// visitCallInst - This converts all LLVM call instructions into invoke // instructions. The except part of the invoke goes to the "LongJmpBlkPre" // that grabs the exception and proceeds to determine if it's a longjmp // exception or not. void LowerSetJmp::visitCallInst(CallInst& CI) { if (CI.getCalledFunction()) if (!IsTransformableFunction(CI.getCalledFunction()->getName()) || CI.getCalledFunction()->isIntrinsic()) return; BasicBlock* OldBB = CI.getParent(); // If not reachable from a setjmp call, don't transform. if (!DFSBlocks.count(OldBB)) return; BasicBlock* NewBB = OldBB->splitBasicBlock(CI); assert(NewBB && "Couldn't split BB of \"call\" instruction!!"); DFSBlocks.insert(NewBB); NewBB->setName("Call2Invoke"); Function* Func = OldBB->getParent(); // Construct the new "invoke" instruction. TerminatorInst* Term = OldBB->getTerminator(); std::vector<Value*> Params(CI.op_begin() + 1, CI.op_end()); InvokeInst* II = InvokeInst::Create(CI.getCalledValue(), NewBB, PrelimBBMap[Func], Params.begin(), Params.end(), CI.getName(), Term); II->setCallingConv(CI.getCallingConv()); II->setParamAttrs(CI.getParamAttrs()); // Replace the old call inst with the invoke inst and remove the call. CI.replaceAllUsesWith(II); CI.getParent()->getInstList().erase(&CI); // The old terminator is useless now that we have the invoke inst. Term->getParent()->getInstList().erase(Term); ++CallsTransformed; }
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes and turn unwind /// instructions into branches to the invoke unwind dest. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); std::vector<Value*> InvokeDestPHIValues; // If there are PHI nodes in the unwind destination block, we need to // keep track of which values came into them from this invoke, then remove // the entry for this block. BasicBlock *InvokeBlock = II->getParent(); for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); // Save the value to use for this edge. InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); } Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){ Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. if (!isa<CallInst>(I)) continue; CallInst *CI = cast<CallInst>(I); // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, InvokeArgs.begin(), InvokeArgs.end(), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } // This basic block is now complete, start scanning the next one. break; } } if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { // An UnwindInst requires special handling when it gets inlined into an // invoke site. Once this happens, we know that the unwind would cause // a control transfer to the invoke exception destination, so we can // transform it into a direct branch to the exception destination. BranchInst::Create(InvokeDest, UI); // Delete the unwind instruction! UI->eraseFromParent(); // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } } } } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); }
// // Method: runOnModule() // // Description: // Entry point for this LLVM pass. // Clone functions that take GEPs as arguments // // Inputs: // M - A reference to the LLVM module to transform // // Outputs: // M - The transformed LLVM module. // // Return value: // true - The module was modified. // false - The module was not modified. // bool GEPExprArgs::runOnModule(Module& M) { bool changed; do { changed = false; for (Module::iterator F = M.begin(); F != M.end(); ++F){ for (Function::iterator B = F->begin(), FE = F->end(); B != FE; ++B) { for (BasicBlock::iterator I = B->begin(), BE = B->end(); I != BE;) { CallInst *CI = dyn_cast<CallInst>(I++); if(!CI) continue; if(CI->hasByValArgument()) continue; // if the GEP calls a function, that is externally defined, // or might be changed, ignore this call site. Function *F = CI->getCalledFunction(); if (!F || (F->isDeclaration() || F->mayBeOverridden())) continue; if(F->hasStructRetAttr()) continue; if(F->isVarArg()) continue; // find the argument we must replace Function::arg_iterator ai = F->arg_begin(), ae = F->arg_end(); unsigned argNum = 1; for(; argNum < CI->getNumOperands();argNum++, ++ai) { if(ai->use_empty()) continue; if (isa<GEPOperator>(CI->getOperand(argNum))) break; } // if no argument was a GEP operator to be changed if(ai == ae) continue; GEPOperator *GEP = dyn_cast<GEPOperator>(CI->getOperand(argNum)); if(!GEP->hasAllConstantIndices()) continue; // Construct the new Type // Appends the struct Type at the beginning std::vector<Type*>TP; TP.push_back(GEP->getPointerOperand()->getType()); for(unsigned c = 1; c < CI->getNumOperands();c++) { TP.push_back(CI->getOperand(c)->getType()); } //return type is same as that of original instruction FunctionType *NewFTy = FunctionType::get(CI->getType(), TP, false); Function *NewF; numSimplified++; if(numSimplified > 800) return true; NewF = Function::Create(NewFTy, GlobalValue::InternalLinkage, F->getName().str() + ".TEST", &M); Function::arg_iterator NI = NewF->arg_begin(); NI->setName("GEParg"); ++NI; ValueToValueMapTy ValueMap; for (Function::arg_iterator II = F->arg_begin(); NI != NewF->arg_end(); ++II, ++NI) { ValueMap[II] = NI; NI->setName(II->getName()); NI->addAttr(F->getAttributes().getParamAttributes(II->getArgNo() + 1)); } NewF->setAttributes(NewF->getAttributes().addAttr( 0, F->getAttributes().getRetAttributes())); // Perform the cloning. SmallVector<ReturnInst*,100> Returns; CloneFunctionInto(NewF, F, ValueMap, false, Returns); std::vector<Value*> fargs; for(Function::arg_iterator ai = NewF->arg_begin(), ae= NewF->arg_end(); ai != ae; ++ai) { fargs.push_back(ai); } NewF->setAttributes(NewF->getAttributes().addAttr( ~0, F->getAttributes().getFnAttributes())); //Get the point to insert the GEP instr. SmallVector<Value*, 8> Ops(CI->op_begin()+1, CI->op_end()); Instruction *InsertPoint; for (BasicBlock::iterator insrt = NewF->front().begin(); isa<AllocaInst>(InsertPoint = insrt); ++insrt) {;} NI = NewF->arg_begin(); SmallVector<Value*, 8> Indices; Indices.append(GEP->op_begin()+1, GEP->op_end()); GetElementPtrInst *GEP_new = GetElementPtrInst::Create(cast<Value>(NI), Indices, "", InsertPoint); fargs.at(argNum)->replaceAllUsesWith(GEP_new); unsigned j = argNum + 1; for(; j < CI->getNumOperands();j++) { if(CI->getOperand(j) == GEP) fargs.at(j)->replaceAllUsesWith(GEP_new); } SmallVector<AttributeWithIndex, 8> AttributesVec; // Get the initial attributes of the call AttrListPtr CallPAL = CI->getAttributes(); Attributes RAttrs = CallPAL.getRetAttributes(); Attributes FnAttrs = CallPAL.getFnAttributes(); if (RAttrs) AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs)); SmallVector<Value*, 8> Args; Args.push_back(GEP->getPointerOperand()); for(unsigned j =1;j<CI->getNumOperands();j++) { Args.push_back(CI->getOperand(j)); // position in the AttributesVec if (Attributes Attrs = CallPAL.getParamAttributes(j)) AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); } // Create the new attributes vec. if (FnAttrs != Attribute::None) AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()); CallInst *CallI = CallInst::Create(NewF,Args,"", CI); CallI->setCallingConv(CI->getCallingConv()); CallI->setAttributes(NewCallPAL); CI->replaceAllUsesWith(CallI); CI->eraseFromParent(); changed = true; } } } } while(changed); return true; }