Esempio n. 1
0
NTL::ZZX Vector<long>::encode(const EncryptedArray &ea) const
{
    assert(this->size() <= ea.size());
    NTL::ZZX encoded;
    if (this->size() < ea.size()) {
        auto tmp(*this);
        tmp.resize(ea.size());
        ea.encode(encoded, tmp);
    } else {
        ea.encode(encoded, *this);
    }
    return encoded;
}
Esempio n. 2
0
// Returns the result as a vector of ciphertexts
void replicateAll(std::vector<Ctxt>& v, const EncryptedArray& ea,
       	          const Ctxt& ctxt, long recBound, RepAuxDim* repAuxPtr)
{
  v.resize(ea.size(), ctxt);
  ExplicitReplicator handler(v);
  replicateAll(ea, ctxt, &handler, recBound, repAuxPtr);
}
Esempio n. 3
0
void totalSums(const EncryptedArray& ea, Ctxt& ctxt)
{
  long n = ea.size();

  if (n == 1) return;

  Ctxt orig = ctxt;

  long k = NumBits(n);
  long e = 1;

  for (long i = k-2; i >= 0; i--) {
    Ctxt tmp1 = ctxt;
    ea.rotate(tmp1, e);
    ctxt += tmp1; // ctxt = ctxt + (ctxt >>> e)
    e = 2*e;

    if (bit(n, i)) {
      Ctxt tmp2 = orig;
      ea.rotate(tmp2, e);
      ctxt += tmp2; // ctxt = ctxt + (orig >>> e)
                    // NOTE: we could have also computed
                    // ctxt =  (ctxt >>> e) + orig, however,
                    // this would give us greater depth/noise
      e += 1;
    }
  }
}
Esempio n. 4
0
void replicateAllOrig(const EncryptedArray& ea, const Ctxt& ctxt,
                      ReplicateHandler *handler, RepAux* repAuxPtr)
{
  long nSlots = ea.size();
  long n = GreatestPowerOfTwo(nSlots); // 2^n <= nSlots

  Ctxt ctxt1 = ctxt;

  if ((1L << n) < nSlots)
    SelectRange(ea, ctxt1, 0, 1L << n);

  RepAux repAux;
  if (repAuxPtr==NULL) repAuxPtr = &repAux;

  recursiveReplicate(ea, ctxt1, n, n, 0, 1L << n, 
                     *repAuxPtr, handler);

  if ((1L << n) < nSlots) {
    ctxt1 = ctxt;
    SelectRange(ea, ctxt1, 1L << n, nSlots);
    ea.rotate(ctxt1, -(1L << n));
    recursiveReplicate(ea, ctxt1, n, n, 1L << n, nSlots, *repAuxPtr, handler);
  }
    
}
Esempio n. 5
0
// incrementalZeroTest sets each res[i], for i=0..n-1, to
// a ciphertext in which each slot is 0 or 1 according
// to whether or not bits 0..i of corresponding slot in ctxt
// is zero (1 if not zero, 0 if zero).
// It is assumed that res and each res[i] is already initialized
// by the caller.
// Complexity: O(d + n log d) smart automorphisms
//             O(n d) 
void incrementalZeroTest(Ctxt* res[], const EncryptedArray& ea,
			 const Ctxt& ctxt, long n)
{
  FHE_TIMER_START;
  long nslots = ea.size();
  long d = ea.getDegree();

  // compute linearized polynomial coefficients

  vector< vector<ZZX> > Coeff;
  Coeff.resize(n);

  for (long i = 0; i < n; i++) {
    // coeffients for mask on bits 0..i
    // L[j] = X^j for j = 0..i, L[j] = 0 for j = i+1..d-1

    vector<ZZX> L;
    L.resize(d);

    for (long j = 0; j <= i; j++) 
      SetCoeff(L[j], j);

    vector<ZZX> C;

    ea.buildLinPolyCoeffs(C, L);

