size_t ObjectContainerBSDArchive::Archive::ParseObjects (DataExtractor &data) { std::string str; uint32_t offset = 0; str.assign((const char *)data.GetData(&offset, SARMAG), SARMAG); if (str == ARMAG) { Object obj; do { offset = obj.Extract (data, offset); if (offset == LLDB_INVALID_INDEX32) break; uint32_t obj_idx = m_objects.size(); m_objects.push_back(obj); // Insert all of the C strings out of order for now... m_object_name_to_index_map.Append (obj.ar_name.GetCString(), obj_idx); offset += obj.ar_file_size; obj.Clear(); } while (data.ValidOffset(offset)); // Now sort all of the object name pointers m_object_name_to_index_map.Sort (); } return m_objects.size(); }
Error AdbClient::Stat (const FileSpec &remote_file, uint32_t &mode, uint32_t &size, uint32_t &mtime) { auto error = StartSync (); if (error.Fail ()) return error; const std::string remote_file_path (remote_file.GetPath (false)); error = SendSyncRequest (kSTAT, remote_file_path.length (), remote_file_path.c_str ()); if (error.Fail ()) return Error ("Failed to send request: %s", error.AsCString ()); static const size_t stat_len = strlen (kSTAT); static const size_t response_len = stat_len + (sizeof (uint32_t) * 3); std::vector<char> buffer (response_len); error = ReadAllBytes (&buffer[0], buffer.size ()); if (error.Fail ()) return Error ("Failed to read response: %s", error.AsCString ()); DataExtractor extractor (&buffer[0], buffer.size (), eByteOrderLittle, sizeof (void*)); offset_t offset = 0; const void* command = extractor.GetData (&offset, stat_len); if (!command) return Error ("Failed to get response command"); const char* command_str = static_cast<const char*> (command); if (strncmp (command_str, kSTAT, stat_len)) return Error ("Got invalid stat command: %s", command_str); mode = extractor.GetU32 (&offset); size = extractor.GetU32 (&offset); mtime = extractor.GetU32 (&offset); return Error (); }
lldb::offset_t ObjectContainerBSDArchive::Object::Extract (const DataExtractor& data, lldb::offset_t offset) { size_t ar_name_len = 0; std::string str; char *err; str.assign ((const char *)data.GetData(&offset, 16), 16); if (str.find("#1/") == 0) { // If the name is longer than 16 bytes, or contains an embedded space // then it will use this format where the length of the name is // here and the name characters are after this header. ar_name_len = strtoul(str.c_str() + 3, &err, 10); } else { // Strip off any spaces (if the object file name contains spaces it // will use the extended format above). str.erase (str.find(' ')); ar_name.SetCString(str.c_str()); } str.assign ((const char *)data.GetData(&offset, 12), 12); ar_date = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 6), 6); ar_uid = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 6), 6); ar_gid = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 8), 8); ar_mode = strtoul(str.c_str(), &err, 8); str.assign ((const char *)data.GetData(&offset, 10), 10); ar_size = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 2), 2); if (str == ARFMAG) { if (ar_name_len > 0) { str.assign ((const char *)data.GetData(&offset, ar_name_len), ar_name_len); ar_name.SetCString (str.c_str()); } ar_file_offset = offset; ar_file_size = ar_size - ar_name_len; return offset; } return LLDB_INVALID_OFFSET; }
static bool SkinnyMachOFileContainsArchAndUUID ( const FileSpec &file_spec, const ArchSpec *arch, const lldb_private::UUID *uuid, // the UUID we are looking for off_t file_offset, DataExtractor& data, uint32_t data_offset, const uint32_t magic ) { assert(magic == HeaderMagic32 || magic == HeaderMagic32Swapped || magic == HeaderMagic64 || magic == HeaderMagic64Swapped); if (magic == HeaderMagic32 || magic == HeaderMagic64) data.SetByteOrder (lldb::endian::InlHostByteOrder()); else if (lldb::endian::InlHostByteOrder() == eByteOrderBig) data.SetByteOrder (eByteOrderLittle); else data.SetByteOrder (eByteOrderBig); uint32_t i; const uint32_t cputype = data.GetU32(&data_offset); // cpu specifier const uint32_t cpusubtype = data.GetU32(&data_offset); // machine specifier data_offset+=4; // Skip mach file type const uint32_t ncmds = data.GetU32(&data_offset); // number of load commands const uint32_t sizeofcmds = data.GetU32(&data_offset); // the size of all the load commands data_offset+=4; // Skip flags // Check the architecture if we have a valid arch pointer if (arch) { ArchSpec file_arch(eArchTypeMachO, cputype, cpusubtype); if (file_arch != *arch) return false; } // The file exists, and if a valid arch pointer was passed in we know // if already matches, so we can return if we aren't looking for a specific // UUID if (uuid == NULL) return true; if (magic == HeaderMagic64Swapped || magic == HeaderMagic64) data_offset += 4; // Skip reserved field for in mach_header_64 // Make sure we have enough data for all the load commands if (magic == HeaderMagic64Swapped || magic == HeaderMagic64) { if (data.GetByteSize() < sizeof(struct mach_header_64) + sizeofcmds) { DataBufferSP data_buffer_sp (file_spec.ReadFileContents (file_offset, sizeof(struct mach_header_64) + sizeofcmds)); data.SetData (data_buffer_sp); } } else { if (data.GetByteSize() < sizeof(struct mach_header) + sizeofcmds) { DataBufferSP data_buffer_sp (file_spec.ReadFileContents (file_offset, sizeof(struct mach_header) + sizeofcmds)); data.SetData (data_buffer_sp); } } for (i=0; i<ncmds; i++) { const uint32_t cmd_offset = data_offset; // Save this data_offset in case parsing of the segment goes awry! uint32_t cmd = data.GetU32(&data_offset); uint32_t cmd_size = data.GetU32(&data_offset); if (cmd == LoadCommandUUID) { lldb_private::UUID file_uuid (data.GetData(&data_offset, 16), 16); if (file_uuid == *uuid) return true; // Emit some warning messages since the UUIDs do not match! char path_buf[PATH_MAX]; path_buf[0] = '\0'; const char *path = file_spec.GetPath(path_buf, PATH_MAX) ? path_buf : file_spec.GetFilename().AsCString(); Host::SystemLog (Host::eSystemLogWarning, "warning: UUID mismatch detected between binary and:\n\t'%s'\n", path); return false; } data_offset = cmd_offset + cmd_size; } return false; }
void CommunicationKDP::DumpPacket(Stream &s, const DataExtractor &packet) { const char *error_desc = NULL; if (packet.GetByteSize() < 8) { error_desc = "error: invalid packet (too short): "; } else { lldb::offset_t offset = 0; const uint8_t first_packet_byte = packet.GetU8(&offset); const uint8_t sequence_id = packet.GetU8(&offset); const uint16_t length = packet.GetU16(&offset); const uint32_t key = packet.GetU32(&offset); const CommandType command = ExtractCommand(first_packet_byte); const char *command_name = GetCommandAsCString(command); if (command_name) { const bool is_reply = ExtractIsReply(first_packet_byte); s.Printf("(running=%i) %s %24s: 0x%2.2x 0x%2.2x 0x%4.4x 0x%8.8x ", IsRunning(), is_reply ? "<--" : "-->", command_name, first_packet_byte, sequence_id, length, key); if (is_reply) { // Dump request reply packets switch (command) { // Commands that return a single 32 bit error case KDP_CONNECT: case KDP_WRITEMEM: case KDP_WRITEMEM64: case KDP_BREAKPOINT_SET: case KDP_BREAKPOINT_REMOVE: case KDP_BREAKPOINT_SET64: case KDP_BREAKPOINT_REMOVE64: case KDP_WRITEREGS: case KDP_LOAD: case KDP_WRITEIOPORT: case KDP_WRITEMSR64: { const uint32_t error = packet.GetU32(&offset); s.Printf(" (error=0x%8.8x)", error); } break; case KDP_DISCONNECT: case KDP_REATTACH: case KDP_HOSTREBOOT: case KDP_SUSPEND: case KDP_RESUMECPUS: case KDP_EXCEPTION: case KDP_TERMINATION: // No return value for the reply, just the header to ack s.PutCString(" ()"); break; case KDP_HOSTINFO: { const uint32_t cpu_mask = packet.GetU32(&offset); const uint32_t cpu_type = packet.GetU32(&offset); const uint32_t cpu_subtype = packet.GetU32(&offset); s.Printf(" (cpu_mask=0x%8.8x, cpu_type=0x%8.8x, cpu_subtype=0x%8.8x)", cpu_mask, cpu_type, cpu_subtype); } break; case KDP_VERSION: { const uint32_t version = packet.GetU32(&offset); const uint32_t feature = packet.GetU32(&offset); s.Printf(" (version=0x%8.8x, feature=0x%8.8x)", version, feature); } break; case KDP_REGIONS: { const uint32_t region_count = packet.GetU32(&offset); s.Printf(" (count = %u", region_count); for (uint32_t i = 0; i < region_count; ++i) { const addr_t region_addr = packet.GetPointer(&offset); const uint32_t region_size = packet.GetU32(&offset); const uint32_t region_prot = packet.GetU32(&offset); s.Printf("\n\tregion[%" PRIu64 "] = { range = [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 "), size = 0x%8.8x, prot = %s }", region_addr, region_addr, region_addr + region_size, region_size, GetPermissionsAsCString(region_prot)); } } break; case KDP_READMEM: case KDP_READMEM64: case KDP_READPHYSMEM64: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatBytesWithASCII, // Format to use 1, // Size of each item // in bytes count, // Number of items 16, // Number per line