static bool ExpandOpForIntSize(Module *M, unsigned Bits, bool Mul) {
  IntegerType *IntTy = IntegerType::get(M->getContext(), Bits);
  SmallVector<Type *, 1> Types;
  Types.push_back(IntTy);
  Intrinsic::ID ID = (Mul ? Intrinsic::umul_with_overflow
                          : Intrinsic::uadd_with_overflow);
  std::string Name = Intrinsic::getName(ID, Types);
  Function *Intrinsic = M->getFunction(Name);
  if (!Intrinsic)
    return false;
  for (Value::use_iterator CallIter = Intrinsic->use_begin(),
         E = Intrinsic->use_end(); CallIter != E; ) {
    CallInst *Call = dyn_cast<CallInst>(*CallIter++);
    if (!Call) {
      report_fatal_error("ExpandArithWithOverflow: Taking the address of a "
                         "*.with.overflow intrinsic is not allowed");
    }
    Value *VariableArg;
    ConstantInt *ConstantArg;
    if (ConstantInt *C = dyn_cast<ConstantInt>(Call->getArgOperand(0))) {
      VariableArg = Call->getArgOperand(1);
      ConstantArg = C;
    } else if (ConstantInt *C = dyn_cast<ConstantInt>(Call->getArgOperand(1))) {
      VariableArg = Call->getArgOperand(0);
      ConstantArg = C;
    } else {
      errs() << "Use: " << *Call << "\n";
      report_fatal_error("ExpandArithWithOverflow: At least one argument of "
                         "*.with.overflow must be a constant");
    }

    Value *ArithResult = BinaryOperator::Create(
        (Mul ? Instruction::Mul : Instruction::Add), VariableArg, ConstantArg,
        Call->getName() + ".arith", Call);

    uint64_t ArgMax;
    if (Mul) {
      ArgMax = UintTypeMax(Bits) / ConstantArg->getZExtValue();
    } else {
      ArgMax = UintTypeMax(Bits) - ConstantArg->getZExtValue();
    }
    Value *OverflowResult = new ICmpInst(
        Call, CmpInst::ICMP_UGT, VariableArg, ConstantInt::get(IntTy, ArgMax),
        Call->getName() + ".overflow");

    // Construct the struct result.
    Value *NewStruct = UndefValue::get(Call->getType());
    NewStruct = CreateInsertValue(NewStruct, 0, ArithResult, Call);
    NewStruct = CreateInsertValue(NewStruct, 1, OverflowResult, Call);
    Call->replaceAllUsesWith(NewStruct);
    Call->eraseFromParent();
  }
  Intrinsic->eraseFromParent();
  return true;
}
Esempio n. 2
0
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes.  This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
/// Returns true to indicate that the next block should be skipped.
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
                                                   InvokeInliningInfo &Invoke) {
  LandingPadInst *LPI = Invoke.getLandingPadInst();

  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = BBI++;

    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
      unsigned NumClauses = LPI->getNumClauses();
      L->reserveClauses(NumClauses);
      for (unsigned i = 0; i != NumClauses; ++i)
        L->addClause(LPI->getClause(i));
    }

    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);

    // If this call cannot unwind, don't convert it to an invoke.
    // Inline asm calls cannot throw.
    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
      continue;

    // Convert this function call into an invoke instruction.  First, split the
    // basic block.
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");

    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();

    // Create the new invoke instruction.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
                                        Invoke.getOuterResumeDest(),
                                        InvokeArgs, CI->getName(), BB);
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);

    // Delete the original call
    Split->getInstList().pop_front();

    // Update any PHI nodes in the exceptional block to indicate that there is
    // now a new entry in them.
    Invoke.addIncomingPHIValuesFor(BB);
    return false;
  }

  return false;
}
Esempio n. 3
0
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes.  This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
                                                   BasicBlock *InvokeDest,
                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = BBI++;
    
    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);
    if (CI == 0) continue;
    
    // If this call cannot unwind, don't convert it to an invoke.
    if (CI->doesNotThrow())
      continue;
    
    // Convert this function call into an invoke instruction.
    // First, split the basic block.
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
    
    // Next, create the new invoke instruction, inserting it at the end
    // of the old basic block.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    InvokeInst *II =
      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
                         InvokeArgs.begin(), InvokeArgs.end(),
                         CI->getName(), BB->getTerminator());
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);
    
    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();
    Split->getInstList().pop_front();  // Delete the original call
    
