void
NWWriter_DlrNavteq::writeTrafficSignals(const OptionsCont& oc, NBNodeCont& nc) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_traffic_signals.txt");
    writeHeader(device, oc);
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    const bool haveGeo = gch.usingGeoProjection();
    const SUMOReal geoScale = pow(10.0f, haveGeo ? 5 : 2); // see NIImporter_DlrNavteq::GEO_SCALE
    device.setPrecision(0);
    // write format specifier
    device << "#Traffic signal related to LINK_ID and NODE_ID with location relative to driving direction.\n#column format like pointcollection.\n#DESCRIPTION->LOCATION: 1-rechts von LINK; 2-links von LINK; 3-oberhalb LINK -1-keineAngabe\n#RELATREC_ID\tPOICOL_TYPE\tDESCRIPTION\tLONGITUDE\tLATITUDE\tLINK_ID\n";
    // write record for every edge incoming to a tls controlled node
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        if (n->isTLControlled()) {
            Position pos = n->getPosition();
            gch.cartesian2geo(pos);
            pos.mul(geoScale);
            const EdgeVector& incoming = n->getIncomingEdges();
            for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); ++it) {
                NBEdge* e = *it;
                device << e->getID() << "\t"
                       << "12\t" // POICOL_TYPE
                       << "LSA;NODEIDS#" << n->getID() << "#;LOCATION#-1#;\t"
                       << pos.x() << "\t"
                       << pos.y() << "\t"
                       << e->getID() << "\n";
            }
        }
    }
}
Exemple #2
0
void
NWWriter_XML::writeNodes(const OptionsCont& oc, NBNodeCont& nc) {
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    bool useGeo = oc.exists("proj.plain-geo") && oc.getBool("proj.plain-geo");
    if (useGeo && !gch.usingGeoProjection()) {
        WRITE_WARNING("Ignoring option \"proj.plain-geo\" because no geo-conversion has been defined");
        useGeo = false;
    }
    const bool geoAccuracy = useGeo || gch.usingInverseGeoProjection();

    OutputDevice& device = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".nod.xml");
    device.writeXMLHeader("nodes", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/nodes_file.xsd\"");

    // write network offsets and projection to allow reconstruction of original coordinates
    if (!useGeo) {
        NWWriter_SUMO::writeLocation(device);
    }

    // write nodes
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        device.openTag(SUMO_TAG_NODE);
        device.writeAttr(SUMO_ATTR_ID, n->getID());
        // write position
        Position pos = n->getPosition();
        if (useGeo) {
            gch.cartesian2geo(pos);
        }
        if (geoAccuracy) {
            device.setPrecision(GEO_OUTPUT_ACCURACY);
        }
        NWFrame::writePositionLong(pos, device);
        if (geoAccuracy) {
            device.setPrecision();
        }