    Coeff[i].resize(d);
    for (long j = 0; j < d; j++) {
      // Coeff[i][j] = to the encoding that has C[j] in all slots
      // FIXME: maybe encrtpted array should have this functionality
      //        built in
      vector<ZZX> T;
      T.resize(nslots);
      for (long s = 0; s < nslots; s++) T[s] = C[j];
      ea.encode(Coeff[i][j], T);
    }
  }

  vector<Ctxt> Conj(d, ctxt);
  // initialize Cong[j] to ctxt^{2^j}
  for (long j = 0; j < d; j++) {
    Conj[j].smartAutomorph(1L << j);
  }

  for (long i = 0; i < n; i++) {
    res[i]->clear();
    for (long j = 0; j < d; j++) {
      Ctxt tmp = Conj[j];
      tmp.multByConstant(Coeff[i][j]);
      *res[i] += tmp;
    }

    // *res[i] now has 0..i in each slot
    // next, we raise to the power 2^d-1

    fastPower(*res[i], d);
  }
  FHE_TIMER_STOP;
}
Esempio n. 6
0
// Return in poly a polynomial with X^i encoded in all the slots
static void x2iInSlots(ZZX& poly, long i,
		       vector<ZZX>& xVec, const EncryptedArray& ea)
{
  xVec.resize(ea.size());
  ZZX x2i = ZZX(i,1);
  for (long j=0; j<(long)xVec.size(); j++) xVec[j] = x2i;
  ea.encode(poly, xVec);
}
Esempio n. 7
0
void replicate(const EncryptedArray& ea, Ctxt& ctxt, long pos)
{
  long nSlots = ea.size();
  assert(pos >= 0 && pos < nSlots); 

  ZZX mask;
  ea.encodeUnitSelector(mask, pos);
  ctxt.multByConstant(mask);
  replicate0(ea, ctxt, pos);
}
Esempio n. 8
0
Ctxt select(Ctxt ctxt, int value, EncryptedArray ea, const FHEPubKey& publicKey) {
  PlaintextArray mask(ea);
  mask.encode(getVote(value, ea.size()));

  Ctxt maskCtxt(publicKey);
  ea.encrypt(maskCtxt, publicKey, mask);

  Ctxt ret(ctxt);
  ret.multiplyBy(maskCtxt);

  return ret;
}
Esempio n. 9
0
void runningSums(const EncryptedArray& ea, Ctxt& ctxt)
{
  long n = ea.size();

  long shamt = 1;
  while (shamt < n) {
    Ctxt tmp = ctxt;
    ea.shift(tmp, shamt);
    ctxt += tmp; // ctxt = ctxt + (ctxt >> shamt)
    shamt = 2*shamt;
  }
}
Esempio n. 10
0
// selects range of slots [lo..hi)
static
void SelectRange(const EncryptedArray& ea, ZZX& mask, long lo, long hi)
{
  long nSlots = ea.size();

  assert(lo >= 0 && lo <= hi && hi <= nSlots);

  vector<long> maskArray;
  maskArray.resize(nSlots);
  for (long i = 0; i < nSlots; i++) maskArray[i] = 0;
  for (long i = lo; i < hi; i++) maskArray[i] = 1;
  
  ea.encode(mask, maskArray);
}
Esempio n. 11
0
// Apply the same linear transformation to all the slots.
// C is the output of ea.buildLinPolyCoeffs
void applyLinPoly1(const EncryptedArray& ea, Ctxt& ctxt, const vector<ZZX>& C)
{
  assert(&ea.getContext() == &ctxt.getContext());
  long d = ea.getDegree();
  assert(d == lsize(C));

  long nslots = ea.size();

  vector<ZZX> encodedC(d);
  for (long j = 0; j < d; j++) {
    vector<ZZX> v(nslots);
    for (long i = 0; i < nslots; i++) v[i] = C[j];
    ea.encode(encodedC[j], v);
  }

  applyLinPolyLL(ctxt, encodedC, ea.getDegree());
}
Esempio n. 12
0
void benchmark(const EncryptedArray   & ea,
               const FHEPubKey        & pk,
               const FHESecKey        & sk,
               const MDL::Matrix<long>& data)
{
    const long BATCH_SIZE = 5000;
    MDL::Timer encTimer, evalTimer;
    MDL::EncVector mu(pk), sigma(pk);