    // Update any PHI nodes in the exceptional block to indicate that
    // there is now a new entry in them.
    unsigned i = 0;
    for (BasicBlock::iterator I = InvokeDest->begin();
         isa<PHINode>(I); ++I, ++i)
      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
    
    // This basic block is now complete, the caller will continue scanning the
    // next one.
    return;
  }
}
Esempio n. 4
0
// Return the copied value if the value is a bs copy, otherwise null
Value *getBSCopyValue(Value *v) {
  CallInst *call = dyn_cast<CallInst>(v);
  if (!call) return nullptr;
  // This is kind of dubious
  return call->getName().find(".__rmc_bs_copy") != StringRef::npos?
    call->getOperand(0) : nullptr;
}
Esempio n. 5
0
// visitCallInst - This converts all LLVM call instructions into invoke
// instructions. The except part of the invoke goes to the "LongJmpBlkPre"
// that grabs the exception and proceeds to determine if it's a longjmp
// exception or not.
void LowerSetJmp::visitCallInst(CallInst& CI)
{
  if (CI.getCalledFunction())
    if (!IsTransformableFunction(CI.getCalledFunction()->getName()) ||
        CI.getCalledFunction()->isIntrinsic()) return;

  BasicBlock* OldBB = CI.getParent();

  // If not reachable from a setjmp call, don't transform.
  if (!DFSBlocks.count(OldBB)) return;

  BasicBlock* NewBB = OldBB->splitBasicBlock(CI);
  assert(NewBB && "Couldn't split BB of \"call\" instruction!!");
  DFSBlocks.insert(NewBB);
  NewBB->setName("Call2Invoke");

  Function* Func = OldBB->getParent();

  // Construct the new "invoke" instruction.
  TerminatorInst* Term = OldBB->getTerminator();
  std::vector<Value*> Params(CI.op_begin() + 1, CI.op_end());
  InvokeInst* II =
    InvokeInst::Create(CI.getCalledValue(), NewBB, PrelimBBMap[Func],
                       Params.begin(), Params.end(), CI.getName(), Term);
  II->setCallingConv(CI.getCallingConv());
  II->setParamAttrs(CI.getParamAttrs());

  // Replace the old call inst with the invoke inst and remove the call.
  CI.replaceAllUsesWith(II);
  CI.getParent()->getInstList().erase(&CI);

  // The old terminator is useless now that we have the invoke inst.
  Term->getParent()->getInstList().erase(Term);
  ++CallsTransformed;
}
  void visitCallInst(CallInst &I) {
    string intrinsic = I.getCalledFunction()->getName().str();

    if(intrinsic.find("modmul") != -1) {

      CallInst *enterMontpro1 = enterMontgomery(I.getOperand(0), I.getOperand(2), &I);
      CallInst *enterMontpro2 = enterMontgomery(I.getOperand(1), I.getOperand(2), &I);
      CallInst *mulMontpro = mulMontgomery(I.getName().str(), enterMontpro1, enterMontpro2, I.getOperand(2), &I);
      CallInst *exitMontpro = leaveMontgomery(mulMontpro, I.getOperand(2), &I);

      I.replaceAllUsesWith(exitMontpro);

      I.removeFromParent();
    } else if(intrinsic.find("modexp") != -1) {
      
      CallInst *enterMontpro1 = enterMontgomery(I.getOperand(0), I.getOperand(2), &I);
      CallInst *expMontpro = expMontgomery(I.getName().str(), enterMontpro1, I.getOperand(1), I.getOperand(2), &I);
      CallInst *exitMontpro = leaveMontgomery(expMontpro, I.getOperand(2), &I);

      I.replaceAllUsesWith(exitMontpro);

      I.eraseFromParent();
    }
  }
Esempio n. 7
0
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes and turn unwind
/// instructions into branches to the invoke unwind dest.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
                                ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();
  std::vector<Value*> InvokeDestPHIValues;

  // If there are PHI nodes in the unwind destination block, we need to
  // keep track of which values came into them from this invoke, then remove
  // the entry for this block.
  BasicBlock *InvokeBlock = II->getParent();
  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    // Save the value to use for this edge.
    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
  }

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.
  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB) {
      if (InlinedCodeInfo.ContainsCalls) {
        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
          Instruction *I = BBI++;