        device.writeAttr(SUMO_ATTR_TYPE, toString(n->getType()));
        if (n->isTLControlled()) {
            const std::set<NBTrafficLightDefinition*>& tlss = n->getControllingTLS();
            // set may contain multiple programs for the same id.
            // make sure ids are unique and sorted
            std::set<std::string> tlsIDs;
            for (std::set<NBTrafficLightDefinition*>::const_iterator it_tl = tlss.begin(); it_tl != tlss.end(); it_tl++) {
                tlsIDs.insert((*it_tl)->getID());
            }
            std::vector<std::string> sortedIDs(tlsIDs.begin(), tlsIDs.end());
            sort(sortedIDs.begin(), sortedIDs.end());
            device.writeAttr(SUMO_ATTR_TLID, sortedIDs);
        }
        device.closeTag();
    }
    device.close();
}
void
GNETLSEditorFrame::updateDescription() const {
    std::string description;
    if (myCurrentJunction == 0) {
        description = "No Junction Selected\n";
    } else {
        NBNode* nbn = myCurrentJunction->getNBNode();
        description = "Current junction: " + nbn->getID() + "\n(";
        if (!nbn->isTLControlled()) {
            description += "uncontrolled, ";
        }
        description += (myHaveModifications ? "modified)" : "unmodified)");
    }
    myDescription->setText(description.c_str());
}
Exemple #4
0
void
NBNodeCont::discardTrafficLights(NBTrafficLightLogicCont& tlc, bool geometryLike, bool guessSignals) {
    for (NodeCont::const_iterator i = myNodes.begin(); i != myNodes.end(); ++i) {
        NBNode* node = i->second;
        if (!geometryLike || node->geometryLike()) {
            // make a copy of tldefs
            const std::set<NBTrafficLightDefinition*> tldefs = node->getControllingTLS();
            if (guessSignals && node->isTLControlled() && node->geometryLike()) {
                // record signal location
                const EdgeVector& outgoing = node->getOutgoingEdges();
                for (EdgeVector::const_iterator it_o = outgoing.begin(); it_o != outgoing.end(); ++it_o) {
                    (*it_o)->setSignalOffset((*it_o)->getLength());
                }
            }
            for (std::set<NBTrafficLightDefinition*>::const_iterator it = tldefs.begin(); it != tldefs.end(); ++it) {
                NBTrafficLightDefinition* tlDef = *it;
                node->removeTrafficLight(tlDef);
                tlc.extract(tlDef);
            }
            node->reinit(node->getPosition(), NODETYPE_UNKNOWN);
        }
    }
}
void
NIXMLConnectionsHandler::addCrossing(const SUMOSAXAttributes& attrs) {
    bool ok = true;
    NBNode* node = 0;
    EdgeVector edges;
    const std::string nodeID = attrs.get<std::string>(SUMO_ATTR_NODE, 0, ok);
    const double width = attrs.getOpt<double>(SUMO_ATTR_WIDTH, nodeID.c_str(), ok, NBEdge::UNSPECIFIED_WIDTH, true);
    const bool discard = attrs.getOpt<bool>(SUMO_ATTR_DISCARD, nodeID.c_str(), ok, false, true);
    int tlIndex = attrs.getOpt<int>(SUMO_ATTR_TLLINKINDEX, 0, ok, -1);
    int tlIndex2 = attrs.getOpt<int>(SUMO_ATTR_TLLINKINDEX2, 0, ok, -1);
    std::vector<std::string> edgeIDs;
    if (!attrs.hasAttribute(SUMO_ATTR_EDGES)) {
        if (discard) {
            node = myNodeCont.retrieve(nodeID);
            if (node == 0) {
                WRITE_ERROR("Node '" + nodeID + "' in crossing is not known.");
                return;
            }
            node->discardAllCrossings(true);
            return;
        } else {
            WRITE_ERROR("No edges specified for crossing at node '" + nodeID + "'.");
            return;
        }
    }
    SUMOSAXAttributes::parseStringVector(attrs.get<std::string>(SUMO_ATTR_EDGES, 0, ok), edgeIDs);
    if (!ok) {
        return;
    }
    for (std::vector<std::string>::const_iterator it = edgeIDs.begin(); it != edgeIDs.end(); ++it) {
        NBEdge* edge = myEdgeCont.retrieve(*it);
        if (edge == 0) {
            WRITE_ERROR("Edge '" + (*it) + "' for crossing at node '" + nodeID + "' is not known.");
            return;
        }
        if (node == 0) {
            if (edge->getToNode()->getID() == nodeID) {
                node = edge->getToNode();
            } else if (edge->getFromNode()->getID() == nodeID) {
                node = edge->getFromNode();
            } else {
                WRITE_ERROR("Edge '" + (*it) + "' does not touch node '" + nodeID + "'.");
                return;
            }
        } else {
            if (edge->getToNode() != node && edge->getFromNode() != node) {
                WRITE_ERROR("Edge '" + (*it) + "' does not touch node '" + nodeID + "'.");
                return;
            }
        }
        edges.push_back(edge);
    }
    bool priority = attrs.getOpt<bool>(SUMO_ATTR_PRIORITY, nodeID.c_str(), ok, node->isTLControlled(), true);
    if (node->isTLControlled() && !priority) {
        // traffic_light nodes should always have priority crossings
        WRITE_WARNING("Crossing at controlled node '" + nodeID + "' must be prioritized");
        priority = true;
    }
    PositionVector customShape = attrs.getOpt<PositionVector>(SUMO_ATTR_SHAPE, 0, ok, PositionVector::EMPTY);
    if (!NBNetBuilder::transformCoordinates(customShape)) {
        WRITE_ERROR("Unable to project shape for crossing at node '" + node->getID() + "'.");
    }
    if (discard) {
        node->removeCrossing(edges);
    } else {
        if (node->checkCrossingDuplicated(edges)) {
            WRITE_ERROR("Crossing with edges '" + toString(edges) + "' already exists at node '" + node->getID() + "'.");
            return;
        }
        node->addCrossing(edges, width, priority, tlIndex, tlIndex2, customShape);
    }
}
void
NBNodeCont::guessTLs(OptionsCont& oc, NBTrafficLightLogicCont& tlc) {
    // build list of definitely not tls-controlled junctions
    std::vector<NBNode*> ncontrolled;
    if (oc.isSet("tls.unset")) {
        std::vector<std::string> notTLControlledNodes = oc.getStringVector("tls.unset");
        for (std::vector<std::string>::const_iterator i = notTLControlledNodes.begin(); i != notTLControlledNodes.end(); ++i) {
            NBNode* n = NBNodeCont::retrieve(*i);
            if (n == 0) {
                throw ProcessError(" The node '" + *i + "' to set as not-controlled is not known.");
            }
            std::set<NBTrafficLightDefinition*> tls = n->getControllingTLS();
            for (std::set<NBTrafficLightDefinition*>::const_iterator j = tls.begin(); j != tls.end(); ++j) {
                (*j)->removeNode(n);
            }
            n->removeTrafficLights();
            ncontrolled.push_back(n);
        }
    }

