Exemple #1
0
int main(int argc, char **argv)
{
	if(argc < 2)
		error("Missing file name.");

	LLVMContext context;
	SMDiagnostic diag;
	OwningPtr<Module> module;
	
	module.reset(ParseIRFile(argv[1], diag, context));
	if(!module.get())
		error("Failed to load IR.");

	for(Module::iterator iter = module->begin(); iter != module->end(); iter++) {
		Function *func = iter;

		char *name = (char *)malloc(1024);
		size_t len = 1024;
		int err;

		name = abi::__cxa_demangle(func->getName().data(), name, &len, &err);
		if(err)
			continue;

		name[strlen(name)-2] = '\0';

		for(Function::iterator iter = func->begin(); iter != func->end(); iter++) {
			BasicBlock *block = iter;

			for(BasicBlock::iterator iter = block->begin(); iter != block->end(); iter++) {
				Instruction *inst = iter;

				if(inst->getOpcode() != Instruction::PtrToInt)
					continue;

				DILocation loc(inst->getMetadata("dbg"));

				printf("%s:%u\n", loc.getFilename().data(), loc.getLineNumber());
			}
		}
		free(name);
	}

	return 0;
}
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal();
  llvm::PrettyStackTraceProgram X(argc, argv);

  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  LLVMContext &Context = getGlobalContext();

  InitializeAllTargets();
  InitializeAllTargetMCs();

  // Initialize passes
  PassRegistry &Registry = *PassRegistry::getPassRegistry();
  initializeCore(Registry);
  initializeScalarOpts(Registry);
  initializeObjCARCOpts(Registry);
  initializeVectorization(Registry);
  initializeIPO(Registry);
  initializeAnalysis(Registry);
  initializeIPA(Registry);
  initializeTransformUtils(Registry);
  initializeInstCombine(Registry);
  initializeInstrumentation(Registry);
  initializeTarget(Registry);
  // @LOCALMOD-BEGIN
  initializeAddPNaClExternalDeclsPass(Registry);
  initializeCanonicalizeMemIntrinsicsPass(Registry);
  initializeExpandArithWithOverflowPass(Registry);
  initializeExpandByValPass(Registry);
  initializeExpandConstantExprPass(Registry);
  initializeExpandCtorsPass(Registry);
  initializeExpandGetElementPtrPass(Registry);
  initializeExpandSmallArgumentsPass(Registry);
  initializeExpandStructRegsPass(Registry);
  initializeExpandTlsConstantExprPass(Registry);
  initializeExpandTlsPass(Registry);
  initializeExpandVarArgsPass(Registry);
  initializeFlattenGlobalsPass(Registry);
  initializeGlobalCleanupPass(Registry);
  initializeInsertDivideCheckPass(Registry);
  initializePNaClABIVerifyFunctionsPass(Registry);
  initializePNaClABIVerifyModulePass(Registry);
  initializePNaClSjLjEHPass(Registry);
  initializePromoteI1OpsPass(Registry);
  initializePromoteIntegersPass(Registry);
  initializeRemoveAsmMemoryPass(Registry);
  initializeReplacePtrsWithIntsPass(Registry);
  initializeResolveAliasesPass(Registry);
  initializeResolvePNaClIntrinsicsPass(Registry);
  initializeRewriteAtomicsPass(Registry);
  initializeRewriteLLVMIntrinsicsPass(Registry);
  initializeRewritePNaClLibraryCallsPass(Registry);
  initializeStripAttributesPass(Registry);
  initializeStripMetadataPass(Registry);
  initializeExpandI64Pass(Registry);
  // @LOCALMOD-END

  cl::ParseCommandLineOptions(argc, argv,
    "llvm .bc -> .bc modular optimizer and analysis printer\n");

  if (AnalyzeOnly && NoOutput) {
    errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
    return 1;
  }

  SMDiagnostic Err;

  // Load the input module...
  OwningPtr<Module> M;
  M.reset(ParseIRFile(InputFilename, Err, Context));

  if (M.get() == 0) {
    Err.print(argv[0], errs());
    return 1;
  }

  // If we are supposed to override the target triple, do so now.
  if (!TargetTriple.empty())
    M->setTargetTriple(Triple::normalize(TargetTriple));