          // We only need to check for function calls: inlined invoke
          // instructions require no special handling.
          if (!isa<CallInst>(I)) continue;
          CallInst *CI = cast<CallInst>(I);

          // If this call cannot unwind, don't convert it to an invoke.
          if (CI->doesNotThrow())
            continue;

          // Convert this function call into an invoke instruction.
          // First, split the basic block.
          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");

          // Next, create the new invoke instruction, inserting it at the end
          // of the old basic block.
          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
          InvokeInst *II =
            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
                               InvokeArgs.begin(), InvokeArgs.end(),
                               CI->getName(), BB->getTerminator());
          II->setCallingConv(CI->getCallingConv());
          II->setAttributes(CI->getAttributes());

          // Make sure that anything using the call now uses the invoke!
          CI->replaceAllUsesWith(II);

          // Delete the unconditional branch inserted by splitBasicBlock
          BB->getInstList().pop_back();
          Split->getInstList().pop_front();  // Delete the original call

          // Update any PHI nodes in the exceptional block to indicate that
          // there is now a new entry in them.
          unsigned i = 0;
          for (BasicBlock::iterator I = InvokeDest->begin();
               isa<PHINode>(I); ++I, ++i) {
            PHINode *PN = cast<PHINode>(I);
            PN->addIncoming(InvokeDestPHIValues[i], BB);
          }

          // This basic block is now complete, start scanning the next one.
          break;
        }
      }

      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
        // An UnwindInst requires special handling when it gets inlined into an
        // invoke site.  Once this happens, we know that the unwind would cause
        // a control transfer to the invoke exception destination, so we can
        // transform it into a direct branch to the exception destination.
        BranchInst::Create(InvokeDest, UI);

        // Delete the unwind instruction!
        UI->eraseFromParent();

        // Update any PHI nodes in the exceptional block to indicate that
        // there is now a new entry in them.
        unsigned i = 0;
        for (BasicBlock::iterator I = InvokeDest->begin();
             isa<PHINode>(I); ++I, ++i) {
          PHINode *PN = cast<PHINode>(I);
          PN->addIncoming(InvokeDestPHIValues[i], BB);
        }
      }
    }
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction.  Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}
Esempio n. 8
0
// Replace "packW" and "unpackW" intrinsics by insert/extract operations and
// update the uses accordingly.
void
FunctionVectorizer::generatePackUnpackCode(Function*      f,
                                           const WFVInfo& info)
{
    assert (f);

    SmallVector<CallInst*, 16> eraseVec;

    for (auto &BB : *f)
    {
        Instruction* allocPos = BB.getFirstInsertionPt();
        for (auto &I : BB)
        {
            Instruction* inst = &I;

            if (isUnpackWFunctionCall(inst))
            {
                DEBUG_WFV( outs() << "generateUnpackCode(" << *inst << " )\n"; );

                CallInst* unpackCall = cast<CallInst>(inst);

                Value* value    = unpackCall->getArgOperand(0);
                Value* indexVal = unpackCall->getArgOperand(1);

                // Extract scalar values.
                Value* extract = generateHorizontalExtract(value,
                                                           indexVal,
                                                           unpackCall->getName(),
                                                           allocPos,
                                                           unpackCall,
                                                           info);

                // If the type only matches structurally, create an additional bitcast.
                Type* oldType = unpackCall->getType();
                Type* newType = extract->getType();
                if (oldType != newType)
                {
                    assert (newType->canLosslesslyBitCastTo(oldType) || WFV::typesMatch(oldType, newType));
                    Instruction* bc = new BitCastInst(extract, oldType, "", unpackCall);

                    // Copy properties from unpackCall.
                    WFV::copyMetadata(bc, *unpackCall);
                    extract = bc;
                }

                // Rewire the use.
                assert (unpackCall->getNumUses() == 1);
                Value* use = *unpackCall->use_begin();
                assert (isa<Instruction>(use));
                Instruction* scalarUse = cast<Instruction>(use);

                scalarUse->replaceUsesOfWith(unpackCall, extract);

                // Erase now unused unpack call.
                eraseVec.push_back(unpackCall);

