ValueObjectSP ABISysV_ppc64::GetReturnValueObjectSimple( Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; Value value; if (!return_compiler_type) return return_valobj_sp; // value.SetContext (Value::eContextTypeClangType, return_value_type); value.SetCompilerType(return_compiler_type); RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return return_valobj_sp; const uint32_t type_flags = return_compiler_type.GetTypeInfo(); if (type_flags & eTypeIsScalar) { value.SetValueType(Value::eValueTypeScalar); bool success = false; if (type_flags & eTypeIsInteger) { // Extract the register context so we can read arguments from registers const size_t byte_size = return_compiler_type.GetByteSize(nullptr); uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( reg_ctx->GetRegisterInfoByName("r3", 0), 0); const bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (byte_size) { default: break; case sizeof(uint64_t): if (is_signed) value.GetScalar() = (int64_t)(raw_value); else value.GetScalar() = (uint64_t)(raw_value); success = true; break; case sizeof(uint32_t): if (is_signed) value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); success = true; break; case sizeof(uint16_t): if (is_signed) value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); success = true; break; case sizeof(uint8_t): if (is_signed) value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); success = true; break; } } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { // Don't handle complex yet. } else { const size_t byte_size = return_compiler_type.GetByteSize(nullptr); if (byte_size <= sizeof(long double)) { const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0); RegisterValue f1_value; if (reg_ctx->ReadRegister(f1_info, f1_value)) { DataExtractor data; if (f1_value.GetData(data)) { lldb::offset_t offset = 0; if (byte_size == sizeof(float)) { value.GetScalar() = (float)data.GetFloat(&offset); success = true; } else if (byte_size == sizeof(double)) { value.GetScalar() = (double)data.GetDouble(&offset); success = true; } } } } } } if (success) return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsPointer) { unsigned r3_id = reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB]; value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0); value.SetValueType(Value::eValueTypeScalar); return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsVector) { const size_t byte_size = return_compiler_type.GetByteSize(nullptr); if (byte_size > 0) { const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0); if (altivec_reg) { if (byte_size <= altivec_reg->byte_size) { ProcessSP process_sp(thread.GetProcess()); if (process_sp) { std::unique_ptr<DataBufferHeap> heap_data_ap( new DataBufferHeap(byte_size, 0)); const ByteOrder byte_order = process_sp->GetByteOrder(); RegisterValue reg_value; if (reg_ctx->ReadRegister(altivec_reg, reg_value)) { Status error; if (reg_value.GetAsMemoryData( altivec_reg, heap_data_ap->GetBytes(), heap_data_ap->GetByteSize(), byte_order, error)) { DataExtractor data(DataBufferSP(heap_data_ap.release()), byte_order, process_sp->GetTarget() .GetArchitecture() .GetAddressByteSize()); return_valobj_sp = ValueObjectConstResult::Create( &thread, return_compiler_type, ConstString(""), data); } } } } } } } return return_valobj_sp; }
ValueObjectSP ABISysV_s390x::GetReturnValueObjectSimple( Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; Value value; if (!return_compiler_type) return return_valobj_sp; // value.SetContext (Value::eContextTypeClangType, return_value_type); value.SetCompilerType(return_compiler_type); RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return return_valobj_sp; const uint32_t type_flags = return_compiler_type.GetTypeInfo(); if (type_flags & eTypeIsScalar) { value.SetValueType(Value::eValueTypeScalar); bool success = false; if (type_flags & eTypeIsInteger) { // Extract the register context so we can read arguments from registers. llvm::Optional<uint64_t> byte_size = return_compiler_type.GetByteSize(nullptr); if (!byte_size) return return_valobj_sp; uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( reg_ctx->GetRegisterInfoByName("r2", 0), 0); const bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (*byte_size) { default: break; case sizeof(uint64_t): if (is_signed) value.GetScalar() = (int64_t)(raw_value); else value.GetScalar() = (uint64_t)(raw_value); success = true; break; case sizeof(uint32_t): if (is_signed) value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); success = true; break; case sizeof(uint16_t): if (is_signed) value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); success = true; break; case sizeof(uint8_t): if (is_signed) value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); success = true; break; } } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { // Don't handle complex yet. } else { llvm::Optional<uint64_t> byte_size = return_compiler_type.GetByteSize(nullptr); if (byte_size && *byte_size <= sizeof(long double)) { const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0); RegisterValue f0_value; if (reg_ctx->ReadRegister(f0_info, f0_value)) { DataExtractor data; if (f0_value.GetData(data)) { lldb::offset_t offset = 0; if (*byte_size == sizeof(float)) { value.GetScalar() = (float)data.GetFloat(&offset); success = true; } else if (*byte_size == sizeof(double)) { value.GetScalar() = (double)data.GetDouble(&offset); success = true; } else if (*byte_size == sizeof(long double)) { // Don't handle long double yet. } } } } } } if (success) return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsPointer) { unsigned r2_id = reg_ctx->GetRegisterInfoByName("r2", 0)->kinds[eRegisterKindLLDB]; value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r2_id, 0); value.SetValueType(Value::eValueTypeScalar); return_valobj_sp = ValueObjectConstResult::Create( thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } return return_valobj_sp; }
lldb::offset_t lldb_private::DumpDataExtractor( const DataExtractor &DE, Stream *s, offset_t start_offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if // non-zero, the value is a bitfield uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the // shift amount to apply to a bitfield ExecutionContextScope *exe_scope) { if (s == nullptr) return start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } offset_t offset = start_offset; if (item_format == eFormatInstruction) { TargetSP target_sp; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { DisassemblerSP disassembler_sp(Disassembler::FindPlugin( target_sp->GetArchitecture(), target_sp->GetDisassemblyFlavor(), nullptr)); if (disassembler_sp) { lldb::addr_t addr = base_addr + start_offset; lldb_private::Address so_addr; bool data_from_file = true; if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { data_from_file = false; } else { if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) so_addr.SetRawAddress(addr); } size_t bytes_consumed = disassembler_sp->DecodeInstructions( so_addr, DE, start_offset, item_count, false, data_from_file); if (bytes_consumed) { offset += bytes_consumed; const bool show_address = base_addr != LLDB_INVALID_ADDRESS; const bool show_bytes = true; ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); disassembler_sp->GetInstructionList().Dump(s, show_address, show_bytes, &exe_ctx); } } } else s->Printf("invalid target"); return offset; } if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8) item_format = eFormatHex; lldb::offset_t line_start_offset = start_offset; for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset) / DE.getTargetByteSize())); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && item_format != eFormatCharArray && count > 0) { s->PutChar(' '); } switch (item_format) { case eFormatBoolean: if (item_byte_size <= 8) s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); else { s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size); return offset; } break; case eFormatBinary: if (item_byte_size <= 8) { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (uint32_t i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } else { const bool is_signed = false; const unsigned radix = 2; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatBytes: case eFormatBytesWithASCII: for (uint32_t i = 0; i < item_byte_size; ++i) { s->Printf("%2.2x", DE.GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); if (isprint(ch)) s->Printf("%c", (char)ch); else if (item_format != eFormatCharPrintable) { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: if (item_byte_size == 1) s->Printf("\\x%2.2x", (uint8_t)ch); else s->Printf("%" PRIu64, ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get // the enum type case eFormatDecimal: if (item_byte_size <= 8) s->Printf("%" PRId64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = true; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOctal: if (item_byte_size <= 8) s->Printf("0%" PRIo64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 8; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOSType: { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (uint32_t i = 0; i < item_byte_size; ++i) { uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); if (isprint(ch)) s->Printf("%c", ch); else { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: s->Printf("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatCString: { const char *cstr = DE.GetCStr(&offset); if (!cstr) { s->Printf("NULL"); offset = LLDB_INVALID_OFFSET; } else { s->PutChar('\"'); while (const char c = *cstr) { if (isprint(c)) { s->PutChar(c); } else { switch (c) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; default: s->Printf("\\x%2.2x", c); break; } } ++cstr; } s->PutChar('\"'); } } break; case eFormatPointer: s->Address(DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof(addr_t)); break; case eFormatComplexInteger: { size_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %" PRIu64 "i", DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size); return offset; } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = DE.GetFloat(&offset); float f32_2 = DE.GetFloat(&offset); s->Printf("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = DE.GetDouble(&offset); double d64_2 = DE.GetDouble(&offset); s->Printf("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = DE.GetLongDouble(&offset); long double ld64_2 = DE.GetLongDouble(&offset); s->Printf("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size); return offset; } break; default: case eFormatDefault: case eFormatHex: case eFormatHexUppercase: { bool wantsuppercase = (item_format == eFormatHexUppercase); switch (item_byte_size) { case 1: case 2: case 4: case 8: s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; default: { assert(item_bit_size == 0 && item_bit_offset == 0); const uint8_t *bytes = (const uint8_t *)DE.GetData(&offset, item_byte_size); if (bytes) { s->PutCString("0x"); uint32_t idx; if (DE.GetByteOrder() == eByteOrderBig) { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); } else { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]); } } } break; } } break; case eFormatFloat: { TargetSP target_sp; bool used_apfloat = false; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); if (clang_ast) { clang::ASTContext *ast = clang_ast->getASTContext(); if (ast) { llvm::SmallVector<char, 256> sv; // Show full precision when printing float values const unsigned format_precision = 0; const unsigned format_max_padding = 100; size_t item_bit_size = item_byte_size * 8; if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { llvm::APInt apint(item_bit_size, DE.GetMaxU64(&offset, item_byte_size)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { llvm::APInt apint; if (GetAPInt(DE, &offset, item_byte_size, apint)) { llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { const auto &semantics = ast->getFloatTypeSemantics(ast->LongDoubleTy); const auto byte_size = (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; llvm::APInt apint; if (GetAPInt(DE, &offset, byte_size, apint)) { llvm::APFloat apfloat(semantics, apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { llvm::APInt apint(item_bit_size, DE.GetU16(&offset)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } if (!sv.empty()) { s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); used_apfloat = true; } } } } if (!used_apfloat) { std::ostringstream ss; if (item_byte_size == sizeof(float) || item_byte_size == 2) { float f; if (item_byte_size == 2) { uint16_t half = DE.GetU16(&offset); f = half2float(half); } else { f = DE.GetFloat(&offset); } ss.precision(std::numeric_limits<float>::digits10); ss << f; } else if (item_byte_size == sizeof(double)) { ss.precision(std::numeric_limits<double>::digits10); ss << DE.GetDouble(&offset); } else if (item_byte_size == sizeof(long double) || item_byte_size == 10) { ss.precision(std::numeric_limits<long double>::digits10); ss << DE.GetLongDouble(&offset); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size); return offset; } ss.flush(); s->Printf("%s", ss.str().c_str()); } } break; case eFormatUnicode16: s->Printf("U+%4.4x", DE.GetU16(&offset)); break; case eFormatUnicode32: s->Printf("U+0x%8.8x", DE.GetU32(&offset)); break; case eFormatAddressInfo: { addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr); if (exe_scope) { TargetSP target_sp(exe_scope->CalculateTarget()); lldb_private::Address so_addr; if (target_sp) { if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { s->PutChar(' '); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleModuleWithFileAddress); } else { so_addr.SetOffset(addr); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedPointerDescription); } } } } break; case eFormatHexFloat: if (sizeof(float) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetFloat(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else if (sizeof(double) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetDouble(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size); return offset; } break; // please keep the single-item formats below in sync with // FormatManager::GetSingleItemFormat // if you fail to do so, users will start getting different outputs // depending on internal // implementation details they should not care about || case eFormatVectorOfChar: // || s->PutChar('{'); // \/ offset = DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2, item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up }