m_last_read_memory_addr, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_READREGS: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x regs:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use m_addr_byte_size, // Size of each item // in bytes count / m_addr_byte_size, // Number of items 16 / m_addr_byte_size, // Number per line LLDB_INVALID_ADDRESS, // Don't // show addresses before // each line 0, 0); // No bitfields } break; case KDP_KERNELVERSION: { const char *kernel_version = packet.PeekCStr(8); s.Printf(" (version = \"%s\")", kernel_version); } break; case KDP_MAXBYTES: { const uint32_t max_bytes = packet.GetU32(&offset); s.Printf(" (max_bytes = 0x%8.8x (%u))", max_bytes, max_bytes); } break; case KDP_IMAGEPATH: { const char *path = packet.GetCStr(&offset); s.Printf(" (path = \"%s\")", path); } break; case KDP_READIOPORT: case KDP_READMSR64: { const uint32_t error = packet.GetU32(&offset); const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (error = 0x%8.8x io:\n", error); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_DUMPINFO: { const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (count = %u, bytes = \n", count); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; default: s.Printf(" (add support for dumping this packet reply!!!"); break; } } else { // Dump request packets switch (command) { case KDP_CONNECT: { const uint16_t reply_port = ntohs(packet.GetU16(&offset)); const uint16_t exc_port = ntohs(packet.GetU16(&offset)); s.Printf(" (reply_port = %u, exc_port = %u, greeting = \"%s\")", reply_port, exc_port, packet.GetCStr(&offset)); } break; case KDP_DISCONNECT: case KDP_HOSTREBOOT: case KDP_HOSTINFO: case KDP_VERSION: case KDP_REGIONS: case KDP_KERNELVERSION: case KDP_MAXBYTES: case KDP_IMAGEPATH: case KDP_SUSPEND: // No args, just the header in the request... s.PutCString(" ()"); break; case KDP_RESUMECPUS: { const uint32_t cpu_mask = packet.GetU32(&offset); s.Printf(" (cpu_mask = 0x%8.8x)", cpu_mask); } break; case KDP_READMEM: { const uint32_t addr = packet.GetU32(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x, size = %u)", addr, size); m_last_read_memory_addr = addr; } break; case KDP_WRITEMEM: { const uint32_t addr = packet.GetU32(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x, size = %u, bytes = \n", addr, size); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_READMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u)", addr, size); m_last_read_memory_addr = addr; } break; case KDP_READPHYSMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); const uint32_t lcpu = packet.GetU16(&offset); s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u)", addr, size, lcpu); m_last_read_memory_addr = addr; } break; case KDP_WRITEMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u, bytes = \n", addr, size); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_WRITEPHYSMEM64: { const uint64_t addr = packet.GetU64(&offset); const uint32_t size = packet.GetU32(&offset); const uint32_t lcpu = packet.GetU16(&offset); s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u, bytes = \n", addr, size, lcpu); if (size > 0) DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr); } break; case KDP_READREGS: { const uint32_t cpu = packet.GetU32(&offset); const uint32_t flavor = packet.GetU32(&offset); s.Printf(" (cpu = %u, flavor = %u)", cpu, flavor); } break; case KDP_WRITEREGS: { const uint32_t cpu = packet.GetU32(&offset); const uint32_t flavor = packet.GetU32(&offset); const uint32_t nbytes = packet.GetByteSize() - offset; s.Printf(" (cpu = %u, flavor = %u, regs = \n", cpu, flavor); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within // "packet" eFormatHex, // Format to use m_addr_byte_size, // Size of each item in // bytes nbytes / m_addr_byte_size, // Number of items 16 / m_addr_byte_size, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_BREAKPOINT_SET: case KDP_BREAKPOINT_REMOVE: { const uint32_t addr = packet.GetU32(&offset); s.Printf(" (addr = 0x%8.8x)", addr); } break; case KDP_BREAKPOINT_SET64: case KDP_BREAKPOINT_REMOVE64: { const uint64_t addr = packet.GetU64(&offset); s.Printf(" (addr = 0x%16.16" PRIx64 ")", addr); } break; case KDP_LOAD: { const char *path = packet.GetCStr(&offset); s.Printf(" (path = \"%s\")", path); } break; case KDP_EXCEPTION: { const uint32_t count = packet.GetU32(&offset); for (uint32_t i = 0; i < count; ++i) { const uint32_t cpu = packet.GetU32(&offset); const uint32_t exc = packet.GetU32(&offset); const uint32_t code = packet.GetU32(&offset); const uint32_t subcode = packet.GetU32(&offset); const char *exc_cstr = NULL; switch (exc) { case 1: exc_cstr = "EXC_BAD_ACCESS"; break; case 2: exc_cstr = "EXC_BAD_INSTRUCTION"; break; case 3: exc_cstr = "EXC_ARITHMETIC"; break; case 4: exc_cstr = "EXC_EMULATION"; break; case 5: exc_cstr = "EXC_SOFTWARE"; break; case 6: exc_cstr = "EXC_BREAKPOINT"; break; case 7: exc_cstr = "EXC_SYSCALL"; break; case 8: exc_cstr = "EXC_MACH_SYSCALL"; break; case 9: exc_cstr = "EXC_RPC_ALERT"; break; case 10: exc_cstr = "EXC_CRASH"; break; default: break; } s.Printf("{ cpu = 0x%8.8x, exc = %s (%u), code = %u (0x%8.8x), " "subcode = %u (0x%8.8x)} ", cpu, exc_cstr, exc, code, code, subcode, subcode); } } break; case KDP_TERMINATION: { const uint32_t term_code = packet.GetU32(&offset); const uint32_t exit_code = packet.GetU32(&offset); s.Printf(" (term_code = 0x%8.8x (%u), exit_code = 0x%8.8x (%u))", term_code, term_code, exit_code, exit_code); } break; case KDP_REATTACH: { const uint16_t reply_port = ntohs(packet.GetU16(&offset)); s.Printf(" (reply_port = %u)", reply_port); } break; case KDP_READMSR64: { const uint32_t address = packet.GetU32(&offset); const uint16_t lcpu = packet.GetU16(&offset); s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x)", address, lcpu); } break; case KDP_WRITEMSR64: { const uint32_t address = packet.GetU32(&offset); const uint16_t lcpu = packet.GetU16(&offset); const uint32_t nbytes = packet.GetByteSize() - offset; s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x, nbytes=0x%8.8x)", lcpu, address, nbytes); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes nbytes, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_READIOPORT: { const uint16_t lcpu = packet.GetU16(&offset); const uint16_t address = packet.GetU16(&offset); const uint16_t nbytes = packet.GetU16(&offset); s.Printf(" (lcpu=0x%4.4x, address=0x%4.4x, nbytes=%u)", lcpu, address, nbytes); } break; case KDP_WRITEIOPORT: { const uint16_t lcpu = packet.GetU16(&offset); const uint16_t address = packet.GetU16(&offset); const uint16_t nbytes = packet.GetU16(&offset); s.Printf(" (lcpu = %u, addr = 0x%4.4x, nbytes = %u, bytes = \n", lcpu, address, nbytes); if (nbytes > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in // bytes nbytes, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses // before each line 0, 0); // No bitfields } break; case KDP_DUMPINFO: { const uint32_t count = packet.GetByteSize() - offset; s.Printf(" (count = %u, bytes = \n", count); if (count > 0) DumpDataExtractor(packet, &s, // Stream to dump to offset, // Offset within "packet" eFormatHex, // Format to use 1, // Size of each item in bytes count, // Number of items 16, // Number per line LLDB_INVALID_ADDRESS, // Don't show addresses before each line 0, 0); // No bitfields } break; } } } else { error_desc = "error: invalid packet command: "; } } if (error_desc) { s.PutCString(error_desc); DumpDataExtractor(packet, &s, // Stream to dump to 0, // Offset into "packet" eFormatBytes, // Dump as hex bytes 1, // Size of each item is 1 for // single bytes packet.GetByteSize(), // Number of bytes UINT32_MAX, // Num bytes per line LLDB_INVALID_ADDRESS, // Base address 0, 0); // Bitfield info set to not do // anything bitfield related } }
lldb::offset_t ObjectContainerBSDArchive::Object::Extract (const DataExtractor& data, lldb::offset_t offset) { size_t ar_name_len = 0; std::string str; char *err; // File header // // The common format is as follows. // // Offset Length Name Format // 0 16 File name ASCII right padded with spaces (no spaces allowed in file name) // 16 12 File mod Decimal as cstring right padded with spaces // 28 6 Owner ID Decimal as cstring right padded with spaces // 34 6 Group ID Decimal as cstring right padded with spaces // 40 8 File mode Octal as cstring right padded with spaces // 48 10 File byte size Decimal as cstring right padded with spaces // 58 2 File magic 0x60 0x0A // Make sure there is enough data for the file header and bail if not if (!data.ValidOffsetForDataOfSize(offset, 60)) return LLDB_INVALID_OFFSET; str.assign ((const char *)data.GetData(&offset, 16), 16); if (str.find("#1/") == 0) { // If the name is longer than 16 bytes, or contains an embedded space // then it will use this format where the length of the name is // here and the name