    TrafficLightType type = SUMOXMLDefinitions::TrafficLightTypes.get(OptionsCont::getOptions().getString("tls.default-type"));
    // loop#1 checking whether the node shall be tls controlled,
    //  because it is assigned to a district
    if (oc.exists("tls.taz-nodes") && oc.getBool("tls.taz-nodes")) {
        for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
            NBNode* cur = (*i).second;
            if (cur->isNearDistrict() && find(ncontrolled.begin(), ncontrolled.end(), cur) == ncontrolled.end()) {
                setAsTLControlled(cur, tlc, type);
            }
        }
    }

    // maybe no tls shall be guessed
    if (!oc.getBool("tls.guess")) {
        return;
    }

    // guess joined tls first, if wished
    if (oc.getBool("tls.join")) {
        // get node clusters
        std::vector<std::set<NBNode*> > cands;
        generateNodeClusters(oc.getFloat("tls.join-dist"), cands);
        // check these candidates (clusters) whether they should be controlled by a tls
        for (std::vector<std::set<NBNode*> >::iterator i = cands.begin(); i != cands.end();) {
            std::set<NBNode*>& c = (*i);
            // regard only junctions which are not yet controlled and are not
            //  forbidden to be controlled
            for (std::set<NBNode*>::iterator j = c.begin(); j != c.end();) {
                if ((*j)->isTLControlled() || find(ncontrolled.begin(), ncontrolled.end(), *j) != ncontrolled.end()) {
                    c.erase(j++);
                } else {
                    ++j;
                }
            }
            // check whether the cluster should be controlled
            if (!shouldBeTLSControlled(c)) {
                i = cands.erase(i);
            } else {
                ++i;
            }
        }
        // cands now only contain sets of junctions that shall be joined into being tls-controlled
        unsigned int index = 0;
        for (std::vector<std::set<NBNode*> >::iterator i = cands.begin(); i != cands.end(); ++i) {
            std::vector<NBNode*> nodes;
            for (std::set<NBNode*>::iterator j = (*i).begin(); j != (*i).end(); j++) {
                nodes.push_back(*j);
            }
            std::string id = "joinedG_" + toString(index++);
            NBTrafficLightDefinition* tlDef = new NBOwnTLDef(id, nodes, 0, type);
            if (!tlc.insert(tlDef)) {
                // actually, nothing should fail here
                WRITE_WARNING("Could not build guessed, joined tls");
                delete tlDef;
                return;
            }
        }
    }