Error RegisterValue::SetValueFromData (const RegisterInfo *reg_info, DataExtractor &src, lldb::offset_t src_offset, bool partial_data_ok) { Error error; if (src.GetByteSize() == 0) { error.SetErrorString ("empty data."); return error; } if (reg_info->byte_size == 0) { error.SetErrorString ("invalid register info."); return error; } uint32_t src_len = src.GetByteSize() - src_offset; if (!partial_data_ok && (src_len < reg_info->byte_size)) { error.SetErrorString ("not enough data."); return error; } // Cap the data length if there is more than enough bytes for this register // value if (src_len > reg_info->byte_size) src_len = reg_info->byte_size; // Zero out the value in case we get partial data... memset (m_data.buffer.bytes, 0, sizeof (m_data.buffer.bytes)); switch (SetType (reg_info)) { case eTypeInvalid: error.SetErrorString(""); break; case eTypeUInt8: SetUInt8 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt16: SetUInt16 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt32: SetUInt32 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt64: SetUInt64 (src.GetMaxU64 (&src_offset, src_len)); break; #if defined (ENABLE_128_BIT_SUPPORT) case eTypeUInt128: { __uint128_t data1 = src.GetU64 (&src_offset); __uint128_t data2 = src.GetU64 (&src_offset); if (src.GetByteSize() == eByteOrderBig) SetUInt128 (data1 << 64 + data2); else SetUInt128 (data2 << 64 + data1); } break; #endif case eTypeFloat: SetFloat (src.GetFloat (&src_offset)); break; case eTypeDouble: SetDouble(src.GetDouble (&src_offset)); break; case eTypeLongDouble: SetFloat (src.GetLongDouble (&src_offset)); break; case eTypeBytes: { m_data.buffer.length = reg_info->byte_size; m_data.buffer.byte_order = src.GetByteOrder(); assert (m_data.buffer.length <= kMaxRegisterByteSize); if (m_data.buffer.length > kMaxRegisterByteSize) m_data.buffer.length = kMaxRegisterByteSize; if (src.CopyByteOrderedData (src_offset, // offset within "src" to start extracting data src_len, // src length m_data.buffer.bytes, // dst buffer m_data.buffer.length, // dst length m_data.buffer.byte_order) == 0)// dst byte order { error.SetErrorString ("data copy failed data."); return error; } } } return error; }
Error RegisterValue::SetValueFromData(const RegisterInfo *reg_info, DataExtractor &src, lldb::offset_t src_offset, bool partial_data_ok) { Error error; if (src.GetByteSize() == 0) { error.SetErrorString("empty data."); return error; } if (reg_info->byte_size == 0) { error.SetErrorString("invalid register info."); return error; } uint32_t src_len = src.GetByteSize() - src_offset; if (!partial_data_ok && (src_len < reg_info->byte_size)) { error.SetErrorString("not enough data."); return error; } // Cap the data length if there is more than enough bytes for this register // value if (src_len > reg_info->byte_size) src_len = reg_info->byte_size; // Zero out the value in case we get partial data... memset(buffer.bytes, 0, sizeof(buffer.bytes)); type128 int128; m_type = eTypeInvalid; switch (reg_info->encoding) { case eEncodingInvalid: break; case eEncodingUint: case eEncodingSint: if (reg_info->byte_size == 1) SetUInt8(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 2) SetUInt16(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 4) SetUInt32(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 8) SetUInt64(src.GetMaxU64(&src_offset, src_len)); else if (reg_info->byte_size <= 16) { uint64_t data1 = src.GetU64(&src_offset); uint64_t data2 = src.GetU64(&src_offset); if (src.GetByteSize() == eByteOrderBig) { int128.x[0] = data1; int128.x[1] = data2; } else { int128.x[0] = data2; int128.x[1] = data1; } SetUInt128(llvm::APInt(128, 2, int128.x)); } break; case eEncodingIEEE754: if (reg_info->byte_size == sizeof(float)) SetFloat(src.GetFloat(&src_offset)); else if (reg_info->byte_size == sizeof(double)) SetDouble(src.GetDouble(&src_offset)); else if (reg_info->byte_size == sizeof(long double)) SetLongDouble(src.GetLongDouble(&src_offset)); break; case eEncodingVector: { m_type = eTypeBytes; buffer.length = reg_info->byte_size; buffer.byte_order = src.GetByteOrder(); assert(buffer.length <= kMaxRegisterByteSize); if (buffer.length > kMaxRegisterByteSize) buffer.length = kMaxRegisterByteSize; if (src.CopyByteOrderedData( src_offset, // offset within "src" to start extracting data src_len, // src length buffer.bytes, // dst buffer buffer.length, // dst length buffer.byte_order) == 0) // dst byte order { error.SetErrorStringWithFormat( "failed to copy data for register write of %s", reg_info->name); return error; } } } if (m_type == eTypeInvalid) error.SetErrorStringWithFormat( "invalid register value type for register %s", reg_info->name); return error; }