characters are after this header. ar_name_len = strtoul(str.c_str() + 3, &err, 10); } else { // Strip off any trailing spaces. const size_t last_pos = str.find_last_not_of(' '); if (last_pos != std::string::npos) { if (last_pos + 1 < 16) str.erase (last_pos + 1); } ar_name.SetCString(str.c_str()); } str.assign ((const char *)data.GetData(&offset, 12), 12); ar_date = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 6), 6); ar_uid = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 6), 6); ar_gid = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 8), 8); ar_mode = strtoul(str.c_str(), &err, 8); str.assign ((const char *)data.GetData(&offset, 10), 10); ar_size = strtoul(str.c_str(), &err, 10); str.assign ((const char *)data.GetData(&offset, 2), 2); if (str == ARFMAG) { if (ar_name_len > 0) { const void *ar_name_ptr = data.GetData(&offset, ar_name_len); // Make sure there was enough data for the string value and bail if not if (ar_name_ptr == NULL) return LLDB_INVALID_OFFSET; str.assign ((const char *)ar_name_ptr, ar_name_len); ar_name.SetCString (str.c_str()); } ar_file_offset = offset; ar_file_size = ar_size - ar_name_len; return offset; } return LLDB_INVALID_OFFSET; }
static bool SkinnyMachOFileContainsArchAndUUID ( const FileSpec &file_spec, const ArchSpec *arch, const lldb_private::UUID *uuid, // the UUID we are looking for off_t file_offset, DataExtractor& data, lldb::offset_t data_offset, const uint32_t magic ) { assert(magic == HeaderMagic32 || magic == HeaderMagic32Swapped || magic == HeaderMagic64 || magic == HeaderMagic64Swapped); if (magic == HeaderMagic32 || magic == HeaderMagic64) data.SetByteOrder (lldb::endian::InlHostByteOrder()); else if (lldb::endian::InlHostByteOrder() == eByteOrderBig) data.SetByteOrder (eByteOrderLittle); else data.SetByteOrder (eByteOrderBig); uint32_t i; const uint32_t cputype = data.GetU32(&data_offset); // cpu specifier const uint32_t cpusubtype = data.GetU32(&data_offset); // machine specifier data_offset+=4; // Skip mach file type const uint32_t ncmds = data.GetU32(&data_offset); // number of load commands const uint32_t sizeofcmds = data.GetU32(&data_offset); // the size of all the load commands data_offset+=4; // Skip flags // Check the architecture if we have a valid arch pointer if (arch) { ArchSpec file_arch(eArchTypeMachO, cputype, cpusubtype); if (!file_arch.IsCompatibleMatch(*arch)) return false; } // The file exists, and if a valid arch pointer was passed in we know // if already matches, so we can return if we aren't looking for a specific // UUID if (uuid == NULL) return true; if (magic == HeaderMagic64Swapped || magic == HeaderMagic64) data_offset += 4; // Skip reserved field for in mach_header_64 // Make sure we have enough data for all the load commands if (magic == HeaderMagic64Swapped || magic == HeaderMagic64) { if (data.GetByteSize() < sizeof(struct mach_header_64) + sizeofcmds) { DataBufferSP data_buffer_sp (file_spec.ReadFileContents (file_offset, sizeof(struct mach_header_64) + sizeofcmds)); data.SetData (data_buffer_sp); } } else { if (data.GetByteSize() < sizeof(struct mach_header) + sizeofcmds) { DataBufferSP data_buffer_sp (file_spec.ReadFileContents (file_offset, sizeof(struct mach_header) + sizeofcmds)); data.SetData (data_buffer_sp); } } for (i=0; i<ncmds; i++) { const lldb::offset_t cmd_offset = data_offset; // Save this data_offset in case parsing of the segment goes awry! uint32_t cmd = data.GetU32(&data_offset); uint32_t cmd_size = data.GetU32(&data_offset); if (cmd == LoadCommandUUID) { lldb_private::UUID file_uuid (data.GetData(&data_offset, 16), 16); if (file_uuid == *uuid) return true; return false; } data_offset = cmd_offset + cmd_size; } return false; }
// Parse the load commands for an image uint32_t DynamicLoaderMacOSXDYLD::ParseLoadCommands(const DataExtractor &data, ImageInfo &dylib_info, FileSpec *lc_id_dylinker) { lldb::offset_t offset = 0; uint32_t cmd_idx; Segment segment; dylib_info.Clear(true); for (cmd_idx = 0; cmd_idx < dylib_info.header.ncmds; cmd_idx++) { // Clear out any load command specific data from DYLIB_INFO since we are // about to read it. if (data.ValidOffsetForDataOfSize(offset, sizeof(llvm::MachO::load_command))) { llvm::MachO::load_command load_cmd; lldb::offset_t load_cmd_offset = offset; load_cmd.cmd = data.GetU32(&offset); load_cmd.cmdsize = data.GetU32(&offset); switch (load_cmd.cmd) { case llvm::MachO::LC_SEGMENT: { segment.name.SetTrimmedCStringWithLength( (const char *)data.GetData(&offset, 16), 16); // We are putting 4 uint32_t values 4 uint64_t values so we have to use // multiple 32 bit gets below. segment.vmaddr = data.GetU32(&offset); segment.vmsize = data.GetU32(&offset); segment.fileoff = data.GetU32(&offset); segment.filesize = data.GetU32(&offset); // Extract maxprot, initprot, nsects and flags all at once data.GetU32(&offset, &segment.maxprot, 4); dylib_info.segments.push_back(segment); } break; case llvm::MachO::LC_SEGMENT_64: { segment.name.SetTrimmedCStringWithLength( (const char *)data.GetData(&offset, 16), 16); // Extract vmaddr, vmsize, fileoff, and filesize all at once data.GetU64(&offset, &segment.vmaddr, 4); // Extract maxprot, initprot, nsects and flags all at once data.GetU32(&offset, &segment.maxprot, 4); dylib_info.segments.push_back(segment); } break; case llvm::MachO::LC_ID_DYLINKER: if (lc_id_dylinker) { const lldb::offset_t name_offset = load_cmd_offset + data.GetU32(&offset); const char *path = data.PeekCStr(name_offset); lc_id_dylinker->SetFile(path, FileSpec::Style::native); FileSystem::Instance().Resolve(*lc_id_dylinker); } break; case llvm::MachO::LC_UUID: dylib_info.uuid = UUID::fromOptionalData(data.GetData(&offset, 16), 16); break; default: break; } // Set offset to be the beginning of the next load command. offset = load_cmd_offset + load_cmd.cmdsize; } } // All sections listed in the dyld image info structure will all either be // fixed up already, or they will all be off by a single slide amount that is // determined by finding the first segment that is at file offset zero which // also has bytes (a file size that is greater than zero) in the object file. // Determine the slide amount (if any) const size_t num_sections = dylib_info.segments.size(); for (size_t i = 0; i < num_sections; ++i) { // Iterate through the object file sections to find the first section that // starts of file offset zero and that has bytes in the file... if ((dylib_info.segments[i].fileoff == 0 && dylib_info.segments[i].filesize > 0) || (dylib_info.segments[i].name == "__TEXT")) { dylib_info.slide = dylib_info.address - dylib_info.segments[i].vmaddr; // We have found the slide amount, so we can exit this for loop. break; } } return cmd_idx; }
lldb::offset_t lldb_private::DumpDataExtractor( const DataExtractor &DE, Stream *s, offset_t start_offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if // non-zero, the value is a bitfield uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the // shift amount to apply to a bitfield ExecutionContextScope *exe_scope) { if (s == nullptr) return start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } offset_t offset = start_offset; if (item_format == eFormatInstruction) { TargetSP target_sp; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { DisassemblerSP disassembler_sp(Disassembler::FindPlugin( target_sp->GetArchitecture(), target_sp->GetDisassemblyFlavor(), nullptr)); if (disassembler_sp) { lldb::addr_t addr = base_addr + start_offset; lldb_private::Address so_addr; bool data_from_file = true; if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { data_from_file = false; } else { if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) so_addr.SetRawAddress(addr); } size_t bytes_consumed = disassembler_sp->DecodeInstructions( so_addr, DE, start_offset, item_count, false, data_from_file); if (bytes_consumed) { offset += bytes_consumed; const bool show_address = base_addr != LLDB_INVALID_ADDRESS; const bool show_bytes = true; ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); disassembler_sp->GetInstructionList().Dump(s, show_address, show_bytes, &exe_ctx); } } } else s->Printf("invalid target"); return offset; } if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8) item_format = eFormatHex; lldb::offset_t line_start_offset = start_offset; for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset) / DE.getTargetByteSize())); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && item_format != eFormatCharArray && count > 0) { s->PutChar(' '); } switch (item_format) { case eFormatBoolean: if (item_byte_size <= 8) s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); else { s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size); return offset; } break; case eFormatBinary: if (item_byte_size <= 8) { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (uint32_t