    // guess tls
    for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
        NBNode* cur = (*i).second;
        //  do nothing if already is tl-controlled
        if (cur->isTLControlled()) {
            continue;
        }
        // do nothing if in the list of explicit non-controlled junctions
        if (find(ncontrolled.begin(), ncontrolled.end(), cur) != ncontrolled.end()) {
            continue;
        }
        std::set<NBNode*> c;
        c.insert(cur);
        if (!shouldBeTLSControlled(c) || cur->getIncomingEdges().size() < 3) {
            continue;
        }
        setAsTLControlled((*i).second, tlc, type);
    }
}
Exemple #7
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods
// ---------------------------------------------------------------------------
void
NWWriter_SUMO::writeNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether a sumo net-file shall be generated
    if (!oc.isSet("output-file")) {
        return;
    }
    OutputDevice& device = OutputDevice::getDevice(oc.getString("output-file"));
    const std::string lefthand = oc.getBool("lefthand") ? " " + toString(SUMO_ATTR_LEFTHAND) + "=\"true\"" : "";
    const int cornerDetail = oc.getInt("junctions.corner-detail");
    const int linkDetail = oc.getInt("junctions.internal-link-detail");
    const std::string junctionCornerDetail = (cornerDetail > 0
            ? " " + toString(SUMO_ATTR_CORNERDETAIL) + "=\"" + toString(cornerDetail) + "\"" : "");
    const std::string junctionLinkDetail = (oc.isDefault("junctions.internal-link-detail") ? "" :
                                            " " + toString(SUMO_ATTR_LINKDETAIL) + "=\"" + toString(linkDetail) + "\"");
    device.writeXMLHeader("net", NWFrame::MAJOR_VERSION + lefthand + junctionCornerDetail + junctionLinkDetail +
                          " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo.dlr.de/xsd/net_file.xsd\""); // street names may contain non-ascii chars
    device.lf();
    // get involved container
    const NBNodeCont& nc = nb.getNodeCont();
    const NBEdgeCont& ec = nb.getEdgeCont();
    const NBDistrictCont& dc = nb.getDistrictCont();

    // write network offsets and projection
    GeoConvHelper::writeLocation(device);

    // write edge types and restrictions
    nb.getTypeCont().writeTypes(device);

    // write inner lanes
    bool origNames = oc.getBool("output.original-names");
    if (!oc.getBool("no-internal-links")) {
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalEdges(device, *(*i).second, origNames);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write edges with lanes and connected edges
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        writeEdge(device, *(*i).second, noNames, origNames);
    }
    device.lf();

    // write tls logics
    writeTrafficLights(device, nb.getTLLogicCont());

    // write the nodes (junctions)
    std::set<NBNode*> roundaboutNodes;
    const bool checkLaneFoesAll = oc.getBool("check-lane-foes.all");
    const bool checkLaneFoesRoundabout = !checkLaneFoesAll && oc.getBool("check-lane-foes.roundabout");
    if (checkLaneFoesRoundabout) {
        const std::set<EdgeSet>& roundabouts = ec.getRoundabouts();
        for (std::set<EdgeSet>::const_iterator i = roundabouts.begin(); i != roundabouts.end(); ++i) {
            for (EdgeSet::const_iterator j = (*i).begin(); j != (*i).end(); ++j) {
                roundaboutNodes.insert((*j)->getToNode());
            }
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        const bool checkLaneFoes = checkLaneFoesAll || (checkLaneFoesRoundabout && roundaboutNodes.count((*i).second) > 0);
        writeJunction(device, *(*i).second, checkLaneFoes);
    }
    device.lf();
    const bool includeInternal = !oc.getBool("no-internal-links");
    if (includeInternal) {
        // ... internal nodes if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalNodes(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write the successors of lanes
    unsigned int numConnections = 0;
    for (std::map<std::string, NBEdge*>::const_iterator it_edge = ec.begin(); it_edge != ec.end(); it_edge++) {
        NBEdge* from = it_edge->second;
        from->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = from->getConnections();
        numConnections += (unsigned int)connections.size();
        for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
            writeConnection(device, *from, *it_c, includeInternal);
        }
    }
    if (numConnections > 0) {
        device.lf();
    }
    if (includeInternal) {
        // ... internal successors if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalConnections(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* node = (*i).second;
        // write connections from pedestrian crossings
        const std::vector<NBNode::Crossing>& crossings = node->getCrossings();
        for (std::vector<NBNode::Crossing>::const_iterator it = crossings.begin(); it != crossings.end(); it++) {
            NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it).nextWalkingArea, 0, 0, "");
        }
        // write connections from pedestrian walking areas
        const std::vector<NBNode::WalkingArea>& WalkingAreas = node->getWalkingAreas();
        for (std::vector<NBNode::WalkingArea>::const_iterator it = WalkingAreas.begin(); it != WalkingAreas.end(); it++) {
            if ((*it).nextCrossing != "") {
                const NBNode::Crossing& nextCrossing = node->getCrossing((*it).nextCrossing);
                // connection to next crossing (may be tls-controlled)
                device.openTag(SUMO_TAG_CONNECTION);
                device.writeAttr(SUMO_ATTR_FROM, (*it).id);
                device.writeAttr(SUMO_ATTR_TO, (*it).nextCrossing);
                device.writeAttr(SUMO_ATTR_FROM_LANE, 0);
                device.writeAttr(SUMO_ATTR_TO_LANE, 0);
                if (node->isTLControlled()) {
                    device.writeAttr(SUMO_ATTR_TLID, (*node->getControllingTLS().begin())->getID());
                    assert(nextCrossing.tlLinkNo >= 0);
                    device.writeAttr(SUMO_ATTR_TLLINKINDEX, nextCrossing.tlLinkNo);
                }
                device.writeAttr(SUMO_ATTR_DIR, LINKDIR_STRAIGHT);
                device.writeAttr(SUMO_ATTR_STATE, nextCrossing.priority ? LINKSTATE_MAJOR : LINKSTATE_MINOR);
                device.closeTag();
            }
            // optional connections from/to sidewalk
            for (std::vector<std::string>::const_iterator it_sw = (*it).nextSidewalks.begin(); it_sw != (*it).nextSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it_sw), 0, 0, "");
            }
            for (std::vector<std::string>::const_iterator it_sw = (*it).prevSidewalks.begin(); it_sw != (*it).prevSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it_sw), (*it).id, 0, 0, "");
            }
        }
    }

