Exemple #1
0
//
//	Originally, 'endTransmission' was an f(void) function.
//	It has been modified to take one parameter indicating
//	whether or not a STOP should be performed on the bus.
//	Calling endTransmission(false) allows a sketch to
//	perform a repeated start.
//
//	WARNING: Nothing in the library keeps track of whether
//	the bus tenure has been properly ended with a STOP. It
//	is very possible to leave the bus in a hung state if
//	no call to endTransmission(true) is made. Some I2C
//	devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop) {
	uint8_t error = 0;
	// transmit buffer (blocking)
	TWI_StartWrite(twi, txAddress, 0, 0, txBuffer[0]);
	if (!TWI_WaitByteSent(twi, XMIT_TIMEOUT))
		error = 2;	// error, got NACK on address transmit
	
	if (error == 0) {
		uint16_t sent = 1;
		while (sent < txBufferLength) {
			TWI_WriteByte(twi, txBuffer[sent++]);
			if (!TWI_WaitByteSent(twi, XMIT_TIMEOUT))
				error = 3;	// error, got NACK during data transmmit
		}
	}
	
	if (error == 0) {
		TWI_Stop(twi);
		if (!TWI_WaitTransferComplete(twi, XMIT_TIMEOUT))
			error = 4;	// error, finishing up
	}

	txBufferLength = 0;		// empty buffer
	status = MASTER_IDLE;
	return error;
}
Exemple #2
0
/**
 * \brief Asynchronously sends data to a slave on the TWI bus. An optional callback
 * function is invoked whenever the transfer is complete.
 * \param pTwid  Pointer to a Twid instance.
 * \param address  TWI slave address.
 * \param iaddress  Optional slave internal address.
 * \param isize  Number of internal address bytes.
 * \param pData  Data buffer for storing received bytes.
 * \param num  Data buffer to send.
 * \param pAsync  Asynchronous transfer descriptor.
 * \return 0 if the transfer has been started; otherwise returns a TWI error code.
 */
uint8_t TWID_Write(
    Twi *pTwi,
    uint8_t address,
    uint32_t iaddress,
    uint8_t isize,
    uint8_t *pData,
    uint32_t num)
{
    //Twi *pTwi = pTwid->pTwi;
    uint32_t timeout;

    assert( pTwi != NULL ) ;
    assert( (address & 0x80) == 0 ) ;
    assert( (iaddress & 0xFF000000) == 0 ) ;
    assert( isize < 4 ) ;


    /* Synchronous transfer*/
    // Start write
    TWI_StartWrite(pTwi, address, iaddress, isize, *pData++);
    num--;

    /* Send all bytes */
    while (num > 0) {

        /* Wait before sending the next byte */
        timeout = 0;
        while( !TWI_ByteSent(pTwi) && (++timeout<TWITIMEOUTMAX) );
        if (timeout == TWITIMEOUTMAX) {
            TRACE_ERROR("TWID Timeout BS\n\r");
        }

        TWI_WriteByte(pTwi, *pData++);
        num--;
    }

    /* Wait for actual end of transfer */
    timeout = 0;

    /* Send a STOP condition */
    TWI_SendSTOPCondition(pTwi);

    while( !TWI_TransferComplete(pTwi) && (++timeout<TWITIMEOUTMAX) );
    if (timeout == TWITIMEOUTMAX) {
        TRACE_ERROR("TWID Timeout TC2\n\r");
    }

    return 0;
}
bool i2c_eeprom_master_write(Twi *twi,
                             const uint16_t internal_address,
                             const char *data,
                             const uint16_t length) {
	uint32_t timeout;

	mutex_take(mutex_twi_bricklet, MUTEX_BLOCKING);

    // Start write
	TWI_StartWrite(twi,
	               bricklet_eeprom_address,
	               internal_address,
	               I2C_EEPROM_INTERNAL_ADDRESS_BYTES,
	               data[0]);

    for(uint16_t i = 1; i < length; i++) {
    	timeout = 0;
    	// Wait until byte is sent, otherwise return false
		while(!TWI_ByteSent(twi) && (++timeout < I2C_EEPROM_TIMEOUT)) {}

		if(timeout == I2C_EEPROM_TIMEOUT) {
			logieew("write timeout (nothing sent)\n\r");
			mutex_give(mutex_twi_bricklet);
			return false;
		}
        TWI_WriteByte(twi, data[i]);
    }

    // Send STOP
    TWI_SendSTOPCondition(twi);

    timeout = 0;
	// Wait for transfer to be complete
	while(!TWI_TransferComplete(twi) && (++timeout < I2C_EEPROM_TIMEOUT)) {}

	if (timeout == I2C_EEPROM_TIMEOUT) {
		logieew("write timeout (transfer incomplete)\n\r");
		mutex_give(mutex_twi_bricklet);
		return false;
	}

