// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    DenseSet<const MachineBasicBlock*> seen;

    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
      if (!Pre->isSuccessor(MBB))
        continue;
      seen.insert(Pre);
      BBInfo &PrInfo = MBBInfoMap[Pre];
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
        report("PHI operand is not live-out from predecessor",
               &BBI->getOperand(i), i);
    }

    // Did we see all predecessors?
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (!seen.count(*PrI)) {
        report("Missing PHI operand", BBI);
        *OS << "BB#" << (*PrI)->getNumber()
            << " is a predecessor according to the CFG.\n";
      }
    }
  }
}
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
                                   MachineBasicBlock &MBB,
                                   LiveVariables &LV,
                                   MachineLoopInfo *MLI) {
  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    return false;   // Quick exit for basic blocks without PHIs.

  bool Changed = false;
  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
      // We break edges when registers are live out from the predecessor block
      // (not considering PHI nodes). If the register is live in to this block
      // anyway, we would gain nothing from splitting.
      // Avoid splitting backedges of loops. It would introduce small
      // out-of-line blocks into the loop which is very bad for code placement.
      if (PreMBB != &MBB &&
          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
        if (!MLI ||
            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
              MLI->isLoopHeader(&MBB))) {
          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
            Changed = true;
            ++NumCriticalEdgesSplit;
          }
        }
      }
    }
  }
  return Changed;
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I)
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->isPHI(); ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
                                     BBI->getOperand(i).getReg())];
}
Example #4
0
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the variable information of a virtual register
/// which is used in a PHI node. We map that to the BB the vreg is coming from.
///
void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
       I != E; ++I)
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->isPHI(); ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
          .push_back(BBI->getOperand(i).getReg());
}
Example #5
0
void BT::runEdgeQueue(BitVector &BlockScanned) {
  while (!FlowQ.empty()) {
    CFGEdge Edge = FlowQ.front();
    FlowQ.pop();

    if (EdgeExec.count(Edge))
      return;
    EdgeExec.insert(Edge);
    ReachedBB.insert(Edge.second);

    const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
    MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
    // Visit PHI nodes first.
    while (It != End && It->isPHI()) {
      const MachineInstr &PI = *It++;
      InstrExec.insert(&PI);
      visitPHI(PI);
    }

    // If this block has already been visited through a flow graph edge,
    // then the instructions have already been processed. Any updates to
    // the cells would now only happen through visitUsesOf...
    if (BlockScanned[Edge.second])
      return;
    BlockScanned[Edge.second] = true;

    // Visit non-branch instructions.
    while (It != End && !It->isBranch()) {
      const MachineInstr &MI = *It++;
      InstrExec.insert(&MI);
      visitNonBranch(MI);
    }
    // If block end has been reached, add the fall-through edge to the queue.
    if (It == End) {
      MachineFunction::const_iterator BIt = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BIt);
      if (Next != MF.end() && B.isSuccessor(&*Next)) {
        int ThisN = B.getNumber();
        int NextN = Next->getNumber();
        FlowQ.push(CFGEdge(ThisN, NextN));
      }
    } else {
      // Handle the remaining sequence of branches. This function will update
      // the work queue.
      visitBranchesFrom(*It);
    }
  } // while (!FlowQ->empty())
}
Example #6
0
bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
                                         MachineBasicBlock &MBB,
                                         LiveVariables &LV) {
  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    return false;   // Quick exit for basic blocks without PHIs.

  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
      // We break edges when registers are live out from the predecessor block
      // (not considering PHI nodes). If the register is live in to this block
      // anyway, we would gain nothing from splitting.
      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
        SplitCriticalEdge(PreMBB, &MBB);
    }
  }
  return true;
}
Example #7
0
/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB.
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
                                MachineBasicBlock *DomBB,
                                MachineBasicBlock *SuccBB) {
  const unsigned NumNew = BB->getNumber();

  // All registers used by PHI nodes in SuccBB must be live through BB.
  for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(),
         BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
      if (BBI->getOperand(i+1).getMBB() == BB)
        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);