    // write loaded prohibitions
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        writeProhibitions(device, i->second->getProhibitions());
    }

    // write roundabout information
    writeRoundabouts(device, ec.getRoundabouts(), ec);

    // write the districts
    for (std::map<std::string, NBDistrict*>::const_iterator i = dc.begin(); i != dc.end(); i++) {
        writeDistrict(device, *(*i).second);
    }
    if (dc.size() != 0) {
        device.lf();
    }
    device.close();
}
Exemple #8
0
void
NBNodeCont::guessTLs(OptionsCont& oc, NBTrafficLightLogicCont& tlc) {
    // build list of definitely not tls-controlled junctions
    std::vector<NBNode*> ncontrolled;
    if (oc.isSet("tls.unset")) {
        std::vector<std::string> notTLControlledNodes = oc.getStringVector("tls.unset");
        for (std::vector<std::string>::const_iterator i = notTLControlledNodes.begin(); i != notTLControlledNodes.end(); ++i) {
            NBNode* n = NBNodeCont::retrieve(*i);
            if (n == 0) {
                throw ProcessError(" The node '" + *i + "' to set as not-controlled is not known.");
            }
            std::set<NBTrafficLightDefinition*> tls = n->getControllingTLS();
            for (std::set<NBTrafficLightDefinition*>::const_iterator j = tls.begin(); j != tls.end(); ++j) {
                (*j)->removeNode(n);
            }
            n->removeTrafficLights();
            ncontrolled.push_back(n);
        }
    }

    TrafficLightType type = SUMOXMLDefinitions::TrafficLightTypes.get(OptionsCont::getOptions().getString("tls.default-type"));
    // loop#1 checking whether the node shall be tls controlled,
    //  because it is assigned to a district
    if (oc.exists("tls.taz-nodes") && oc.getBool("tls.taz-nodes")) {
        for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
            NBNode* cur = (*i).second;
            if (cur->isNearDistrict() && find(ncontrolled.begin(), ncontrolled.end(), cur) == ncontrolled.end()) {
                setAsTLControlled(cur, tlc, type);
            }
        }
    }