    for (long part = 0; part *BATCH_SIZE < data.rows(); part++) {
        long from  = std::min<long>(part * BATCH_SIZE, data.rows());
        long to    = std::min<long>(from + BATCH_SIZE, data.rows());
        encTimer.start();
        auto ctxts = encrypt(data, pk, ea, from, to);
        encTimer.end();
        evalTimer.start();

        auto sum = summation(ctxts);
        mu    += sum.first;
        sigma += sum.second;
        evalTimer.end();
    }
    evalTimer.start();
    auto mu_mu = mu.covariance(ea, data.cols());
    NTL::ZZX N;
    std::vector<long> n(ea.size(), data.rows());
    ea.encode(N, n);
    sigma.multByConstant(N);
    for (size_t col = 0; col < data.cols(); col++) {
        ea.rotate(mu_mu[col], col * data.cols());
        sigma -= mu_mu[col];
    }
    evalTimer.end();

    MDL::Vector<long> mat;
    sigma.unpack(mat, sk, ea, true);
    for (int i = 0; i < data.cols(); i++) {
        for (int j = 0; j < data.cols(); j++) {
            std::cout << mat[i * data.cols() + j] << " ";
        }
        std::cout << std::endl;
    }
    printf("Covariance of %zd data, enc %f, eval %f\n", data.rows(),
           encTimer.second(), evalTimer.second());
}
Esempio n. 13
0
void decryptAndPrint(ostream& s, const Ctxt& ctxt, const FHESecKey& sk,
		     const EncryptedArray& ea, long flags)
{
  const FHEcontext& context = ctxt.getContext();
  xdouble noiseEst = sqrt(ctxt.getNoiseVar());
  xdouble modulus = xexp(context.logOfProduct(ctxt.getPrimeSet()));
  vector<ZZX> ptxt;
  ZZX p, pp;
  sk.Decrypt(p, ctxt, pp);

  s << "plaintext space mod "<<ctxt.getPtxtSpace()
       << ", level="<<ctxt.findBaseLevel()
       << ", \n           |noise|=q*" << (coeffsL2Norm(pp)/modulus)
       << ", |noiseEst|=q*" << (noiseEst/modulus)
       <<endl;

  if (flags & FLAG_PRINT_ZZX) {
    s << "   before mod-p reduction=";
    printZZX(s,pp) <<endl;
  }
  if (flags & FLAG_PRINT_POLY) {
    s << "   after mod-p reduction=";
    printZZX(s,p) <<endl;
  }
  if (flags & FLAG_PRINT_VEC) {
    ea.decode(ptxt, p);
    if (ea.getAlMod().getTag() == PA_zz_p_tag
	&& ctxt.getPtxtSpace() != ea.getAlMod().getPPowR()) {
      long g = GCD(ctxt.getPtxtSpace(), ea.getAlMod().getPPowR());
      for (long i=0; i<ea.size(); i++)
	PolyRed(ptxt[i], g, true);
    }
    s << "   decoded to ";
    if (deg(p) < 40) // just pring the whole thing
      s << ptxt << endl;
    else if (ptxt.size()==1) // a single slot
      printZZX(s, ptxt[0]) <<endl;
    else { // print first and last slots
      printZZX(s, ptxt[0],20) << "--";
      printZZX(s, ptxt[ptxt.size()-1], 20) <<endl;      
    }
  }
}
Esempio n. 14
0
// selects range of slots [lo..hi) in dimension d
static
void SelectRangeDim(const EncryptedArray& ea, ZZX& mask, long lo, long hi,
                    long d)
{
  long nSlots = ea.size();

  assert(d >= 0 && d < ea.dimension());
  assert(lo >= 0 && lo <= hi && hi <= ea.sizeOfDimension(d));

  vector<long> maskArray;
  maskArray.resize(nSlots);
  for (long i = 0; i < nSlots; i++) {
    long c = ea.coordinate(d, i);
    if (c >= lo && c < hi) 
      maskArray[i] = 1;
    else
      maskArray[i] = 0;
  }
  