                // If the returned extract operation is an alloca, we have to
                // make sure that all changes to that memory location are
                // correctly written back to the original memory from which
                // the sub-element was extracted.
                // This means we have to insert merge and store operations
                // after every use of this value (including "forwarded" uses
                // via casts, phis, and GEPs).
                // However, we must only merge back those values that were
                // modified. This is not only for efficiency, but also for
                // correctness, since there may be uninitialized pointers in
                // a structure, which we must not load/store from/to (see
                // test_struct_extra05 with all analyses disabled).
                if (isa<AllocaInst>(extract) ||
                    (isa<BitCastInst>(extract) &&
                     isa<AllocaInst>(cast<BitCastInst>(extract)->getOperand(0))))
                {
                    generateWriteBackOperations(cast<Instruction>(extract),
                                                cast<Instruction>(extract),
                                                value,
                                                indexVal,
                                                info);
                }
            }
            else if (isPackWFunctionCall(inst))
            {
                DEBUG_WFV( outs() << "generatePackCode(" << *inst << " )\n"; );

                CallInst* packCall = cast<CallInst>(inst);

                assert (WFV::isVectorizedType(*packCall->getType()) &&
                        "packCall should have vector return type after inst vectorization!");

                SmallVector<Value*, 8> scalarVals(info.mVectorizationFactor);

                // Get scalar results for merge.
                for (unsigned i=0; i<info.mVectorizationFactor; ++i)
                {
                    scalarVals[i] = packCall->getArgOperand(i);
                }

                // Merge scalar results.
                Instruction* merge = generateHorizontalMerge(scalarVals,
                                                             packCall->getType(),
                                                             "",
                                                             packCall,
                                                             info);

                // Rewire the uses.
                packCall->replaceAllUsesWith(merge);

                // Copy properties from packCall.
                WFV::copyMetadata(merge, *packCall);

                // Erase now unused pack call.
                eraseVec.push_back(packCall);
            }
Esempio n. 9
0
bool TracingNoGiri::visitSpecialCall(CallInst &CI) {
  Function *CalledFunc = CI.getCalledFunction();

  // We do not support indirect calls to special functions.
  if (CalledFunc == nullptr)
    return false;

  // Do not consider a function special if it has a function body; in this
  // case, the programmer has supplied his or her version of the function, and
  // we will instrument it.
  if (!CalledFunc->isDeclaration())
    return false;

  // Check the name of the function against a list of known special functions.
  std::string name = CalledFunc->getName().str();
  if (name.substr(0,12) == "llvm.memset.") {
    instrumentLock(&CI);

    // Get the destination pointer and cast it to a void pointer.
    Value *dstPointer = CI.getOperand(0);
    dstPointer = castTo(dstPointer, VoidPtrType, dstPointer->getName(), &CI);
    // Get the number of bytes that will be written into the buffer.
    Value *NumElts = CI.getOperand(2);
    // Get the ID of the external funtion call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));
    // Create the call to the run-time to record the external call instruction.
    std::vector<Value *> args = make_vector(CallID, dstPointer, NumElts, 0);
    CallInst::Create(RecordStore, args, "", &CI);

    instrumentUnlock(&CI);
    ++NumExtFuns; // Update statistics
    return true;
  } else if (name.substr(0,12) == "llvm.memcpy." ||
             name.substr(0,13) == "llvm.memmove." ||
             name == "strcpy") {
    instrumentLock(&CI);

    /* Record Load src, [CI] Load dst [CI] */
    // Get the destination and source pointers and cast them to void pointers.
    Value *dstPointer = CI.getOperand(0);
    Value *srcPointer  = CI.getOperand(1);
    dstPointer = castTo(dstPointer, VoidPtrType, dstPointer->getName(), &CI);
    srcPointer  = castTo(srcPointer,  VoidPtrType, srcPointer->getName(), &CI);
    // Get the ID of the ext fun call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));

    // Create the call to the run-time to record the loads and stores of
    // external call instruction.
    if(name == "strcpy") {
      // FIXME: If the tracer function should be inserted before or after????
      std::vector<Value *> args = make_vector(CallID, srcPointer, 0);
      CallInst::Create(RecordStrLoad, args, "", &CI);

      args = make_vector(CallID, dstPointer, 0);
      CallInst *recStore = CallInst::Create(RecordStrStore, args, "", &CI);
      CI.moveBefore(recStore);
    } else {
      // get the num elements to be transfered
      Value *NumElts = CI.getOperand(2);
      std::vector<Value *> args = make_vector(CallID, srcPointer, NumElts, 0);
      CallInst::Create(RecordLoad, args, "", &CI);

      args = make_vector(CallID, dstPointer, NumElts, 0);
      CallInst::Create(RecordStore, args, "", &CI);
    }

    instrumentUnlock(&CI);
    ++NumExtFuns; // Update statistics
    return true;
  } else if (name == "strcat") { /* Record Load dst, Load Src, Store dst-end before call inst  */
    instrumentLock(&CI);

