/// Make sure GV is visible from both modules. Delete is true if it is /// being deleted from this module. /// This also makes sure GV cannot be dropped so that references from /// the split module remain valid. static void makeVisible(GlobalValue &GV, bool Delete, bool IsDeletePass) { bool Local = GV.hasLocalLinkage(); if (Local || Delete) { // This changes members from private -> hidden -> causes linker errors when using llvm-link if (!IsDeletePass) GV.setLinkage(GlobalValue::ExternalLinkage); if (Local) GV.setVisibility(GlobalValue::HiddenVisibility); return; } if (!GV.hasLinkOnceLinkage()) { assert(!GV.isDiscardableIfUnused()); return; } // Map linkonce* to weak* so that llvm doesn't drop this GV. switch(GV.getLinkage()) { default: llvm_unreachable("Unexpected linkage"); case GlobalValue::LinkOnceAnyLinkage: GV.setLinkage(GlobalValue::WeakAnyLinkage); return; case GlobalValue::LinkOnceODRLinkage: GV.setLinkage(GlobalValue::WeakODRLinkage); return; } }
/// Make sure GV is visible from both modules. Delete is true if it is /// being deleted from this module. /// This also makes sure GV cannot be dropped so that references from /// the split module remain valid. static void makeVisible(GlobalValue &GV, bool Delete) { bool Local = GV.hasLocalLinkage(); if (Local) GV.setVisibility(GlobalValue::HiddenVisibility); if (Local || Delete) { GV.setLinkage(GlobalValue::ExternalLinkage); return; } if (!GV.hasLinkOnceLinkage()) { assert(!GV.isDiscardableIfUnused()); return; } // Map linkonce* to weak* so that llvm doesn't drop this GV. switch(GV.getLinkage()) { default: llvm_unreachable("Unexpected linkage"); case GlobalValue::LinkOnceAnyLinkage: GV.setLinkage(GlobalValue::WeakAnyLinkage); return; case GlobalValue::LinkOnceODRLinkage: GV.setLinkage(GlobalValue::WeakODRLinkage); return; } }
static void keepGlobalValue(GlobalValue &GV, std::vector<GlobalAlias *> &KeptAliases) { assert(!GV.hasLocalLinkage()); if (auto *GA = dyn_cast<GlobalAlias>(&GV)) KeptAliases.push_back(GA); switch (GV.getLinkage()) { default: break; case GlobalValue::LinkOnceAnyLinkage: GV.setLinkage(GlobalValue::WeakAnyLinkage); break; case GlobalValue::LinkOnceODRLinkage: GV.setLinkage(GlobalValue::WeakODRLinkage); break; } assert(!GV.isDiscardableIfUnused()); }
void LTOCodeGenerator:: applyRestriction(GlobalValue &GV, ArrayRef<StringRef> Libcalls, std::vector<const char*> &MustPreserveList, SmallPtrSetImpl<GlobalValue*> &AsmUsed, Mangler &Mangler) { // There are no restrictions to apply to declarations. if (GV.isDeclaration()) return; // There is nothing more restrictive than private linkage. if (GV.hasPrivateLinkage()) return; SmallString<64> Buffer; TargetMach->getNameWithPrefix(Buffer, &GV, Mangler); if (MustPreserveSymbols.count(Buffer)) MustPreserveList.push_back(GV.getName().data()); if (AsmUndefinedRefs.count(Buffer)) AsmUsed.insert(&GV); // Conservatively append user-supplied runtime library functions to // llvm.compiler.used. These could be internalized and deleted by // optimizations like -globalopt, causing problems when later optimizations // add new library calls (e.g., llvm.memset => memset and printf => puts). // Leave it to the linker to remove any dead code (e.g. with -dead_strip). if (isa<Function>(GV) && std::binary_search(Libcalls.begin(), Libcalls.end(), GV.getName())) AsmUsed.insert(&GV); // Record the linkage type of non-local symbols so they can be restored prior // to module splitting. if (ShouldRestoreGlobalsLinkage && !GV.hasAvailableExternallyLinkage() && !GV.hasLocalLinkage() && GV.hasName()) ExternalSymbols.insert(std::make_pair(GV.getName(), GV.getLinkage())); }