    // figure out which nodes mark the locations of TLS signals
    // This assumes nodes are already joined
    if (oc.exists("tls.guess-signals") && oc.getBool("tls.guess-signals")) {
        // prepare candidate edges
        const SUMOReal signalDist = oc.getFloat("tls.guess-signals.dist");
        for (std::map<std::string, NBNode*>::const_iterator i = myNodes.begin(); i != myNodes.end(); ++i) {
            NBNode* node = (*i).second;
            if (node->isTLControlled() && node->geometryLike()) {
                const EdgeVector& outgoing = node->getOutgoingEdges();
                for (EdgeVector::const_iterator it_o = outgoing.begin(); it_o != outgoing.end(); ++it_o) {
                    (*it_o)->setSignalOffset((*it_o)->getLength());
                }
            }
        }
        // check which nodes should be controlled
        for (std::map<std::string, NBNode*>::const_iterator i = myNodes.begin(); i != myNodes.end(); ++i) {
            NBNode* node = i->second;
            const EdgeVector& incoming = node->getIncomingEdges();
            if (!node->isTLControlled() && incoming.size() > 1 && !node->geometryLike()) {
                std::vector<NBNode*> signals;
                bool isTLS = true;
                for (EdgeVector::const_iterator it_i = incoming.begin(); it_i != incoming.end(); ++it_i) {
                    const NBEdge* inEdge = *it_i;
                    if (inEdge->getSignalOffset() == NBEdge::UNSPECIFIED_SIGNAL_OFFSET || inEdge->getSignalOffset() > signalDist) {
                        isTLS = false;
                        break;
                    }
                    if (inEdge->getSignalOffset() == inEdge->getLength()) {
                        signals.push_back(inEdge->getFromNode());
                    }
                }
                if (isTLS) {
                    for (std::vector<NBNode*>::iterator j = signals.begin(); j != signals.end(); ++j) {
                        std::set<NBTrafficLightDefinition*> tls = (*j)->getControllingTLS();
                        (*j)->removeTrafficLights();
                        for (std::set<NBTrafficLightDefinition*>::iterator k = tls.begin(); k != tls.end(); ++k) {
                            tlc.removeFully((*j)->getID());
                        }
                    }
                    NBTrafficLightDefinition* tlDef = new NBOwnTLDef("GS_" + node->getID(), node, 0, TLTYPE_STATIC);
                    // @todo patch endOffset for all incoming lanes according to the signal positions
                    if (!tlc.insert(tlDef)) {
                        // actually, nothing should fail here
                        WRITE_WARNING("Could not build joined tls '" + node->getID() + "'.");
                        delete tlDef;
                        return;
                    }
                }
            }
        }
    }

    // maybe no tls shall be guessed
    if (!oc.getBool("tls.guess")) {
        return;
    }

    // guess joined tls first, if wished
    if (oc.getBool("tls.join")) {
        // get node clusters
        std::vector<std::set<NBNode*> > cands;
        generateNodeClusters(oc.getFloat("tls.join-dist"), cands);
        // check these candidates (clusters) whether they should be controlled by a tls
        for (std::vector<std::set<NBNode*> >::iterator i = cands.begin(); i != cands.end();) {
            std::set<NBNode*>& c = (*i);
            // regard only junctions which are not yet controlled and are not
            //  forbidden to be controlled
            for (std::set<NBNode*>::iterator j = c.begin(); j != c.end();) {
                if ((*j)->isTLControlled() || find(ncontrolled.begin(), ncontrolled.end(), *j) != ncontrolled.end()) {
                    c.erase(j++);
                } else {
                    ++j;
                }
            }
            // check whether the cluster should be controlled
            if (!shouldBeTLSControlled(c)) {
                i = cands.erase(i);
            } else {
                ++i;
            }
        }
        // cands now only contain sets of junctions that shall be joined into being tls-controlled
        unsigned int index = 0;
        for (std::vector<std::set<NBNode*> >::iterator i = cands.begin(); i != cands.end(); ++i) {
            std::vector<NBNode*> nodes;
            for (std::set<NBNode*>::iterator j = (*i).begin(); j != (*i).end(); j++) {
                nodes.push_back(*j);
            }
            std::string id = "joinedG_" + toString(index++);
            NBTrafficLightDefinition* tlDef = new NBOwnTLDef(id, nodes, 0, type);
            if (!tlc.insert(tlDef)) {
                // actually, nothing should fail here
                WRITE_WARNING("Could not build guessed, joined tls");
                delete tlDef;
                return;
            }
        }
    }

    // guess tls
    for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
        NBNode* cur = (*i).second;
        //  do nothing if already is tl-controlled
        if (cur->isTLControlled()) {
            continue;
        }
        // do nothing if in the list of explicit non-controlled junctions
        if (find(ncontrolled.begin(), ncontrolled.end(), cur) != ncontrolled.end()) {
            continue;
        }
        std::set<NBNode*> c;
        c.insert(cur);
        if (!shouldBeTLSControlled(c) || cur->getIncomingEdges().size() < 3) {
            continue;
        }
        setAsTLControlled((*i).second, tlc, type);
    }
}