    // Get the destination and source pointers and cast them to void pointers.
    Value *dstPointer = CI.getOperand(0);
    Value *srcPointer = CI.getOperand(1);
    dstPointer = castTo(dstPointer, VoidPtrType, dstPointer->getName(), &CI);
    srcPointer  = castTo(srcPointer,  VoidPtrType, srcPointer->getName(), &CI);

    // Get the ID of the ext fun call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));

    // Create the call to the run-time to record the loads and stores of
    // external call instruction.
    // CHECK: If the tracer function should be inserted before or after????
    std::vector<Value *> args = make_vector(CallID, dstPointer, 0);
    CallInst::Create(RecordStrLoad, args, "", &CI);

    args = make_vector(CallID, srcPointer, 0);
    CallInst::Create(RecordStrLoad, args, "", &CI);

    // Record the addresses before concat as they will be lost after concat
    args = make_vector(CallID, dstPointer, srcPointer, 0);
    CallInst::Create(RecordStrcatStore, args, "", &CI);

    instrumentUnlock(&CI);
    ++NumExtFuns; // Update statistics
    return true;
  } else if (name == "strlen") { /* Record Load */
    instrumentLock(&CI);

    // Get the destination and source pointers and cast them to void pointers.
    Value *srcPointer  = CI.getOperand(0);
    srcPointer  = castTo(srcPointer,  VoidPtrType, srcPointer->getName(), &CI);
    // Get the ID of the ext fun call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));
    std::vector<Value *> args = make_vector(CallID, srcPointer, 0);
    CallInst::Create(RecordStrLoad, args, "", &CI);

    instrumentUnlock(&CI);
    ++NumExtFuns; // Update statistics
    return true;
  } else if (name == "calloc") {
    instrumentLock(&CI);

    // Get the number of bytes that will be written into the buffer.
    Value *NumElts = BinaryOperator::Create(BinaryOperator::Mul,
                                            CI.getOperand(0),
                                            CI.getOperand(1),
                                            "calloc par1 * par2",
                                            &CI);
    // Get the destination pointer and cast it to a void pointer.
    // Instruction * dstPointerInst;
    Value *dstPointer = castTo(&CI, VoidPtrType, CI.getName(), &CI);

    /* // To move after call inst, we need to know if cast is a constant expr or inst
    if ((dstPointerInst = dyn_cast<Instruction>(dstPointer))) {
        CI.moveBefore(dstPointerInst); // dstPointerInst->insertAfter(&CI);
        // ((Instruction *)NumElts)->insertAfter(dstPointerInst);
    }
    else {
        CI.moveBefore((Instruction *)NumElts); // ((Instruction *)NumElts)->insertAfter(&CI);
	}
    dstPointer = dstPointerInst; // Assign to dstPointer for instrn or non-instrn values
    */

    // Get the ID of the external funtion call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));

    //
    // Create the call to the run-time to record the external call instruction.
    //
    std::vector<Value *> args = make_vector(CallID, dstPointer, NumElts, 0);
    CallInst *recStore = CallInst::Create(RecordStore, args, "", &CI);
    CI.moveBefore(recStore); //recStore->insertAfter((Instruction *)NumElts);

    // Moove cast, #byte computation and store to after call inst
    CI.moveBefore(cast<Instruction>(NumElts));

    instrumentUnlock(&CI);
    ++NumExtFuns; // Update statistics
    return true;
  } else if (name == "tolower" || name == "toupper") {
    // Not needed as there are no loads and stores
  /*  } else if (name == "strncpy/itoa/stdarg/scanf/fscanf/sscanf/fread/complex/strftime/strptime/asctime/ctime") { */
  } else if (name == "fscanf") {
    // TODO
    // In stead of parsing format string, can we use the type of the arguments??
  } else if (name == "sscanf") {
    // TODO
  } else if (name == "sprintf") {
    instrumentLock(&CI);
    // Get the pointer to the destination buffer.
    Value *dstPointer = CI.getOperand(0);
    dstPointer = castTo(dstPointer, VoidPtrType, dstPointer->getName(), &CI);

    // Get the ID of the call instruction.
    Value *CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));