  ea.encode(mask, maskArray);
}
Esempio n. 15
0
// recursiveReplicateDim:
//   d = dimension
//   ea.sizeOfDimension(d)/2 <= extent <= ea.sizeOfDimension(d),
//     only positions [0..extent) are non-zero
//   1 <= 2^k <= extent: size of current interval
//   0 <= pos < ea.sizeOfDimension(d): relative position of first vector
//   0 <= limit < ea.sizeOfDimension(): max # of positions to process
//   dimProd: product of dimensions 0..d
//   recBound: recursion bound (controls noise) 
//
// SHAI: limit and extent are always the same, it seems
static
void recursiveReplicateDim(const EncryptedArray& ea, const Ctxt& ctxt, 
                           long d, long extent, long k, long pos, long limit,  
                           long dimProd, long recBound,
                           RepAuxDim& repAux,
                           ReplicateHandler *handler)
{
  if (pos >= limit) return;

  if (replicateVerboseFlag) { // DEBUG code
    cerr << "check: " << k; CheckCtxt(ctxt, "");
  }
  
  long dSize = ea.sizeOfDimension(d);
  long nSlots = ea.size();

  if (k == 0) { // last level in this dimension: blocks of size 2^k=1

    if ( extent >= dSize) { // nothing to do in this dimension
      replicateAllNextDim(ea, ctxt, d+1, dimProd, recBound, repAux, handler);
      return;
    } // SHAI: Will we ever have extent > dSize??

    // need to replicate to fill positions [ (1L << n) .. dSize-1 ]

    if (repAux.tab(d,0).null()) { // generate mask if not there already
      ZZX mask;
      SelectRangeDim(ea, mask, 0, dSize - extent, d);
      repAux.tab(d, 0).set_ptr(new DoubleCRT(mask, ea.getContext()));
    }

    Ctxt ctxt_tmp = ctxt;
    ctxt_tmp.multByConstant(*repAux.tab(d, 0));

    ea.rotate1D(ctxt_tmp, d, extent, /*don't-care-flag=*/true);
    ctxt_tmp += ctxt;
    replicateAllNextDim(ea, ctxt_tmp, d+1, dimProd, recBound, repAux, handler);
    return;
  }

  // If we need to stop early, call the handler
  if (handler->earlyStop(d, k, dimProd)) {
    handler->handle(ctxt);
    return;
  }

  k--;
  Ctxt ctxt_masked = ctxt;

  {   // artificial scope to miminize storage in the recursion
    { // another artificial scope (SHAI: this seems redundant)

      // generate mask at index k+1, if not there yet

      if (repAux.tab(d, k+1).null()) { // need to generate
        vector< long > maskArray(nSlots,0);
        for (long i = 0; i < nSlots; i++) {
          long c = ea.coordinate(d, i);
          if (c < extent && bit(c, k) == 0)
            maskArray[i] = 1;
        }
	// store this mask in the repAux table
        ZZX mask;
        ea.encode(mask, maskArray);
        repAux.tab(d, k+1).set_ptr(new DoubleCRT(mask, ea.getContext()));
      }

      // Apply mask to zero out slots in ctxt
      ctxt_masked.multByConstant(*repAux.tab(d, k+1));
    }

    Ctxt ctxt_left = ctxt_masked;
    ea.rotate1D(ctxt_left, d, 1L << k, /*don't-care-flag=*/true);
    ctxt_left += ctxt_masked;

    recursiveReplicateDim(ea, ctxt_left, d, extent, k, pos, limit, 
                          dimProd, recBound, repAux, handler);
  }

  pos += (1L << k);
  if (pos >= limit)
    return;

  Ctxt ctxt_right = ctxt;
  ctxt_right -= ctxt_masked; 
  ctxt_masked = ctxt_right; // reuse ctxt_masked as a temp
  ea.rotate1D(ctxt_masked, d, -(1L << k), /*don't-care-flag=*/true);
  ctxt_right += ctxt_masked;

  recursiveReplicateDim(ea, ctxt_right, d, extent, k, pos, limit, 
                        dimProd, recBound, repAux, handler);
}
Esempio n. 16
0
void replicateAllNextDim(const EncryptedArray& ea, const Ctxt& ctxt,
                         long d, long dimProd, long recBound,
                         RepAuxDim& repAux, ReplicateHandler *handler)