i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } else { const bool is_signed = false; const unsigned radix = 2; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatBytes: case eFormatBytesWithASCII: for (uint32_t i = 0; i < item_byte_size; ++i) { s->Printf("%2.2x", DE.GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); if (isprint(ch)) s->Printf("%c", (char)ch); else if (item_format != eFormatCharPrintable) { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: if (item_byte_size == 1) s->Printf("\\x%2.2x", (uint8_t)ch); else s->Printf("%" PRIu64, ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get // the enum type case eFormatDecimal: if (item_byte_size <= 8) s->Printf("%" PRId64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = true; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOctal: if (item_byte_size <= 8) s->Printf("0%" PRIo64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 8; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOSType: { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (uint32_t i = 0; i < item_byte_size; ++i) { uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); if (isprint(ch)) s->Printf("%c", ch); else { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: s->Printf("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatCString: { const char *cstr = DE.GetCStr(&offset); if (!cstr) { s->Printf("NULL"); offset = LLDB_INVALID_OFFSET; } else { s->PutChar('\"'); while (const char c = *cstr) { if (isprint(c)) { s->PutChar(c); } else { switch (c) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; default: s->Printf("\\x%2.2x", c); break; } } ++cstr; } s->PutChar('\"'); } } break; case eFormatPointer: s->Address(DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof(addr_t)); break; case eFormatComplexInteger: { size_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %" PRIu64 "i", DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size); return offset; } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = DE.GetFloat(&offset); float f32_2 = DE.GetFloat(&offset); s->Printf("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = DE.GetDouble(&offset); double d64_2 = DE.GetDouble(&offset); s->Printf("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = DE.GetLongDouble(&offset); long double ld64_2 = DE.GetLongDouble(&offset); s->Printf("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size); return offset; } break; default: case eFormatDefault: case eFormatHex: case eFormatHexUppercase: { bool wantsuppercase = (item_format == eFormatHexUppercase); switch (item_byte_size) { case 1: case 2: case 4: case 8: s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; default: { assert(item_bit_size == 0 && item_bit_offset == 0); const uint8_t *bytes = (const uint8_t *)DE.GetData(&offset, item_byte_size); if (bytes) { s->PutCString("0x"); uint32_t idx; if (DE.GetByteOrder() == eByteOrderBig) { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); } else { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]); } } } break; } } break; case eFormatFloat: { TargetSP target_sp; bool used_apfloat = false; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); if (clang_ast) { clang::ASTContext *ast = clang_ast->getASTContext(); if (ast) { llvm::SmallVector<char, 256> sv; // Show full precision when printing float values const unsigned format_precision = 0; const unsigned format_max_padding = 100; size_t item_bit_size = item_byte_size * 8; if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { llvm::APInt apint(item_bit_size, DE.GetMaxU64(&offset, item_byte_size)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { llvm::APInt apint; if (GetAPInt(DE, &offset, item_byte_size, apint)) { llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { const auto &semantics = ast->getFloatTypeSemantics(ast->LongDoubleTy); const auto byte_size = (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; llvm::APInt apint; if (GetAPInt(DE, &offset, byte_size, apint)) { llvm::APFloat apfloat(semantics, apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { llvm::APInt apint(item_bit_size, DE.GetU16(&offset)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } if (!sv.empty()) { s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); used_apfloat = true; } } } } if (!used_apfloat) { std::ostringstream ss; if (item_byte_size == sizeof(float) || item_byte_size == 2) { float f; if (item_byte_size == 