  // Figure out what stream we are supposed to write to...
  OwningPtr<tool_output_file> Out;
  if (NoOutput) {
    if (!OutputFilename.empty())
      errs() << "WARNING: The -o (output filename) option is ignored when\n"
                "the --disable-output option is used.\n";
  } else {
    // Default to standard output.
    if (OutputFilename.empty())
      OutputFilename = "-";

    std::string ErrorInfo;
    Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                   raw_fd_ostream::F_Binary));
    if (!ErrorInfo.empty()) {
      errs() << ErrorInfo << '\n';
      return 1;
    }
  }

  // If the output is set to be emitted to standard out, and standard out is a
  // console, print out a warning message and refuse to do it.  We don't
  // impress anyone by spewing tons of binary goo to a terminal.
  if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
    if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
      NoOutput = true;

  // Create a PassManager to hold and optimize the collection of passes we are
  // about to build.
  //
  PassManager Passes;

  // Add an appropriate TargetLibraryInfo pass for the module's triple.
  TargetLibraryInfo *TLI = new TargetLibraryInfo(Triple(M->getTargetTriple()));

  // The -disable-simplify-libcalls flag actually disables all builtin optzns.
  if (DisableSimplifyLibCalls)
    TLI->disableAllFunctions();
  Passes.add(TLI);

  // Add an appropriate DataLayout instance for this module.
  DataLayout *TD = 0;
  const std::string &ModuleDataLayout = M.get()->getDataLayout();
  if (!ModuleDataLayout.empty())
    TD = new DataLayout(ModuleDataLayout);
  else if (!DefaultDataLayout.empty())
    TD = new DataLayout(DefaultDataLayout);

  if (TD)
    Passes.add(TD);

  Triple ModuleTriple(M->getTargetTriple());
  TargetMachine *Machine = 0;
  if (ModuleTriple.getArch())
    Machine = GetTargetMachine(Triple(ModuleTriple));
  OwningPtr<TargetMachine> TM(Machine);

  // Add internal analysis passes from the target machine.
  if (TM.get())
    TM->addAnalysisPasses(Passes);

  OwningPtr<FunctionPassManager> FPasses;
  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses.reset(new FunctionPassManager(M.get()));
    if (TD)
      FPasses->add(new DataLayout(*TD));
  }

  if (PrintBreakpoints) {
    // Default to standard output.
    if (!Out) {
      if (OutputFilename.empty())
        OutputFilename = "-";

      std::string ErrorInfo;
      Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                     raw_fd_ostream::F_Binary));
      if (!ErrorInfo.empty()) {
        errs() << ErrorInfo << '\n';
        return 1;
      }
    }
    Passes.add(new BreakpointPrinter(Out->os()));
    NoOutput = true;
  }

  // If the -strip-debug command line option was specified, add it.  If
  // -std-compile-opts was also specified, it will handle StripDebug.
  if (StripDebug && !StandardCompileOpts)
    addPass(Passes, createStripSymbolsPass(true));

  // Create a new optimization pass for each one specified on the command line
  for (unsigned i = 0; i < PassList.size(); ++i) {
    // Check to see if -std-compile-opts was specified before this option.  If
    // so, handle it.
    if (StandardCompileOpts &&
        StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardCompilePasses(Passes);
      StandardCompileOpts = false;
    }

    if (StandardLinkOpts &&
        StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardLinkPasses(Passes);
      StandardLinkOpts = false;
    }

    if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 1, 0);
      OptLevelO1 = false;
    }

    if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 0);
      OptLevelO2 = false;
    }

    if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 1);
      OptLevelOs = false;
    }

    if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 2);
      OptLevelOz = false;
    }

    if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 3, 0);
      OptLevelO3 = false;
    }

