void GradientChecker<Dtype>::CheckGradientNet( const Net<Dtype>& net, const vector<Blob<Dtype>*>& input) { const vector<shared_ptr<Layer<Dtype> > >& layers = net.layers(); vector<vector<Blob<Dtype>*> >& bottom_vecs = net.bottom_vecs(); vector<vector<Blob<Dtype>*> >& top_vecs = net.top_vecs(); for (int_tp i = 0; i < layers.size(); ++i) { net.Forward(input); LOG(ERROR)<< "Checking gradient for " << layers[i]->layer_param().name(); CheckGradientExhaustive(*(layers[i].get()), bottom_vecs[i], top_vecs[i]); } }
void mexFunction(int nLhs, mxArray* pLhs[], int nRhs, const mxArray* pRhs[]) { mexAssert(NARGIN_MIN <= nRhs && nRhs <= NARGIN_MAX, "Number of input arguments in wrong!"); mexAssert(nLhs == NARGOUT, "Number of output arguments is wrong!" ); mexAssert(mexIsCell(IN_L), "Layers must be the cell array"); mexAssert(mexGetNumel(IN_L) == 2, "Layers array must contain 2 cells"); mexAssert(mexIsCell(IN_W), "Weights must be the cell array"); mexAssert(mexGetNumel(IN_W) == 2, "Weights array must contain 2 cells"); Net net; mxArray *mx_weights; net.InitLayers(mexGetCell(IN_L, 1)); net.InitWeights(mexGetCell(IN_W, 1), mx_weights); net.InitParams(IN_P); net.ReadLabels(IN_Y); const mxArray *mx_imweights = mexGetCell(IN_W, 0); size_t train_num = net.labels_.size1(); mexAssert(train_num == mexGetNumel(mx_imweights), "Weights and labels number must coincide"); bool is_multicoords = false; if (mexIsCell(IN_X)) { mexAssert(train_num == mexGetNumel(IN_X), "Coordinates and labels number must coincide"); is_multicoords = true; } Params params_ = net.params_; size_t numbatches = (size_t) ceil((ftype) train_num/params_.batchsize_); Mat trainerror_(params_.numepochs_, numbatches); Mat trainerror2_(params_.numepochs_, numbatches); trainerror2_.assign(0); std::vector<Net> imnets; imnets.resize(params_.batchsize_); for (size_t i = 0; i < params_.batchsize_; ++i) { imnets[i].InitLayers(mexGetCell(IN_L, 0)); if (!is_multicoords) { imnets[i].ReadData(IN_X); } else { imnets[i].ReadData(mexGetCell(IN_X, i)); // just to get pixels_num } } size_t pixels_num = imnets[0].data_.size1(); Layer *firstlayer = net.layers_[0]; size_t dimens_num = firstlayer->outputmaps_; mexAssert(imnets[0].layers_.back()->length_ == dimens_num, "Final layer length must coincide with the number of outputmaps"); mexAssert(pixels_num == firstlayer->mapsize_[0] * firstlayer->mapsize_[1], "Pixels number must coincide with the first layer elements number"); std::vector<size_t> pred_size(2); pred_size[0] = 1; pred_size[1] = pixels_num * dimens_num; Mat images_mat, labels_batch, pred_batch, pred_pixels; std::vector< std::vector<Mat> > images, images_der; for (size_t epoch = 0; epoch < params_.numepochs_; ++epoch) { std::vector<size_t> randind(train_num); for (size_t i = 0; i < train_num; ++i) { randind[i] = i; } if (params_.shuffle_) { std::random_shuffle(randind.begin(), randind.end()); } std::vector<size_t>::const_iterator iter = randind.begin(); for (size_t batch = 0; batch < numbatches; ++batch) { size_t batchsize = std::min(params_.batchsize_, (size_t)(randind.end() - iter)); std::vector<size_t> batch_ind = std::vector<size_t>(iter, iter + batchsize); iter = iter + batchsize; labels_batch = SubMat(net.labels_, batch_ind, 1); net.UpdateWeights(epoch, false); images_mat.resize(batchsize, pred_size[1]); InitMaps(images_mat, pred_size, images); // first pass for (size_t m = 0; m < batchsize; ++m) { imnets[m].InitWeights(mexGetCell(mx_imweights, batch_ind[m])); if (is_multicoords) { imnets[m].ReadData(mexGetCell(IN_X, batch_ind[m])); } imnets[m].InitActiv(imnets[m].data_); imnets[m].Forward(pred_pixels, 1); images[m][0].copy(Trans(pred_pixels).reshape(pred_size[0], pred_size[1])); } net.InitActiv(images_mat); net.Forward(pred_batch, 1); /* for (int i = 0; i < 5; ++i) { mexPrintMsg("pred_batch1", pred_batch(0, i)); }*/ // second pass net.InitDeriv(labels_batch, trainerror_(epoch, batch)); net.Backward(); net.CalcWeights(); InitMaps(firstlayer->deriv_mat_, pred_size, images_der); for (size_t m = 0; m < batchsize; ++m) { imnets[m].layers_.back()->deriv_mat_ = Trans(images_der[m][0].reshape(dimens_num, pixels_num)); imnets[m].Backward(); } // third pass ftype loss2 = 0, curloss = 0, invind = 0; std::vector<size_t> invalid; for (size_t m = 0; m < batchsize; ++m) { imnets[m].InitDeriv2(curloss); if (curloss > 0) { imnets[m].Forward(pred_pixels, 3); images[m][0].copy(Trans(pred_pixels).reshape(pred_size[0], pred_size[1])); loss2 += curloss; } else { invalid.push_back(m); } } if (invalid.size() < batchsize) { loss2 /= (batchsize - invalid.size()); trainerror2_(epoch, batch) = loss2; net.InitActiv(images_mat); net.Forward(pred_batch, 3); } net.CalcWeights2(invalid); // weights update net.UpdateWeights(epoch, true); if (params_.verbose_ == 2) { std::string info = std::string("Epoch: ") + std::to_string(epoch+1) + std::string(", batch: ") + std::to_string(batch+1); mexPrintMsg(info); } } // batch if (params_.verbose_ == 1) { std::string info = std::string("Epoch: ") + std::to_string(epoch+1); mexPrintMsg(info); } } // epoch //mexPrintMsg("Training finished"); //net.weights_.get().copy(net.weights_.der()); OUT_W = mexSetCellMat(1, 2); mexSetCell(OUT_W, 0, mexDuplicateArray(mx_imweights)); mexSetCell(OUT_W, 1, mx_weights); OUT_E = mexSetCellMat(1, 2); mexSetCell(OUT_E, 0, mexSetMatrix(trainerror_)); mexSetCell(OUT_E, 1, mexSetMatrix(trainerror2_)); }
EXPORT void caffe_net_Forward(void *netAnon, float &loss) { Net<float> *net = (Net<float> *)netAnon; net->Forward(&loss); }
// Usage: caffe_('net_forward', hNet) static void net_forward(MEX_ARGS) { mxCHECK(nrhs == 1 && mxIsStruct(prhs[0]), "Usage: caffe_('net_forward', hNet)"); Net* net = handle_to_ptr<Net>(prhs[0]); net->Forward(); }