2) { uint16_t half = DE.GetU16(&offset); f = half2float(half); } else { f = DE.GetFloat(&offset); } ss.precision(std::numeric_limits<float>::digits10); ss << f; } else if (item_byte_size == sizeof(double)) { ss.precision(std::numeric_limits<double>::digits10); ss << DE.GetDouble(&offset); } else if (item_byte_size == sizeof(long double) || item_byte_size == 10) { ss.precision(std::numeric_limits<long double>::digits10); ss << DE.GetLongDouble(&offset); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size); return offset; } ss.flush(); s->Printf("%s", ss.str().c_str()); } } break; case eFormatUnicode16: s->Printf("U+%4.4x", DE.GetU16(&offset)); break; case eFormatUnicode32: s->Printf("U+0x%8.8x", DE.GetU32(&offset)); break; case eFormatAddressInfo: { addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr); if (exe_scope) { TargetSP target_sp(exe_scope->CalculateTarget()); lldb_private::Address so_addr; if (target_sp) { if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { s->PutChar(' '); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleModuleWithFileAddress); } else { so_addr.SetOffset(addr); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedPointerDescription); } } } } break; case eFormatHexFloat: if (sizeof(float) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetFloat(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else if (sizeof(double) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetDouble(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size); return offset; } break; // please keep the single-item formats below in sync with // FormatManager::GetSingleItemFormat // if you fail to do so, users will start getting different outputs // depending on internal // implementation details they should not care about || case eFormatVectorOfChar: // || s->PutChar('{'); // \/ offset = DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2, item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up }
uint32_t DynamicLoaderDarwinKernel::ReadKextSummaries (const Address &kext_summary_addr, uint32_t image_infos_count, OSKextLoadedKextSummary::collection &image_infos) { const ByteOrder endian = m_kernel.GetByteOrder(); const uint32_t addr_size = m_kernel.GetAddressByteSize(); image_infos.resize(image_infos_count); const size_t count = image_infos.size() * m_kext_summary_header.entry_size; DataBufferHeap data(count, 0); Error error; Stream *s = &m_process->GetTarget().GetDebugger().GetOutputStream(); if (s) s->Printf ("Reading %u kext summaries...\n", image_infos_count); const bool prefer_file_cache = false; const size_t bytes_read = m_process->GetTarget().ReadMemory (kext_summary_addr, prefer_file_cache, data.GetBytes(), data.GetByteSize(), error); if (bytes_read == count) { DataExtractor extractor (data.GetBytes(), data.GetByteSize(), endian, addr_size); uint32_t i=0; for (uint32_t kext_summary_offset = 0; i < image_infos.size() && extractor.ValidOffsetForDataOfSize(kext_summary_offset, m_kext_summary_header.entry_size); ++i, kext_summary_offset += m_kext_summary_header.entry_size) { uint32_t offset = kext_summary_offset; const void *name_data = extractor.GetData(&offset, KERNEL_MODULE_MAX_NAME); if (name_data == NULL) break; memcpy (image_infos[i].name, name_data, KERNEL_MODULE_MAX_NAME); image_infos[i].uuid.SetBytes(extractor.GetData (&offset, 16)); image_infos[i].address = extractor.GetU64(&offset); if (!image_infos[i].so_address.SetLoadAddress (image_infos[i].address, &m_process->GetTarget())) m_process->GetTarget().GetImages().ResolveFileAddress (image_infos[i].address, image_infos[i].so_address); image_infos[i].size = extractor.GetU64(&offset); image_infos[i].version = extractor.GetU64(&offset); image_infos[i].load_tag = extractor.GetU32(&offset); image_infos[i].flags = extractor.GetU32(&offset); if ((offset - kext_summary_offset) < m_kext_summary_header.entry_size) { image_infos[i].reference_list = extractor.GetU64(&offset); } else { image_infos[i].reference_list = 0; } // printf ("[%3u] %*.*s: address=0x%16.16llx, size=0x%16.16llx, version=0x%16.16llx, load_tag=0x%8.8x, flags=0x%8.8x\n", // i, // KERNEL_MODULE_MAX_NAME, KERNEL_MODULE_MAX_NAME, (char *)name_data, // image_infos[i].address, // image_infos[i].size, // image_infos[i].version, // image_infos[i].load_tag, // image_infos[i].flags); } if (i < image_infos.size()) image_infos.resize(i); } else { image_infos.clear(); } return image_infos.size(); }