData(localStorage->m_Cutter->GetOutput());
      stripper->Update();

      auto cutPolyData = vtkSmartPointer<vtkPolyData>::New();
      cutPolyData->SetPoints(stripper->GetOutput()->GetPoints());
      cutPolyData->SetPolys(stripper->GetOutput()->GetLines());

      localStorage->m_Actor->GetMapper()->SetInputDataObject(cutPolyData);
      mitk::ColorProperty::Pointer selectedColor = dynamic_cast<mitk::ColorProperty *>(node->GetProperty("color"));
      if (selectedColor != nullptr)
      {
        mitk::Color color = selectedColor->GetColor();
        localStorage->m_Actor->GetProperty()->SetColor(color[0], color[1], color[2]);
      }

      if (activeHandleId != nullptr)
      {
        localStorage->m_HandleActor->GetProperty()->SetColor(1, 0, 0);
      }
      else
      {
        localStorage->m_HandleActor->GetProperty()->SetColor(1, 1, 1);
      }
      localStorage->m_HandleActor->GetMapper()->SetInputDataObject(appendPoly->GetOutput());

      // add parts to the overall storage
      localStorage->m_PropAssembly->AddPart(localStorage->m_Actor);
      localStorage->m_PropAssembly->AddPart(localStorage->m_HandleActor);
      if (selected)
      {
        localStorage->m_PropAssembly->AddPart(localStorage->m_SelectedHandleActor);
      }

      localStorage->m_PropAssembly->VisibilityOn();
      localStorage->m_Actor->VisibilityOn();
      localStorage->m_HandleActor->VisibilityOn();
    }
    else
    {
      localStorage->m_PropAssembly->VisibilityOff();
      localStorage->m_Actor->VisibilityOff();
      localStorage->m_HandleActor->VisibilityOff();
      localStorage->m_SelectedHandleActor->VisibilityOff();
      localStorage->UpdateGenerateDataTime();
    }
    localStorage->UpdateGenerateDataTime();
  }
}