{
  assert(d >= 0);

  // If already fully replicated (or we need to stop early), call the handler
  if (d >= ea.dimension() || handler->earlyStop(d,/*k=*/-1,dimProd)) {
    handler->handle(ctxt);
    return;
  }
  
  long dSize = ea.sizeOfDimension(d);
  dimProd *= dSize; // product of all dimensions including this one

  long n = GreatestPowerOfTwo(dSize); // 2^n <= dSize
  long k = n;

  // We replicate 2^k-size blocks along this dimension, then call the
  // recursive procedure to handle the smaller subblocks. Consider for
  // example a 2D 5x2 cube, so the original slots are
  //
  //    ( s0 s2 s4 s6 s8 )
  //    ( s1 s3 s5 s7 s9 )
  //
  // Say that we start with k=2 in the 1st dimension (of size 5), we
  // will prepare floor(5/2)=2 ciphertexts as follows:
  //
  //    ( s0 s2 s0 s2 0 )   ( s4 s6 s4 s6 0 )
  //    ( s1 s3 s1 s3 0 )   ( s5 s7 s5 s7 0 )
  //
  // The call to recursiveReplicateDim (still with k=2) will first copy
  // s0/s1 and s4/s5 to the zero column at the end, then make a recursive
  // call with k=1 that will complete the replication along the current
  // dimension, resulting in the 4 ciphertexts
  // 
  //  (s0 s0 s0 s0 s0) (s2 s2 s2 s2 s2) (s4 s4 s4 s4 s4) (s6 s6 s6 s6 s6)
  //  (s1 s1 s1 s1 s1) (s3 s3 s3 s3 s3) (s5 s5 s5 s5 s5) (s7 s7 s7 s7 s7)
  //
  // Then a recursive call for the next dimension will complete the
  // replication of these entries, and a final step will deal with the
  // "leftover" positions s8 s9
  


  // The logic below cut the recursion depth by starting from smaller
  // blocks (by default size approx n rather than 2^n).
  // The inital block size is controlled by the recBound parameter:
  //   + recBound>0: blocks of size min(~n, 2^recBound). this ensures
  //     recursion depth <= recBound, and typically much smaller (~log n)
  //   + recBound=0: blocks of size 1 (no recursion)
  //   + recBound<0: blocks of size 2^n (full recursion)

  if (recBound >= 0) { // use heuristic recursion bound
    k = 0;
    if (dSize > 2 && dimProd*NumBits(dSize) > ea.size() / 8) {
      k = NumBits(NumBits(dSize))-1;
      if (k > n) k = n;
      if (k > recBound) k = recBound;
    }
  }
  else { // SHAI: I don't understand this else case
    k = -recBound;
    if (k > n) k = n;
  }

  long blockSize = 1L << k;        // blocks of size 2^k
  long numBlocks = dSize/blockSize;
  long extent = numBlocks * blockSize;

  // extent is an integral multiple of the block size, the recursive
  // call replicates only these slots, and then we have a separate
  // call for the leftover slots.

  Ctxt ctxt1 = ctxt;

  if (extent < dSize) { // select only the slots 0..extent-1 in this dimension
    if (repAux.tab1(d, 0).null()) { // generate mask if not already there
      ZZX mask;
      SelectRangeDim(ea, mask, 0, extent, d);
      repAux.tab1(d, 0).set_ptr(new DoubleCRT(mask, ea.getContext()));
      // store mask in 2nd table (tab1)
    }
    ctxt1.multByConstant(*repAux.tab1(d, 0)); // mult by mask to zero out slots
  }

  if (numBlocks == 1) { // just one block, call the recursive replication
    recursiveReplicateDim(ea, ctxt1, d, extent, k, 0, extent, 
                          dimProd, recBound, repAux, handler);
  }
  else { // replicate the slots in each block separately
    for (long pos = 0; pos < numBlocks; pos++) {
      Ctxt ctxt2 = ctxt1;
      // zero-out all the slots outside the current block
      SelectRangeDim(ea, ctxt2, pos*blockSize, (pos+1)*blockSize, d);

