void NIXMLConnectionsHandler::addCrossing(const SUMOSAXAttributes& attrs) { bool ok = true; NBNode* node = 0; EdgeVector edges; const std::string nodeID = attrs.get<std::string>(SUMO_ATTR_NODE, 0, ok); const double width = attrs.getOpt<double>(SUMO_ATTR_WIDTH, nodeID.c_str(), ok, NBEdge::UNSPECIFIED_WIDTH, true); const bool discard = attrs.getOpt<bool>(SUMO_ATTR_DISCARD, nodeID.c_str(), ok, false, true); int tlIndex = attrs.getOpt<int>(SUMO_ATTR_TLLINKINDEX, 0, ok, -1); int tlIndex2 = attrs.getOpt<int>(SUMO_ATTR_TLLINKINDEX2, 0, ok, -1); std::vector<std::string> edgeIDs; if (!attrs.hasAttribute(SUMO_ATTR_EDGES)) { if (discard) { node = myNodeCont.retrieve(nodeID); if (node == 0) { WRITE_ERROR("Node '" + nodeID + "' in crossing is not known."); return; } node->discardAllCrossings(true); return; } else { WRITE_ERROR("No edges specified for crossing at node '" + nodeID + "'."); return; } } SUMOSAXAttributes::parseStringVector(attrs.get<std::string>(SUMO_ATTR_EDGES, 0, ok), edgeIDs); if (!ok) { return; } for (std::vector<std::string>::const_iterator it = edgeIDs.begin(); it != edgeIDs.end(); ++it) { NBEdge* edge = myEdgeCont.retrieve(*it); if (edge == 0) { WRITE_ERROR("Edge '" + (*it) + "' for crossing at node '" + nodeID + "' is not known."); return; } if (node == 0) { if (edge->getToNode()->getID() == nodeID) { node = edge->getToNode(); } else if (edge->getFromNode()->getID() == nodeID) { node = edge->getFromNode(); } else { WRITE_ERROR("Edge '" + (*it) + "' does not touch node '" + nodeID + "'."); return; } } else { if (edge->getToNode() != node && edge->getFromNode() != node) { WRITE_ERROR("Edge '" + (*it) + "' does not touch node '" + nodeID + "'."); return; } } edges.push_back(edge); } bool priority = attrs.getOpt<bool>(SUMO_ATTR_PRIORITY, nodeID.c_str(), ok, node->isTLControlled(), true); if (node->isTLControlled() && !priority) { // traffic_light nodes should always have priority crossings WRITE_WARNING("Crossing at controlled node '" + nodeID + "' must be prioritized"); priority = true; } PositionVector customShape = attrs.getOpt<PositionVector>(SUMO_ATTR_SHAPE, 0, ok, PositionVector::EMPTY); if (!NBNetBuilder::transformCoordinates(customShape)) { WRITE_ERROR("Unable to project shape for crossing at node '" + node->getID() + "'."); } if (discard) { node->removeCrossing(edges); } else { if (node->checkCrossingDuplicated(edges)) { WRITE_ERROR("Crossing with edges '" + toString(edges) + "' already exists at node '" + node->getID() + "'."); return; } node->addCrossing(edges, width, priority, tlIndex, tlIndex2, customShape); } }
void NIImporter_SUMO::_loadNetwork(OptionsCont& oc) { // check whether the option is set (properly) if (!oc.isUsableFileList("sumo-net-file")) { return; } // parse file(s) std::vector<std::string> files = oc.getStringVector("sumo-net-file"); for (std::vector<std::string>::const_iterator file = files.begin(); file != files.end(); ++file) { if (!FileHelpers::isReadable(*file)) { WRITE_ERROR("Could not open sumo-net-file '" + *file + "'."); return; } setFileName(*file); PROGRESS_BEGIN_MESSAGE("Parsing sumo-net from '" + *file + "'"); XMLSubSys::runParser(*this, *file, true); PROGRESS_DONE_MESSAGE(); } // build edges for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; // skip internal edges if (ed->func == EDGEFUNC_INTERNAL || ed->func == EDGEFUNC_CROSSING || ed->func == EDGEFUNC_WALKINGAREA) { continue; } // get and check the nodes NBNode* from = myNodeCont.retrieve(ed->fromNode); NBNode* to = myNodeCont.retrieve(ed->toNode); if (from == 0) { WRITE_ERROR("Edge's '" + ed->id + "' from-node '" + ed->fromNode + "' is not known."); continue; } if (to == 0) { WRITE_ERROR("Edge's '" + ed->id + "' to-node '" + ed->toNode + "' is not known."); continue; } // edge shape PositionVector geom; if (ed->shape.size() > 0) { geom = ed->shape; } else { // either the edge has default shape consisting only of the two node // positions or we have a legacy network geom = reconstructEdgeShape(ed, from->getPosition(), to->getPosition()); } // build and insert the edge NBEdge* e = new NBEdge(ed->id, from, to, ed->type, ed->maxSpeed, (unsigned int) ed->lanes.size(), ed->priority, NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET, geom, ed->streetName, "", ed->lsf, true); // always use tryIgnoreNodePositions to keep original shape e->setLoadedLength(ed->length); if (!myNetBuilder.getEdgeCont().insert(e)) { WRITE_ERROR("Could not insert edge '" + ed->id + "'."); delete e; continue; } ed->builtEdge = myNetBuilder.getEdgeCont().retrieve(ed->id); } // assign further lane attributes (edges are built) for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; NBEdge* nbe = ed->builtEdge; if (nbe == 0) { // inner edge or removed by explicit list, vclass, ... continue; } for (unsigned int fromLaneIndex = 0; fromLaneIndex < (unsigned int) ed->lanes.size(); ++fromLaneIndex) { LaneAttrs* lane = ed->lanes[fromLaneIndex]; // connections const std::vector<Connection>& connections = lane->connections; for (std::vector<Connection>::const_iterator c_it = connections.begin(); c_it != connections.end(); c_it++) { const Connection& c = *c_it; if (myEdges.count(c.toEdgeID) == 0) { WRITE_ERROR("Unknown edge '" + c.toEdgeID + "' given in connection."); continue; } NBEdge* toEdge = myEdges[c.toEdgeID]->builtEdge; if (toEdge == 0) { // removed by explicit list, vclass, ... continue; } if (nbe->hasConnectionTo(toEdge, c.toLaneIdx)) { WRITE_WARNING("Target lane '" + toEdge->getLaneID(c.toLaneIdx) + "' has multiple connections from '" + nbe->getID() + "'."); } nbe->addLane2LaneConnection( fromLaneIndex, toEdge, c.toLaneIdx, NBEdge::L2L_VALIDATED, true, c.mayDefinitelyPass, c.keepClear, c.contPos); // maybe we have a tls-controlled connection if (c.tlID != "" && myRailSignals.count(c.tlID) == 0) { const std::map<std::string, NBTrafficLightDefinition*>& programs = myTLLCont.getPrograms(c.tlID); if (programs.size() > 0) { std::map<std::string, NBTrafficLightDefinition*>::const_iterator it; for (it = programs.begin(); it != programs.end(); it++) { NBLoadedSUMOTLDef* tlDef = dynamic_cast<NBLoadedSUMOTLDef*>(it->second); if (tlDef) { tlDef->addConnection(nbe, toEdge, fromLaneIndex, c.toLaneIdx, c.tlLinkNo); } else { throw ProcessError("Corrupt traffic light definition '" + c.tlID + "' (program '" + it->first + "')"); } } } else { WRITE_ERROR("The traffic light '" + c.tlID + "' is not known."); } } } // allow/disallow XXX preferred nbe->setPermissions(parseVehicleClasses(lane->allow, lane->disallow), fromLaneIndex); // width, offset nbe->setLaneWidth(fromLaneIndex, lane->width); nbe->setEndOffset(fromLaneIndex, lane->endOffset); nbe->setSpeed(fromLaneIndex, lane->maxSpeed); } nbe->declareConnectionsAsLoaded(); if (!nbe->hasLaneSpecificWidth() && nbe->getLanes()[0].width != NBEdge::UNSPECIFIED_WIDTH) { nbe->setLaneWidth(-1, nbe->getLaneWidth(0)); } if (!nbe->hasLaneSpecificEndOffset() && nbe->getEndOffset(0) != NBEdge::UNSPECIFIED_OFFSET) { nbe->setEndOffset(-1, nbe->getEndOffset(0)); } } // insert loaded prohibitions for (std::vector<Prohibition>::const_iterator it = myProhibitions.begin(); it != myProhibitions.end(); it++) { NBEdge* prohibitedFrom = myEdges[it->prohibitedFrom]->builtEdge; NBEdge* prohibitedTo = myEdges[it->prohibitedTo]->builtEdge; NBEdge* prohibitorFrom = myEdges[it->prohibitorFrom]->builtEdge; NBEdge* prohibitorTo = myEdges[it->prohibitorTo]->builtEdge; if (prohibitedFrom == 0) { WRITE_WARNING("Edge '" + it->prohibitedFrom + "' in prohibition was not built"); } else if (prohibitedTo == 0) { WRITE_WARNING("Edge '" + it->prohibitedTo + "' in prohibition was not built"); } else if (prohibitorFrom == 0) { WRITE_WARNING("Edge '" + it->prohibitorFrom + "' in prohibition was not built"); } else if (prohibitorTo == 0) { WRITE_WARNING("Edge '" + it->prohibitorTo + "' in prohibition was not built"); } else { NBNode* n = prohibitedFrom->getToNode(); n->addSortedLinkFoes( NBConnection(prohibitorFrom, prohibitorTo), NBConnection(prohibitedFrom, prohibitedTo)); } } if (!myHaveSeenInternalEdge) { myNetBuilder.haveLoadedNetworkWithoutInternalEdges(); } if (oc.isDefault("lefthand")) { oc.set("lefthand", toString(myAmLefthand)); } if (oc.isDefault("junctions.corner-detail")) { oc.set("junctions.corner-detail", toString(myCornerDetail)); } if (oc.isDefault("junctions.internal-link-detail") && myLinkDetail > 0) { oc.set("junctions.internal-link-detail", toString(myLinkDetail)); } if (!deprecatedVehicleClassesSeen.empty()) { WRITE_WARNING("Deprecated vehicle class(es) '" + toString(deprecatedVehicleClassesSeen) + "' in input network."); deprecatedVehicleClassesSeen.clear(); } // add loaded crossings if (!oc.getBool("no-internal-links")) { for (std::map<std::string, std::vector<Crossing> >::const_iterator it = myPedestrianCrossings.begin(); it != myPedestrianCrossings.end(); ++it) { NBNode* node = myNodeCont.retrieve((*it).first); for (std::vector<Crossing>::const_iterator it_c = (*it).second.begin(); it_c != (*it).second.end(); ++it_c) { const Crossing& crossing = (*it_c); EdgeVector edges; for (std::vector<std::string>::const_iterator it_e = crossing.crossingEdges.begin(); it_e != crossing.crossingEdges.end(); ++it_e) { NBEdge* edge = myNetBuilder.getEdgeCont().retrieve(*it_e); // edge might have been removed due to options if (edge != 0) { edges.push_back(edge); } } if (edges.size() > 0) { node->addCrossing(edges, crossing.width, crossing.priority, true); } } } } // add roundabouts for (std::vector<std::vector<std::string> >::const_iterator it = myRoundabouts.begin(); it != myRoundabouts.end(); ++it) { EdgeSet roundabout; for (std::vector<std::string>::const_iterator it_r = it->begin(); it_r != it->end(); ++it_r) { NBEdge* edge = myNetBuilder.getEdgeCont().retrieve(*it_r); if (edge == 0) { if (!myNetBuilder.getEdgeCont().wasIgnored(*it_r)) { WRITE_ERROR("Unknown edge '" + (*it_r) + "' in roundabout"); } } else { roundabout.insert(edge); } } myNetBuilder.getEdgeCont().addRoundabout(roundabout); } }