/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// /// Returns true to indicate that the next block should be skipped. static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke) { LandingPadInst *LPI = Invoke.getLandingPadInst(); for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { unsigned NumClauses = LPI->getNumClauses(); L->reserveClauses(NumClauses); for (unsigned i = 0; i != NumClauses; ++i) L->addClause(LPI->getClause(i)); } // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); // If this call cannot unwind, don't convert it to an invoke. // Inline asm calls cannot throw. if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) continue; // Convert this function call into an invoke instruction. First, split the // basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // Create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, Invoke.getOuterResumeDest(), InvokeArgs, CI->getName(), BB); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the original call Split->getInstList().pop_front(); // Update any PHI nodes in the exceptional block to indicate that there is // now a new entry in them. Invoke.addIncomingPHIValuesFor(BB); return false; } return false; }
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *InvokeDest, const SmallVectorImpl<Value*> &InvokeDestPHIValues) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); if (CI == 0) continue; // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, InvokeArgs.begin(), InvokeArgs.end(), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB); // This basic block is now complete, the caller will continue scanning the // next one. return; } }
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes and turn unwind /// instructions into branches to the invoke unwind dest. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); std::vector<Value*> InvokeDestPHIValues; // If there are PHI nodes in the unwind destination block, we need to // keep track of which values came into them from this invoke, then remove // the entry for this block. BasicBlock *InvokeBlock = II->getParent(); for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); // Save the value to use for this edge. InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); } Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){ Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. if (!isa<CallInst>(I)) continue; CallInst *CI = cast<CallInst>(I); // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, InvokeArgs.begin(), InvokeArgs.end(), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } // This basic block is now complete, start scanning the next one. break; } } if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { // An UnwindInst requires special handling when it gets inlined into an // invoke site. Once this happens, we know that the unwind would cause // a control transfer to the invoke exception destination, so we can // transform it into a direct branch to the exception destination. BranchInst::Create(InvokeDest, UI); // Delete the unwind instruction! UI->eraseFromParent(); // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } } } } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); }
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// /// Returns true to indicate that the next block should be skipped. static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); if (CI == 0) continue; // LIBUNWIND: merge selector instructions. if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { EHSelectorInst *Outer = Invoke.getOuterSelector(); if (!Outer) continue; bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); // If both selectors contain only cleanups, we don't need to do // anything. TODO: this is really just a very specific instance // of a much more general optimization. if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; // Otherwise, we just append the outer selector to the inner selector. SmallVector<Value*, 16> NewSelector; for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) NewSelector.push_back(Inner->getArgOperand(i)); for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) NewSelector.push_back(Outer->getArgOperand(i)); CallInst *NewInner = IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector); // No need to copy attributes, calling convention, etc. NewInner->takeName(Inner); Inner->replaceAllUsesWith(NewInner); Inner->eraseFromParent(); continue; } // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch // directly to the new landing pad. if (Invoke.forwardEHResume(CI, BB)) { // TODO: 'Split' is now unreachable; clean it up. // We want to leave the original call intact so that the call // graph and other structures won't get misled. We also have to // avoid processing the next block, or we'll iterate here forever. return true; } // Otherwise, create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, Invoke.getOuterUnwindDest(), InvokeArgs, CI->getName(), BB); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. Invoke.addIncomingPHIValuesFor(BB); return false; } return false; }