  // Update info for all live variables
  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
         E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) {
    VarInfo &VI = getVarInfo(Reg);
    if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
      VI.AliveBlocks.set(NumNew);
  }
}
Example #8
0
/// shouldTailDuplicate - Determine if it is profitable to duplicate this block.
bool
TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
                                       MachineBasicBlock &TailBB) {
  // Only duplicate blocks that end with unconditional branches.
  if (TailBB.canFallThrough())
    return false;

  // Don't try to tail-duplicate single-block loops.
  if (TailBB.isSuccessor(&TailBB))
    return false;

  // Set the limit on the cost to duplicate. When optimizing for size,
  // duplicate only one, because one branch instruction can be eliminated to
  // compensate for the duplication.
  unsigned MaxDuplicateCount;
  if (TailDuplicateSize.getNumOccurrences() == 0 &&
      MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
    MaxDuplicateCount = 1;
  else
    MaxDuplicateCount = TailDuplicateSize;

  // If the target has hardware branch prediction that can handle indirect
  // branches, duplicating them can often make them predictable when there
  // are common paths through the code.  The limit needs to be high enough
  // to allow undoing the effects of tail merging and other optimizations
  // that rearrange the predecessors of the indirect branch.

  if (PreRegAlloc && !TailBB.empty()) {
    const TargetInstrDesc &TID = TailBB.back().getDesc();
    if (TID.isIndirectBranch())
      MaxDuplicateCount = 20;
  }

  // Check the instructions in the block to determine whether tail-duplication
  // is invalid or unlikely to be profitable.
  unsigned InstrCount = 0;
  for (MachineBasicBlock::const_iterator I = TailBB.begin(); I != TailBB.end();
       ++I) {
    // Non-duplicable things shouldn't be tail-duplicated.
    if (I->getDesc().isNotDuplicable())
      return false;

    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
    // A return may expand into a lot more instructions (e.g. reload of callee
    // saved registers) after PEI.
    if (PreRegAlloc && I->getDesc().isReturn())
      return false;

    // Avoid duplicating calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (PreRegAlloc && I->getDesc().isCall())
      return false;

    if (!I->isPHI() && !I->isDebugValue())
      InstrCount += 1;

    if (InstrCount > MaxDuplicateCount)
      return false;
  }

  return true;
}
Example #9
0
void BT::run() {
  reset();
  assert(FlowQ.empty());

  typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits;
  const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);

  unsigned MaxBN = 0;
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    assert(I->getNumber() >= 0 && "Disconnected block");
    unsigned BN = I->getNumber();
    if (BN > MaxBN)
      MaxBN = BN;
  }

  // Keep track of visited blocks.
  BitVector BlockScanned(MaxBN+1);

  int EntryN = Entry->getNumber();
  // Generate a fake edge to get something to start with.
  FlowQ.push(CFGEdge(-1, EntryN));

  while (!FlowQ.empty()) {
    CFGEdge Edge = FlowQ.front();
    FlowQ.pop();

    if (EdgeExec.count(Edge))
      continue;
    EdgeExec.insert(Edge);

    const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
    MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
    // Visit PHI nodes first.
    while (It != End && It->isPHI()) {
      const MachineInstr &PI = *It++;
      InstrExec.insert(&PI);
      visitPHI(PI);
    }

    // If this block has already been visited through a flow graph edge,
    // then the instructions have already been processed. Any updates to
    // the cells would now only happen through visitUsesOf...
    if (BlockScanned[Edge.second])
      continue;
    BlockScanned[Edge.second] = true;

    // Visit non-branch instructions.
    while (It != End && !It->isBranch()) {
      const MachineInstr &MI = *It++;
      InstrExec.insert(&MI);
      visitNonBranch(MI);
    }
    // If block end has been reached, add the fall-through edge to the queue.
    if (It == End) {
      MachineFunction::const_iterator BIt = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BIt);
      if (Next != MF.end() && B.isSuccessor(&*Next)) {
        int ThisN = B.getNumber();
        int NextN = Next->getNumber();
        FlowQ.push(CFGEdge(ThisN, NextN));
      }
    } else {
      // Handle the remaining sequence of branches. This function will update
      // the work queue.
      visitBranchesFrom(*It);
    }
  } // while (!FlowQ->empty())

  if (Trace)
    print_cells(dbgs() << "Cells after propagation:\n");
}