Exemple #1
0
void print_calculated_angular(){
  Serial.print("gyro_angle:"); Serial.print(gyro_angle); Serial.print("  ");
  Serial.print("range: ");Serial.print(mpu.getFullScaleGyroRange());
  Serial.print("mag_angle:"); Serial.print(mag_angle); Serial.print("  ");
  Serial.print("mag_angle_2:"); Serial.print(mag_angle_2); Serial.print("  ");
//  Serial.print("current_angle:"); Serial.print(current_angle); Serial.print("  ");
}
int main()
{
    MPU6050 *mpu = new MPU6050();
    mpu->setDebug(true);
    
    mpu->reset();
    if (mpu->whoAmI())
    {
        printf("WhoAmI was okay\n");
        
        // i2c bypass enabled
        mpu->setBypassEnable(true);
        printf("Set and Get BypassEnable to true - %s\n", mpu->getBypassEnable() ? "SUCCESS" : "FAILED");
        mpu->setBypassEnable(false);
        printf("Set and Get BypassEnable to false - %s\n", !mpu->getBypassEnable() ? "SUCCESS" : "FAILED");

        // gyro ranges
        mpu->setFullScaleGyroRange(fullScaleGyroRange::FS_GYRO_250DEG_S);
        printf("Set and Get FullScaleGyroRange to 250deg/sec - %s\n", (mpu->getFullScaleGyroRange() == fullScaleGyroRange::FS_GYRO_250DEG_S) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleGyroRange(fullScaleGyroRange::FS_GYRO_500DEG_S);
        printf("Set and Get FullScaleGyroRange to 500deg/sec - %s\n", (mpu->getFullScaleGyroRange() == fullScaleGyroRange::FS_GYRO_500DEG_S) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleGyroRange(fullScaleGyroRange::FS_GYRO_1000DEG_S);
        printf("Set and Get FullScaleGyroRange to 1000deg/sec - %s\n", (mpu->getFullScaleGyroRange() == fullScaleGyroRange::FS_GYRO_1000DEG_S) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleGyroRange(fullScaleGyroRange::FS_GYRO_2000DEG_S);
        printf("Set and Get FullScaleGyroRange to 2000deg/sec - %s\n", (mpu->getFullScaleGyroRange() == fullScaleGyroRange::FS_GYRO_2000DEG_S) ? "SUCCESS" : "FAILED");

        // accelerometer ranges
        mpu->setFullScaleAccRange(fullScaleAccRange::FS_ACCL_2G);
        printf("Set and Get FullScaleAccRange to 2G - %s\n", (mpu->getFullScaleAccRange() == fullScaleAccRange::FS_ACCL_2G) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleAccRange(fullScaleAccRange::FS_ACCL_4G);
        printf("Set and Get FullScaleAccRange to 4G - %s\n", (mpu->getFullScaleAccRange() == fullScaleAccRange::FS_ACCL_4G) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleAccRange(fullScaleAccRange::FS_ACCL_8G);
        printf("Set and Get FullScaleAccRange to 8G - %s\n", (mpu->getFullScaleAccRange() == fullScaleAccRange::FS_ACCL_8G) ? "SUCCESS" : "FAILED");
        mpu->setFullScaleAccRange(fullScaleAccRange::FS_ACCL_16G);
        printf("Set and Get FullScaleAccRange to 16G - %s\n", (mpu->getFullScaleAccRange() == fullScaleAccRange::FS_ACCL_16G) ? "SUCCESS" : "FAILED");

        return 1;
    }
    return 0;
}
bool IntegrateGyro()
{
	// Set the full scale range of the gyro
	uint8_t FS_SEL = 0;
	int16_t 	accX, accY, accZ;
	int16_t		gyroX, gyroY, gyroZ;
	mpu.getMotion6(&accX, &accY, &accZ, &gyroX, &gyroY, &gyroZ);  //Set Starting angles
	unsigned long now = millis();
	float dt =(now - Before)/1000.0;
	Before = now;
	//mpu.setFullScaleGyroRange(FS_SEL);

	// get default full scale value of gyro - may have changed from default
	// function call returns values between 0 and 3
	uint8_t READ_FS_SEL = mpu.getFullScaleGyroRange();
//	Serial.print("FS_SEL = ");
//	Serial.println(READ_FS_SEL);
	GYRO_FACTOR = 131.0/(READ_FS_SEL + 1);


	// get default full scale value of accelerometer - may not be default value.
	// Accelerometer scale factor doesn't reall matter as it divides out
	uint8_t READ_AFS_SEL = mpu.getFullScaleAccelRange();
//	Serial.print("AFS_SEL = ");
//	Serial.println(READ_AFS_SEL);
	//ACCEL_FACTOR = 16384.0/(AFS_SEL + 1);


	// Remove offsets and scale gyro data
	float fgyroX, fgyroY, fgyroZ;

	fgyroX = (gyroX - gXOffset)/GYRO_FACTOR;
	fgyroY = -(gyroY - gYOffset)/GYRO_FACTOR;
	fgyroZ = -(gyroZ - gZOffset)/GYRO_FACTOR;
	accX = accX; // - base_x_accel;
	accY = accY; // - base_y_accel;
	accZ = accZ; // - base_z_accel;

	const double Q_angle = 0.001;

	const double Q_gyroBias = 0.003;

	const double R_angle = 0.03;

	AccelAngleY = atan2(accX, sqrt(pow(accY,2) + pow(accZ,2)))*RADIANS_TO_DEGREES;
	AccelAngleX = atan2(accY, sqrt(pow(accX,2) + pow(accZ,2)))*RADIANS_TO_DEGREES;
	AccelAngleZ = accZ;


#ifdef UNFILTERED
	// Compute the (filtered) gyro angles
	fAngleX = fgyroX*dt + fLastGyroAngleX;
	fAngleY = fgyroY*dt + fLastGyroAngleY;
	fAngleZ = fgyroZ*dt + fLastGyroAngleZ;
#endif

#ifdef FILTERED
	// Apply the complementary filter to figure out the change in angle - choice of alpha is
	// estimated now.  Alpha depends on the sampling rate...
	const float alpha = 0.9;
	float gyroAngleX = fgyroX*dt + fLastGyroAngleX;
	float gyroAngleY = fgyroY*dt + fLastGyroAngleY;
	float gyroAngleZ = fgyroZ*dt + fLastGyroAngleZ;
	fAngleX = alpha*gyroAngleX + (1.0 - alpha)*AccelAngleX;
	fAngleY = alpha*gyroAngleY + (1.0 - alpha)*AccelAngleY;
	fAngleZ = gyroAngleZ;  //Accelerometer doesn't give z-angle
#endif
	fLastGyroAngleX = fAngleX; fLastGyroAngleY = fAngleY; fLastGyroAngleZ = fAngleZ;
	return true;
}