// https://github.com/richzhang/colorization
TEST(Reproducibility_Colorization, Accuracy)
{
    const float l1 = 1e-5;
    const float lInf = 3e-3;

    Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
    Mat ref = blobFromNPY(_tf("colorization_out.npy"));
    Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy"));

    const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
    const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
    Net net = readNetFromCaffe(proto, model);

    net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
    net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));

    net.setInput(inp);
    Mat out = net.forward();

    normAssert(out, ref, "", l1, lInf);
}
Exemple #2
0
    void expectNoFallbacks(Net& net)
    {
        // Check if all the layers are supported with current backend and target.
        // Some layers might be fused so their timings equal to zero.
        std::vector<double> timings;
        net.getPerfProfile(timings);
        std::vector<String> names = net.getLayerNames();
        CV_Assert(names.size() == timings.size());

        for (int i = 0; i < names.size(); ++i)
        {
            Ptr<dnn::Layer> l = net.getLayer(net.getLayerId(names[i]));
            bool fused = !timings[i];
            if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
                CV_Error(Error::StsNotImplemented, "Layer [" + l->name + "] of type [" +
                         l->type + "] is expected to has backend implementation");
        }
    }