	// Wait at least 5ms between writes (see m24128-bw.pdf)
	SLEEP_MS(5);

	mutex_give(mutex_twi_bricklet);
	return true;
}
Exemple #4
0
//
//	Originally, 'endTransmission' was an f(void) function.
//	It has been modified to take one parameter indicating
//	whether or not a STOP should be performed on the bus.
//	Calling endTransmission(false) allows a sketch to
//	perform a repeated start.
//
//	WARNING: Nothing in the library keeps track of whether
//	the bus tenure has been properly ended with a STOP. It
//	is very possible to leave the bus in a hung state if
//	no call to endTransmission(true) is made. Some I2C
//	devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop) {
	// transmit buffer (blocking)
	TWI_StartWrite(twi, txAddress, 0, 0, txBuffer[0]);
	TWI_WaitByteSent(twi, XMIT_TIMEOUT);
	int sent = 1;
	while (sent < txBufferLength) {
		twi_write_byte(twi, txBuffer[sent++]);
		TWI_WaitByteSent(twi, XMIT_TIMEOUT);
	}
	TWI_Stop( twi);
	TWI_WaitTransferComplete(twi, XMIT_TIMEOUT);

	// empty buffer
	txBufferLength = 0;

	status = MASTER_IDLE;
	return sent;
}
/**********************************************
 * \brief 
 *
 *
 * \return none
 */
result_t HalExpansionPortClass::writePcaPorts(uint32_t iRegister, uint8_t *pBuffer, uint32_t bufLength) {

uint32_t bufCnt=bufLength;
uint32_t breakOut_cnt=0;
result_t retResult=SUCCESS;

	TWI_StartWrite(HW_ADDR_TWI_PCA9698,HW_PCA9698_TwiAddr, iRegister,HW_PCA9698_InternalAddrLen,*pBuffer);
	pBuffer++;
	bufCnt--;

	while(bufCnt >0) {
		//if no NACK and Byte sent, then transmit next one
		if (TWI_SR_NACK & TWI_GetStatus(HW_ADDR_TWI_PCA9698)) {
						  dbgOut1(eDbgAll_errEvt,'B',"HalTwiPca Unexpected NACK ",bufCnt);
			retResult=FAIL;
			break;
		}
		if (!TWI_ByteSent(HW_ADDR_TWI_PCA9698)) {
		   if (90000 < ++breakOut_cnt) {
			  dbgOut1(eDbgAll_errEvt,'B',"HalTwiPca TWI_SR_TXRDY exceeded ",bufCnt);
			  retResult=FAIL;
			  break; //Out while
			}
			continue;				
		}
		breakOut_cnt = 0;
		TWI_WriteByte(HW_ADDR_TWI_PCA9698,*pBuffer);
		pBuffer++;
		bufCnt--;
	}
	
TWI_Stop(HW_ADDR_TWI_PCA9698);
while (!TWI_TransferComplete(HW_ADDR_TWI_PCA9698)) {
	if (90000 < ++breakOut_cnt) {
	   dbgOut(eDbgAll_errEvt,'B',"HalTwiPca TWI_SR_TXCOMP exceeded ");
	   break; //Out while
	}
}
 
 return retResult;
 }//portInit
unsigned char WriteAccelData(unsigned int iaddress, char *bytes, unsigned int num)
{
	unsigned int timeout;
	
	// wait for TWI bus to be ready
	while(!(TWI_TransferComplete(AT91C_BASE_TWI))) nop();
	
	// Start Writing
	TWI_StartWrite(AT91C_BASE_TWI,ACCELADDR,iaddress,1,*bytes++);
	num--;
	
	while(num > 0){
		// Wait before sending the next byte
		timeout = 0;
		while(!TWI_ByteSent(AT91C_BASE_TWI) && (++timeout<TWITIMEOUTMAX)) nop();
		if(timeout == TWITIMEOUTMAX) return 1;
		TWI_WriteByte(AT91C_BASE_TWI, *bytes++);
		num--;
	}
	
	return 0;
}
Exemple #7
0
/**
 * \brief Asynchronously sends data to a slave on the TWI bus. An optional callback
 * function is invoked whenever the transfer is complete.
 * \param pTwid  Pointer to a Twid instance.
 * \param address  TWI slave address.
 * \param iaddress  Optional slave internal address.
 * \param isize  Number of internal address bytes.
 * \param pData  Data buffer for storing received bytes.
 * \param num  Data buffer to send.
 * \param pAsync  Asynchronous transfer descriptor.
 * \return 0 if the transfer has been started; otherwise returns a TWI error code.
 */
uint8_t TWID_Write(
    Twid *pTwid,
    uint8_t address,
    uint32_t iaddress,
    uint8_t isize,
    uint8_t *pData,
    uint32_t num,
    Async *pAsync)
{
    Twi *pTwi = pTwid->pTwi;
    AsyncTwi *pTransfer = (AsyncTwi *) pTwid->pTransfer;
    uint32_t timeout;

    assert( pTwi != NULL ) ;
    assert( (address & 0x80) == 0 ) ;
    assert( (iaddress & 0xFF000000) == 0 ) ;
    assert( isize < 4 ) ;