      // replicate the current block across this dimenssion using a
      // simple shift-and-add procedure.
      replicateOneBlock(ea, ctxt2, pos, blockSize, d);

      // now call the recursive replication to do the rest of the work
      recursiveReplicateDim(ea, ctxt2, d, extent, k, 0, extent, 
                            dimProd, recBound, repAux, handler);
    }
  }

  // If dSize is not an integral number of blocks, then we still need
  // to deal with the leftover slots.
  if (extent < dSize) {
    // zero-out the slots from before, leaving only the leftover slots
    ctxt1 = ctxt;
    if (repAux.tab1(d, 1).null()) { // generate mask if not already there
      ZZX mask;
      SelectRangeDim(ea, mask, extent, dSize, d);
      repAux.tab1(d, 1).set_ptr(new DoubleCRT(mask, ea.getContext()));
    }
    ctxt1.multByConstant(*repAux.tab1(d,1)); // mult by mask to zero out slots

    // move relevant slots to the beginning
    ea.rotate1D(ctxt1, d, -extent, /*don't-care-flag=*/true);

    // replicate the leftover block across this dimenssion using a
    // simple shift-and-add procedure.
    replicateOneBlock(ea, ctxt1, 0, blockSize, d);

    // now call the recursive replication to do the rest of the work
    recursiveReplicateDim(ea, ctxt1, d, extent, k, extent, dSize, 
                          dimProd, recBound, repAux, handler);
  }
}
Esempio n. 17
0
static
void recursiveReplicate(const EncryptedArray& ea, const Ctxt& ctxt, 
                        long n, long k, long pos, long limit,  
                        RepAux& repAux,
                        ReplicateHandler *handler)
{
  if (pos >= limit) return;

  if (replicateVerboseFlag) {
    // DEBUG code
    cerr << "check: " << k; CheckCtxt(ctxt, "");
  }

  long nSlots = ea.size();

  if (k == 0) {

    if ( (1L << n) >= nSlots) {
      handler->handle(ctxt);
      return;
    }

    // need to replicate to fill positions [ (1L << n) .. nSlots )
    if (repAux.tab(0).null()) {
      // need to generate mask
      ZZX mask;
      SelectRange(ea, mask, 0, nSlots - (1L << n));
      repAux.tab(0).set_ptr(new DoubleCRT(mask, ea.getContext()));
    }


    Ctxt ctxt_tmp = ctxt;
    ctxt_tmp.multByConstant(*repAux.tab(0));

    ea.rotate(ctxt_tmp, 1L << n);
    ctxt_tmp += ctxt;
    handler->handle(ctxt_tmp);
    return;
  }


  k--;

  Ctxt ctxt_masked = ctxt;

  { // artificial scope to miminize storage in
    // the recursion


    { // another artificial scope

      // mask should be at index k+1

      if (repAux.tab(k+1).null()) {
        // need to generate mask

        vector< long > maskArray;
        maskArray.resize(nSlots);
        for (long i = 0; i < (1L << n); i++)
          maskArray[i] = 1- bit(i, k); // the reverse of bit k of i
        for (long i = (1L << n); i < nSlots; i++)
          maskArray[i] = 0;

        ZZX mask;
        ea.encode(mask, maskArray);
        repAux.tab(k+1).set_ptr(new DoubleCRT(mask, ea.getContext()));
      }

      ctxt_masked.multByConstant(*repAux.tab(k+1));
    }

    Ctxt ctxt_left = ctxt_masked;
    ea.rotate(ctxt_left, 1L << k);
    ctxt_left += ctxt_masked;

    recursiveReplicate(ea, ctxt_left, n, k, pos, limit, repAux, handler);
  
  }
 
  pos += (1L << k);
  if (pos >= limit)
    return;

  Ctxt ctxt_right = ctxt;
  ctxt_right -= ctxt_masked; 
  ctxt_masked = ctxt_right; // reuse ctxt_masked as a temp
  ea.rotate(ctxt_masked, -(1L << k));
  ctxt_right += ctxt_masked;

  recursiveReplicate(ea, ctxt_right, n, k, pos, limit, repAux, handler);
}