static std::unique_ptr<Module> getModuleForFile(LLVMContext &Context, claimed_file &F, const void *View, ld_plugin_input_file &Info, raw_fd_ostream *ApiFile, StringSet<> &Internalize, StringSet<> &Maybe, std::vector<GlobalValue *> &Keep, StringMap<unsigned> &Realign) { MemoryBufferRef BufferRef(StringRef((const char *)View, Info.filesize), Info.name); ErrorOr<std::unique_ptr<object::IRObjectFile>> ObjOrErr = object::IRObjectFile::create(BufferRef, Context); if (std::error_code EC = ObjOrErr.getError()) message(LDPL_FATAL, "Could not read bitcode from file : %s", EC.message().c_str()); object::IRObjectFile &Obj = **ObjOrErr; Module &M = Obj.getModule(); M.materializeMetadata(); UpgradeDebugInfo(M); SmallPtrSet<GlobalValue *, 8> Used; collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); unsigned SymNum = 0; for (auto &ObjSym : Obj.symbols()) { GlobalValue *GV = Obj.getSymbolGV(ObjSym.getRawDataRefImpl()); if (GV && GV->hasAppendingLinkage()) Keep.push_back(GV); if (shouldSkip(ObjSym.getFlags())) continue; ld_plugin_symbol &Sym = F.syms[SymNum]; ++SymNum; ld_plugin_symbol_resolution Resolution = (ld_plugin_symbol_resolution)Sym.resolution; if (options::generate_api_file) *ApiFile << Sym.name << ' ' << getResolutionName(Resolution) << '\n'; if (!GV) { freeSymName(Sym); continue; // Asm symbol. } ResolutionInfo &Res = ResInfo[Sym.name]; if (Resolution == LDPR_PREVAILING_DEF_IRONLY_EXP && !Res.IsLinkonceOdr) Resolution = LDPR_PREVAILING_DEF; // In ThinLTO mode change all prevailing resolutions to LDPR_PREVAILING_DEF. // For ThinLTO the IR files are compiled through the backend independently, // so we need to ensure that any prevailing linkonce copy will be emitted // into the object file by making it weak. Additionally, we can skip the // IRONLY handling for internalization, which isn't performed in ThinLTO // mode currently anyway. if (options::thinlto && (Resolution == LDPR_PREVAILING_DEF_IRONLY_EXP || Resolution == LDPR_PREVAILING_DEF_IRONLY)) Resolution = LDPR_PREVAILING_DEF; GV->setUnnamedAddr(Res.UnnamedAddr); GV->setVisibility(Res.Visibility); // Override gold's resolution for common symbols. We want the largest // one to win. if (GV->hasCommonLinkage()) { if (Resolution == LDPR_PREVAILING_DEF_IRONLY) Res.CommonInternal = true; if (Resolution == LDPR_PREVAILING_DEF_IRONLY || Resolution == LDPR_PREVAILING_DEF) Res.UseCommon = true; const DataLayout &DL = GV->getParent()->getDataLayout(); uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); unsigned Align = GV->getAlignment(); if (Res.UseCommon && Size >= Res.CommonSize) { // Take GV. if (Res.CommonInternal) Resolution = LDPR_PREVAILING_DEF_IRONLY; else Resolution = LDPR_PREVAILING_DEF; cast<GlobalVariable>(GV)->setAlignment( std::max(Res.CommonAlign, Align)); } else { // Do not take GV, it's smaller than what we already have in the // combined module. Resolution = LDPR_PREEMPTED_IR; if (Align > Res.CommonAlign) // Need to raise the alignment though. Realign[Sym.name] = Align; } Res.CommonSize = std::max(Res.CommonSize, Size); Res.CommonAlign = std::max(Res.CommonAlign, Align); } switch (Resolution) { case LDPR_UNKNOWN: llvm_unreachable("Unexpected resolution"); case LDPR_RESOLVED_IR: case LDPR_RESOLVED_EXEC: case LDPR_RESOLVED_DYN: case LDPR_PREEMPTED_IR: case LDPR_PREEMPTED_REG: break; case LDPR_UNDEF: if (!GV->isDeclarationForLinker()) assert(GV->hasComdat()); break; case LDPR_PREVAILING_DEF_IRONLY: { Keep.push_back(GV); // The IR linker has to be able to map this value to a declaration, // so we can only internalize after linking. if (!Used.count(GV)) Internalize.insert(GV->getName()); break; } case LDPR_PREVAILING_DEF: Keep.push_back(GV); // There is a non IR use, so we have to force optimizations to keep this. switch (GV->getLinkage()) { default: break; case GlobalValue::LinkOnceAnyLinkage: GV->setLinkage(GlobalValue::WeakAnyLinkage); break; case GlobalValue::LinkOnceODRLinkage: GV->setLinkage(GlobalValue::WeakODRLinkage); break; } break; case LDPR_PREVAILING_DEF_IRONLY_EXP: { // We can only check for address uses after we merge the modules. The // reason is that this GV might have a copy in another module // and in that module the address might be significant, but that // copy will be LDPR_PREEMPTED_IR. Maybe.insert(GV->getName()); Keep.push_back(GV); break; } } freeSymName(Sym); } return Obj.takeModule(); }