    // Scan through the arguments looking for what appears to be a character
    // string.  Generate load records for each of these strings.
    for (unsigned index = 2; index < CI.getNumOperands(); ++index) {
      if (CI.getOperand(index)->getType() == VoidPtrType) {
        // Create the call to the run-time to record the load from the string.
        // What about other loads??
        Value *Ptr = CI.getOperand(index);
        std::vector<Value *> args = make_vector(CallID, Ptr, 0);
        CallInst::Create(RecordStrLoad, args, "", &CI);

        ++NumLoadStrings; // Update statistics
      }
    }

    // Create the call to the run-time to record the external call instruction.
    std::vector<Value *> args = make_vector(CallID, dstPointer, 0);
    CallInst *recStore = CallInst::Create(RecordStrStore, args, "", &CI);
    CI.moveBefore(recStore);

    instrumentUnlock(&CI);
    ++NumStoreStrings; // Update statistics
    return true;
  } else if (name == "fgets") {
    instrumentLock(&CI);

    // Get the pointer to the destination buffer.
    Value * dstPointer = CI.getOperand(0);
    dstPointer = castTo(dstPointer, VoidPtrType, dstPointer->getName(), &CI);

    // Get the ID of the ext fun call instruction.
    Value * CallID = ConstantInt::get(Int32Type, lsNumPass->getID(&CI));

    // Create the call to the run-time to record the external call instruction.
    std::vector<Value *> args = make_vector(CallID, dstPointer, 0);
    CallInst *recStore = CallInst::Create(RecordStrStore, args, "", &CI);
    CI.moveBefore(recStore);

    instrumentUnlock(&CI);
    // Update statistics
    ++NumStoreStrings;
    return true;
  }

  return false;
}
Esempio n. 10
0
void insertCallToAccessFunction(Function *F, Function *cF) {
  CallInst *I;
  Instruction *bI;
  std::vector<Value *> Args;
  std::vector<Type *> ArgsTy;
  Module *M = F->getParent();
  std::string name;
  Function *nF, *tF;
  FunctionType *FTy;
  std::stringstream out;

  Value::user_iterator i = F->user_begin(), e = F->user_end();
  while (i != e) {
    Args.clear();
    ArgsTy.clear();
    /*************  C codes  ***********/

    if (isa<CallInst>(*i)) {

      I = dyn_cast<CallInst>(*i);
      // call to the access function F
      Args.push_back(I->getArgOperand(0));
      ArgsTy.push_back(I->getArgOperand(0)->getType());

      // call to the execute function cF
      Args.push_back(cF);
      ArgsTy.push_back(PointerType::get(cF->getFunctionType(), 0));

      unsigned int t;
      for (t = 1; t < I->getNumArgOperands(); t++) {
        Args.push_back(I->getArgOperand(t));
        ArgsTy.push_back(I->getArgOperand(t)->getType());
        // errs() << *(I->getArgOperand(t)) << " is or not " <<
        // isa<GlobalVariable>(I->getArgOperand(t)) << "\n";
      }
      tF = dyn_cast<Function>(I->getCalledFunction());
      FTy = FunctionType::get(tF->getReturnType(), ArgsTy, 0);

      out.str(std::string());
      out << "task_DAE_" << I->getNumArgOperands() - 1;
      nF = (Function *)M->getOrInsertFunction(out.str(), FTy);
      CallInst *ci = CallInst::Create(nF, Args, I->getName(), I);

      i++;
      I->replaceAllUsesWith(ci);
      I->eraseFromParent();
    }
    /*************  C++ codes  ***********/
    else {

      Value::user_iterator bit = (*i)->user_begin(), bite = (*i)->user_end();

      Type *iTy = (*i)->getType();
      i++;
      while (bit != bite) {
        Args.clear();
        ArgsTy.clear();
        I = dyn_cast<CallInst>(*bit);

        bit++;

        // call to the access function F
        Args.push_back(I->getArgOperand(0));
        ArgsTy.push_back(I->getArgOperand(0)->getType());

        // call to the execute function cF
        bI = new BitCastInst(cF, (iTy), "_TPR", I);
        Args.push_back(bI);
        ArgsTy.push_back(bI->getType());

        unsigned int t;
        for (t = 1; t < I->getNumArgOperands(); t++) {
          Args.push_back(I->getArgOperand(t));
          ArgsTy.push_back(I->getArgOperand(t)->getType());
        }
        tF = dyn_cast<Function>(I->getCalledFunction());
        FTy = FunctionType::get(tF->getReturnType(), ArgsTy, 0);

        out.str(std::string());
        out << "task_DAE_" << I->getNumArgOperands() - 1;
        nF = (Function *)M->getOrInsertFunction(out.str(), FTy);
        CallInst *ci = CallInst::Create(nF, Args, I->getName(), I);