    // @LOCALMOD-BEGIN
    if (PNaClABISimplifyPreOpt &&
        PNaClABISimplifyPreOpt.getPosition() < PassList.getPosition(i)) {
      PNaClABISimplifyAddPreOptPasses(Passes);
      PNaClABISimplifyPreOpt = false;
    }

    if (PNaClABISimplifyPostOpt &&
        PNaClABISimplifyPostOpt.getPosition() < PassList.getPosition(i)) {
      PNaClABISimplifyAddPostOptPasses(Passes);
      PNaClABISimplifyPostOpt = false;
    }
    // @LOCALMOD-END

    const PassInfo *PassInf = PassList[i];
    Pass *P = 0;
    if (PassInf->getNormalCtor())
      P = PassInf->getNormalCtor()();
    else
      errs() << argv[0] << ": cannot create pass: "******"\n";
    if (P) {
      PassKind Kind = P->getPassKind();
      addPass(Passes, P);

      if (AnalyzeOnly) {
        switch (Kind) {
        case PT_BasicBlock:
          Passes.add(new BasicBlockPassPrinter(PassInf, Out->os()));
          break;
        case PT_Region:
          Passes.add(new RegionPassPrinter(PassInf, Out->os()));
          break;
        case PT_Loop:
          Passes.add(new LoopPassPrinter(PassInf, Out->os()));
          break;
        case PT_Function:
          Passes.add(new FunctionPassPrinter(PassInf, Out->os()));
          break;
        case PT_CallGraphSCC:
          Passes.add(new CallGraphSCCPassPrinter(PassInf, Out->os()));
          break;
        default:
          Passes.add(new ModulePassPrinter(PassInf, Out->os()));
          break;
        }
      }
    }

    if (PrintEachXForm)
      Passes.add(createPrintModulePass(&errs()));
  }

  // If -std-compile-opts was specified at the end of the pass list, add them.
  if (StandardCompileOpts) {
    AddStandardCompilePasses(Passes);
    StandardCompileOpts = false;
  }

  if (StandardLinkOpts) {
    AddStandardLinkPasses(Passes);
    StandardLinkOpts = false;
  }

  if (OptLevelO1)
    AddOptimizationPasses(Passes, *FPasses, 1, 0);

  if (OptLevelO2)
    AddOptimizationPasses(Passes, *FPasses, 2, 0);

  if (OptLevelOs)
    AddOptimizationPasses(Passes, *FPasses, 2, 1);

  if (OptLevelOz)
    AddOptimizationPasses(Passes, *FPasses, 2, 2);

  if (OptLevelO3)
    AddOptimizationPasses(Passes, *FPasses, 3, 0);

  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses->doInitialization();
    for (Module::iterator F = M->begin(), E = M->end(); F != E; ++F)
      FPasses->run(*F);
    FPasses->doFinalization();
  }

  // @LOCALMOD-BEGIN
  if (PNaClABISimplifyPreOpt)
    PNaClABISimplifyAddPreOptPasses(Passes);

  if (PNaClABISimplifyPostOpt)
    PNaClABISimplifyAddPostOptPasses(Passes);
  // @LOCALMOD-END

  // Check that the module is well formed on completion of optimization
  if (!NoVerify && !VerifyEach)
    Passes.add(createVerifierPass());

  // Write bitcode or assembly to the output as the last step...
  if (!NoOutput && !AnalyzeOnly) {
    if (OutputAssembly)
      Passes.add(createPrintModulePass(&Out->os()));
    // @LOCALMOD
  }

  // Before executing passes, print the final values of the LLVM options.
  cl::PrintOptionValues();

  // Now that we have all of the passes ready, run them.
  Passes.run(*M.get());

// @LOCALMOD-BEGIN
  // Write bitcode to the output.
  if (!NoOutput && !AnalyzeOnly && !OutputAssembly) {
    switch (OutputFileFormat) {
      case LLVMFormat:
        WriteBitcodeToFile(M.get(), Out->os());
        break;
      case PNaClFormat:
        NaClWriteBitcodeToFile(M.get(), Out->os());
        break;
      default:
        errs() << "Don't understand bitcode format for generated bitcode.\n";
        return 1;
    }
  }
// @LOCALMOD-END

  // Declare success.
  if (!NoOutput || PrintBreakpoints)
    Out->keep();

  return 0;
}