    /* Check that no transfer is already pending */
    if (pTransfer) {

        TRACE_ERROR("TWI_Write: A transfer is already pending\n\r");
        return TWID_ERROR_BUSY;
    }

    /* Asynchronous transfer */
    if (pAsync) {

        /* Update the transfer descriptor */
        pTwid->pTransfer = pAsync;
        pTransfer = (AsyncTwi *) pAsync;
        pTransfer->status = ASYNC_STATUS_PENDING;
        pTransfer->pData = pData;
        pTransfer->num = num;
        pTransfer->transferred = 1;

        /* Enable write interrupt and start the transfer */
        TWI_StartWrite(pTwi, address, iaddress, isize, *pData);
        TWI_EnableIt(pTwi, TWI_IER_TXRDY);
    }
    /* Synchronous transfer*/
    else {

        // Start write
        TWI_StartWrite(pTwi, address, iaddress, isize, *pData++);
        num--;

        /* Send all bytes */
        while (num > 0) {

            /* Wait before sending the next byte */
            timeout = 0;
            while( !TWI_ByteSent(pTwi) && (++timeout<TWITIMEOUTMAX) );
            if (timeout == TWITIMEOUTMAX) {
                TRACE_ERROR("TWID Timeout BS\n\r");
            }

            TWI_WriteByte(pTwi, *pData++);
            num--;
        }

        /* Wait for actual end of transfer */
        timeout = 0;

        /* Send a STOP condition */
        TWI_SendSTOPCondition(pTwi);

        while( !TWI_TransferComplete(pTwi) && (++timeout<TWITIMEOUTMAX) );
        if (timeout == TWITIMEOUTMAX) {
            TRACE_ERROR("TWID Timeout TC2\n\r");
        }

    }

    return 0;
}
Exemple #8
0
//------------------------------------------------------------------------------
/// Asynchronously sends data to a slave on the TWI bus. An optional callback
/// function is invoked whenever the transfer is complete.
/// \param pTwid  Pointer to a Twid instance.
/// \param address  Slave address.
/// \param iaddress  Optional slave internal address.
/// \param isize  Number of internal address bytes.
/// \param pData  Data buffer to send.
/// \param num  Number of bytes to send.
/// \param pAsync  Pointer to an Asynchronous transfer descriptor.
//------------------------------------------------------------------------------
unsigned char TWID_Write(
    Twid *pTwid,
    unsigned char address,
    unsigned int iaddress,
    unsigned char isize,
    unsigned char *pData,
    unsigned int num,
    Async *pAsync)
{
    AT91S_TWI *pTwi = pTwid->pTwi;
    AsyncTwi *pTransfer = (AsyncTwi *) pTwid->pTransfer;
    unsigned int timeout;

    //TRACE_DEBUG("TWID_Write()\n\r");
    //TRACE_DEBUG("0x%X\n\r", pData[0]);
    SANITY_CHECK(pTwi);
    SANITY_CHECK((address & 0x80) == 0);
    SANITY_CHECK((iaddress & 0xFF000000) == 0);
    SANITY_CHECK(isize < 4);

    // Check that no transfer is already pending
    if (pTransfer) {

        TRACE_ERROR("TWI_Write: A transfer is already pending\n\r");
        return TWID_ERROR_BUSY;
    }

    // Asynchronous transfer
    if (pAsync) {
    
        // Update the transfer descriptor
        pTwid->pTransfer = pAsync;
        pTransfer = (AsyncTwi *) pAsync;
        pTransfer->status = ASYNC_STATUS_PENDING;
        pTransfer->pData = pData;
        pTransfer->num = num;
        pTransfer->transferred = 1;
    
        // Enable write interrupt and start the transfer
        TWI_StartWrite(pTwi, address, iaddress, isize, *pData);
        TWI_EnableIt(pTwi, AT91C_TWI_TXRDY);
    }
    // Synchronous transfer
    else {

        // Start write
        TWI_StartWrite(pTwi, address, iaddress, isize, *pData++);
        num--;

        // Send all bytes
        while (num > 0) {
        
            // Wait before sending the next byte
            timeout = 0;
            while( !TWI_ByteSent(pTwi) && (++timeout<TWITIMEOUTMAX) );
            if (timeout == TWITIMEOUTMAX) {
                TRACE_ERROR("TWID Timeout BS\n\r");
                return TWID_ERROR_TIMEOUT;
            }

            TWI_WriteByte(pTwi, *pData++);
            num--;
        }

        // Wait for actual end of transfer
        timeout = 0;

#ifdef TWI_V3XX
        // Send a STOP condition
        TWI_SendSTOPCondition(pTwi);
#endif

        while( !TWI_TransferComplete(pTwi) && (++timeout<TWITIMEOUTMAX) );
        if (timeout == TWITIMEOUTMAX) {
            TRACE_ERROR("TWID Timeout TC2\n\r");
            return TWID_ERROR_TIMEOUT;
        }

    }
    
    return 0;
}