        I->replaceAllUsesWith(ci);
        I->eraseFromParent();
      }
    }
  }
}
Esempio n. 11
0
void DSWP::insertConsume(Instruction *u, Instruction *v, DType dtype, int channel, int uthread, int vthread) {
  Instruction *oldu = dyn_cast<Instruction>(newToOld[u]);
  Instruction *insPos = placeEquivalents[vthread][oldu];
  if (insPos == NULL) {
      insPos = dyn_cast<Instruction>(instMap[vthread][oldu]);
      if (insPos == NULL) {
          error("can't insert nowhere");
      }
  }

  // call sync_consume(channel)
  Function *fun = module->getFunction("sync_consume");
  vector<Value *> args;
  args.push_back(ConstantInt::get(Type::getInt32Ty(*context), channel));
  CallInst *call = CallInst::Create(fun, args, "c" + itoa(channel), insPos);

  if (dtype == REG) {
      CastInst *cast;
      string name = call->getName().str() + "_val";

      if (u->getType()->isIntegerTy()) {
          cast = new TruncInst(call, u->getType(), name);
      }
      else if (u->getType()->isFloatingPointTy()) {
          if (u->getType()->isFloatTy())
              error("cannot deal with double");
          cast = new BitCastInst(call, u->getType(), name);
      }
      else if (u->getType()->isPointerTy()){
          cast = new IntToPtrInst(call, u->getType(), name);
      } else {
          error("what's the hell type");
      }

      cast->insertBefore(insPos);

      // replace the uses
      for (Instruction::use_iterator ui = oldu->use_begin(), ue = oldu->use_end(); ui != ue; ++ui) {
          Instruction *user = dyn_cast<Instruction>(*ui);
          if (user == NULL) {
              error("used by a non-instruction?");
          }
          // make sure it's in the same function...
          if (user->getParent()->getParent() != v->getParent()->getParent()) {
              continue;
          }

          // call replaceUses so that it handles phi nodes
          map<Value *, Value *> reps;
          reps[oldu] = cast;
          replaceUses(user, reps);
      }
  } /* TODO: need to handle true memory dependences more than just syncing?
  else if (dtype == DTRUE) {	//READ after WRITE
      error("check mem dep!!");

      if (!isa<LoadInst>(v)) {
          error("not true dependency");
      }
      BitCastInst *cast = new BitCastInst(call, v->getType(), call->getName().str() + "_ptr");
      cast->insertBefore(v);

      // replace the v with 'cast' in v's thread:
      // (other thread with be dealed using dependence)
      for (Instruction::use_iterator ui = v->use_begin(), ue = v->use_end(); ui != ue; ui++) {
          Instruction *user = dyn_cast<Instruction>(*ui);

          if (user == NULL) {
            error("how could it be NULL");
          }

          //	int userthread = this->getNewInstAssigned(user);
          if (user->getParent()->getParent() != v->getParent()->getParent()) {
              continue;
          }

          for (unsigned i = 0; i < user->getNumOperands(); i++) {
              Value * op = user->getOperand(i);
	      if (op == v) {
                  user->setOperand(i, cast);
	      }
          }
      }
  } */ else {
      // nothing to do
  }
}
Esempio n. 12
0
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes.  This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
/// Returns true to indicate that the next block should be skipped.
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
                                                   InvokeInliningInfo &Invoke) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = BBI++;
    
    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);
    if (CI == 0) continue;

    // LIBUNWIND: merge selector instructions.
    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
      EHSelectorInst *Outer = Invoke.getOuterSelector();
      if (!Outer) continue;

      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);

      // If both selectors contain only cleanups, we don't need to do
      // anything.  TODO: this is really just a very specific instance
      // of a much more general optimization.
      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;

      // Otherwise, we just append the outer selector to the inner selector.
      SmallVector<Value*, 16> NewSelector;
      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
        NewSelector.push_back(Inner->getArgOperand(i));
      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
        NewSelector.push_back(Outer->getArgOperand(i));

      CallInst *NewInner =
        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
      // No need to copy attributes, calling convention, etc.
      NewInner->takeName(Inner);
      Inner->replaceAllUsesWith(NewInner);
      Inner->eraseFromParent();
      continue;
    }
    
    // If this call cannot unwind, don't convert it to an invoke.
    if (CI->doesNotThrow())
      continue;
    
    // Convert this function call into an invoke instruction.
    // First, split the basic block.
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");

    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();

    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
    // directly to the new landing pad.
    if (Invoke.forwardEHResume(CI, BB)) {
      // TODO: 'Split' is now unreachable; clean it up.