void BitcodeCompiler::add(BitcodeFile &F) { std::unique_ptr<IRObjectFile> Obj = check(IRObjectFile::create(F.MB, Context)); std::vector<GlobalValue *> Keep; unsigned BodyIndex = 0; ArrayRef<SymbolBody *> Bodies = F.getSymbols(); Module &M = Obj->getModule(); if (M.getDataLayoutStr().empty()) fatal("invalid bitcode file: " + F.getName() + " has no datalayout"); // If a symbol appears in @llvm.used, the linker is required // to treat the symbol as there is a reference to the symbol // that it cannot see. Therefore, we can't internalize. SmallPtrSet<GlobalValue *, 8> Used; collectUsedGlobalVariables(M, Used, /* CompilerUsed */ false); for (const BasicSymbolRef &Sym : Obj->symbols()) { GlobalValue *GV = Obj->getSymbolGV(Sym.getRawDataRefImpl()); // Ignore module asm symbols. if (!GV) continue; if (GV->hasAppendingLinkage()) { Keep.push_back(GV); continue; } if (BitcodeFile::shouldSkip(Sym)) continue; SymbolBody *B = Bodies[BodyIndex++]; if (!B || &B->repl() != B || !isa<DefinedBitcode>(B)) continue; switch (GV->getLinkage()) { default: break; case llvm::GlobalValue::LinkOnceAnyLinkage: GV->setLinkage(GlobalValue::WeakAnyLinkage); break; case llvm::GlobalValue::LinkOnceODRLinkage: GV->setLinkage(GlobalValue::WeakODRLinkage); break; } // We collect the set of symbols we want to internalize here // and change the linkage after the IRMover executed, i.e. after // we imported the symbols and satisfied undefined references // to it. We can't just change linkage here because otherwise // the IRMover will just rename the symbol. // Shared libraries need to be handled slightly differently. // For now, let's be conservative and just never internalize // symbols when creating a shared library. if (!Config->Shared && !Config->ExportDynamic && !B->isUsedInRegularObj() && !B->MustBeInDynSym) if (!Used.count(GV)) InternalizedSyms.insert(GV->getName()); Keep.push_back(GV); } Mover.move(Obj->takeModule(), Keep, [](GlobalValue &, IRMover::ValueAdder) {}); }
void BitcodeCompiler::add(BitcodeFile &F) { std::unique_ptr<IRObjectFile> Obj = std::move(F.Obj); std::vector<GlobalValue *> Keep; unsigned BodyIndex = 0; ArrayRef<Symbol *> Syms = F.getSymbols(); Module &M = Obj->getModule(); if (M.getDataLayoutStr().empty()) fatal("invalid bitcode file: " + F.getName() + " has no datalayout"); // Discard non-compatible debug infos if necessary. M.materializeMetadata(); UpgradeDebugInfo(M); // If a symbol appears in @llvm.used, the linker is required // to treat the symbol as there is a reference to the symbol // that it cannot see. Therefore, we can't internalize. SmallPtrSet<GlobalValue *, 8> Used; collectUsedGlobalVariables(M, Used, /* CompilerUsed */ false); for (const BasicSymbolRef &Sym : Obj->symbols()) { uint32_t Flags = Sym.getFlags(); GlobalValue *GV = Obj->getSymbolGV(Sym.getRawDataRefImpl()); if (GV && GV->hasAppendingLinkage()) Keep.push_back(GV); if (BitcodeFile::shouldSkip(Flags)) continue; Symbol *S = Syms[BodyIndex++]; if (Flags & BasicSymbolRef::SF_Undefined) { handleUndefinedAsmRefs(Sym, GV, AsmUndefinedRefs); continue; } auto *B = dyn_cast<DefinedBitcode>(S->body()); if (!B || B->File != &F) continue; // We collect the set of symbols we want to internalize here // and change the linkage after the IRMover executed, i.e. after // we imported the symbols and satisfied undefined references // to it. We can't just change linkage here because otherwise // the IRMover will just rename the symbol. if (GV && shouldInternalize(Used, S, GV)) InternalizedSyms.insert(GV->getName()); // At this point we know that either the combined LTO object will provide a // definition of a symbol, or we will internalize it. In either case, we // need to undefine the symbol. In the former case, the real definition // needs to be able to replace the original definition without conflicting. // In the latter case, we need to allow the combined LTO object to provide a // definition with the same name, for example when doing parallel codegen. undefine(S); if (!GV) // Module asm symbol. continue; switch (GV->getLinkage()) { default: break; case llvm::GlobalValue::LinkOnceAnyLinkage: GV->setLinkage(GlobalValue::WeakAnyLinkage); break; case llvm::GlobalValue::LinkOnceODRLinkage: GV->setLinkage(GlobalValue::WeakODRLinkage); break; } Keep.push_back(GV); } if (Error E = Mover.move(Obj->takeModule(), Keep, [](GlobalValue &, IRMover::ValueAdder) {})) { handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EIB) { fatal("failed to link module " + F.getName() + ": " + EIB.message()); }); } }