      // We want to leave the original call intact so that the call
      // graph and other structures won't get misled.  We also have to
      // avoid processing the next block, or we'll iterate here forever.
      return true;
    }

    // Otherwise, create the new invoke instruction.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    InvokeInst *II =
      InvokeInst::Create(CI->getCalledValue(), Split,
                         Invoke.getOuterUnwindDest(),
                         InvokeArgs, CI->getName(), BB);
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);

    Split->getInstList().pop_front();  // Delete the original call

    // Update any PHI nodes in the exceptional block to indicate that
    // there is now a new entry in them.
    Invoke.addIncomingPHIValuesFor(BB);
    return false;
  }

  return false;
}
// Convert the given call to use normalized argument/return types.
template <class T> static bool ConvertCall(T *Call, Pass *P) {
  // Don't try to change calls to intrinsics.
  if (isa<IntrinsicInst>(Call))
    return false;
  FunctionType *FTy = cast<FunctionType>(
      Call->getCalledValue()->getType()->getPointerElementType());
  FunctionType *NFTy = NormalizeFunctionType(FTy);
  if (NFTy == FTy)
    return false; // No change needed.

  // Convert arguments.
  SmallVector<Value *, 8> Args;
  for (unsigned I = 0; I < Call->getNumArgOperands(); ++I) {
    Value *Arg = Call->getArgOperand(I);
    if (NFTy->getParamType(I) != FTy->getParamType(I)) {
      Instruction::CastOps CastType =
          Call->getAttributes().hasAttribute(I + 1, Attribute::SExt) ?
          Instruction::SExt : Instruction::ZExt;
      Arg = CopyDebug(CastInst::Create(CastType, Arg, NFTy->getParamType(I),
                                       "arg_ext", Call), Call);
    }
    Args.push_back(Arg);
  }
  Value *CastFunc =
    CopyDebug(new BitCastInst(Call->getCalledValue(), NFTy->getPointerTo(),
                              Call->getName() + ".arg_cast", Call), Call);
  Value *Result = NULL;
  if (CallInst *OldCall = dyn_cast<CallInst>(Call)) {
    CallInst *NewCall = CopyDebug(CallInst::Create(CastFunc, Args, "", OldCall),
                                  OldCall);
    NewCall->takeName(OldCall);
    NewCall->setAttributes(OldCall->getAttributes());
    NewCall->setCallingConv(OldCall->getCallingConv());
    NewCall->setTailCall(OldCall->isTailCall());
    Result = NewCall;

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      Result = CopyDebug(new TruncInst(NewCall, FTy->getReturnType(),
                                       NewCall->getName() + ".ret_trunc", Call),
                         Call);
    }
  } else if (InvokeInst *OldInvoke = dyn_cast<InvokeInst>(Call)) {
    BasicBlock *Parent = OldInvoke->getParent();
    BasicBlock *NormalDest = OldInvoke->getNormalDest();
    BasicBlock *UnwindDest = OldInvoke->getUnwindDest();

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      if (BasicBlock *SplitDest = SplitCriticalEdge(Parent, NormalDest)) {
        NormalDest = SplitDest;
      }
    }

    InvokeInst *New = CopyDebug(InvokeInst::Create(CastFunc, NormalDest,
                                                   UnwindDest, Args,
                                                   "", OldInvoke),
                                OldInvoke);
    New->takeName(OldInvoke);

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      Result = CopyDebug(new TruncInst(New, FTy->getReturnType(),
                                       New->getName() + ".ret_trunc",
                                       NormalDest->getTerminator()),
                         OldInvoke);
    } else {
      Result = New;
    }

    New->setAttributes(OldInvoke->getAttributes());
    New->setCallingConv(OldInvoke->getCallingConv());
  }
  Call->replaceAllUsesWith(Result);
  Call->eraseFromParent();
  return true;
}