typename Kernel::Model MaxConsensus
(
  const Kernel &kernel,
  const Scorer &scorer,
  std::vector<uint32_t> *best_inliers = nullptr,
  uint32_t max_iteration = 1024
)
{
  const uint32_t min_samples = Kernel::MINIMUM_SAMPLES;
  const uint32_t total_samples = kernel.NumSamples();

  size_t best_num_inliers = 0;
  typename Kernel::Model best_model;

  // Test if we have sufficient points to for the kernel.
  if (total_samples < min_samples) {
    if (best_inliers) {
      best_inliers->resize(0);
    }
    return best_model;
  }

  // In this robust estimator, the scorer always works on all the data points
  // at once. So precompute the list ahead of time.
  std::vector<uint32_t> all_samples(total_samples);
  std::iota(all_samples.begin(), all_samples.end(), 0);

  // Random number generator configuration
  std::mt19937 random_generator(std::mt19937::default_seed);

  std::vector<uint32_t> sample;
  for (uint32_t iteration = 0;  iteration < max_iteration; ++iteration) {
    UniformSample(min_samples, random_generator, &all_samples, &sample);

      std::vector<typename Kernel::Model> models;
      kernel.Fit(sample, &models);

      // Compute costs for each fit.
      for (const auto& model_it : models) {
        std::vector<uint32_t> inliers;
        scorer.Score(kernel, model_it, all_samples, &inliers);

        if (best_num_inliers < inliers.size()) {
          best_num_inliers = inliers.size();
          best_model = model_it;
          if (best_inliers) {
            best_inliers->swap(inliers);
          }
        }
      }
  }
  return best_model;
}
typename Kernel::Model RANSAC(
  const Kernel &kernel,
  const Scorer &scorer,
  std::vector<size_t> *best_inliers = nullptr ,
  size_t *best_score = nullptr , // Found number of inliers
  double outliers_probability = 1e-2)
{
  assert(outliers_probability < 1.0);
  assert(outliers_probability > 0.0);
  size_t iteration = 0;
  const size_t min_samples = Kernel::MINIMUM_SAMPLES;
  const size_t total_samples = kernel.NumSamples();

  size_t max_iterations = 100;
  const size_t really_max_iterations = 4096;

  size_t best_num_inliers = 0;
  double best_inlier_ratio = 0.0;
  typename Kernel::Model best_model;

  // Test if we have sufficient points for the kernel.
  if (total_samples < min_samples) {
    if (best_inliers) {
      best_inliers->resize(0);
    }
    return best_model;
  }

  // In this robust estimator, the scorer always works on all the data points
  // at once. So precompute the list ahead of time [0,..,total_samples].
  std::vector<size_t> all_samples(total_samples);
  std::iota(all_samples.begin(), all_samples.end(), 0);

  std::vector<size_t> sample;
  for (iteration = 0;
    iteration < max_iterations &&
    iteration < really_max_iterations; ++iteration) {
      UniformSample(min_samples, &all_samples, &sample);

      std::vector<typename Kernel::Model> models;
      kernel.Fit(sample, &models);

      // Compute the inlier list for each fit.
      for (size_t i = 0; i < models.size(); ++i) {
        std::vector<size_t> inliers;
        scorer.Score(kernel, models[i], all_samples, &inliers);

        if (best_num_inliers < inliers.size()) {
          best_num_inliers = inliers.size();
          best_inlier_ratio = inliers.size() / double(total_samples);
          best_model = models[i];
          if (best_inliers) {
            best_inliers->swap(inliers);
          }
        }
        if (best_inlier_ratio) {
          max_iterations = IterationsRequired(min_samples,
            outliers_probability,
            best_inlier_ratio);
        }
      }
  }
  if (best_score)
    *best_score = best_num_inliers;
  return best_model;
}
  double LeastMedianOfSquares(const Kernel &kernel,
	  typename Kernel::Model * model = NULL,
    double* outlierThreshold = NULL,
    double outlierRatio=0.5,
	  double minProba=0.99)
{
  const size_t min_samples = Kernel::MINIMUM_SAMPLES;
  const size_t total_samples = kernel.NumSamples();

	std::vector<double> residuals(total_samples); // Array for storing residuals
  std::vector<size_t> vec_sample(min_samples);

	double dBestMedian = std::numeric_limits<double>::max();

	// Required number of iterations is evaluated from outliers ratio
	const size_t N = (min_samples<total_samples)?
		getNumSamples(minProba, outlierRatio, min_samples): 0;

	for (size_t i=0; i < N; i++) {

    // Get Samples indexes
    UniformSample(min_samples, total_samples, &vec_sample);

    // Estimate parameters: the solutions are stored in a vector
    std::vector<typename Kernel::Model> models;
    kernel.Fit(vec_sample, &models);

		// Now test the solutions on the whole data
		for (size_t k = 0; k < models.size(); ++k) {
      //Compute Residuals :
      for (size_t l = 0; l < total_samples; ++l) {
        double error = kernel.Error(l, models[k]);
        residuals[l] = error;
      }

			// Compute median
			std::vector<double>::iterator itMedian = residuals.begin() +
				std::size_t( total_samples*(1.-outlierRatio) );
			std::nth_element(residuals.begin(), itMedian, residuals.end());
			double median = *itMedian;

			// Store best solution
			if(median < dBestMedian) {
				dBestMedian = median;
				if (model) (*model) = models[k];
			}
		}
	}

	// This array of precomputed values corresponds to the inverse
	//  cumulative function for a normal distribution. For more information
	//  consult the litterature (Robust Regression for Outlier Detection,
	//  rouseeuw-leroy). The values are computed for each 5%
	static const double ICDF[21] = {
		1.4e16, 15.94723940, 7.957896558, 5.287692054,
		3.947153876, 3.138344200, 2.595242369, 2.203797543,
		1.906939402, 1.672911853, 1.482602218, 1.323775627,
		1.188182950, 1.069988721, 0.9648473415, 0.8693011162,
		0.7803041458, 0.6946704675, 0.6079568319,0.5102134568,
		0.3236002672
	};

	// Evaluate the outlier threshold
	if(outlierThreshold) {
		double sigma = ICDF[int((1.-outlierRatio)*20.)] *
			(1. + 5. / double(total_samples - min_samples));
		*outlierThreshold = (double)(sigma * sigma * dBestMedian * 4.);
    if (N==0) *outlierThreshold = std::numeric_limits<double>::max();
	}

	return dBestMedian;
}
std::pair<double, double> ACRANSAC(const Kernel &kernel,
  std::vector<size_t> & vec_inliers,
  size_t nIter = 1024,
  typename Kernel::Model * model = NULL,
  double precision = std::numeric_limits<double>::infinity(),
  bool bVerbose = false)
{
  vec_inliers.clear();

  const size_t sizeSample = Kernel::MINIMUM_SAMPLES;
  const size_t nData = kernel.NumSamples();
  if(nData <= (size_t)sizeSample)
    return std::make_pair(0.0,0.0);

  const double maxThreshold = (precision==std::numeric_limits<double>::infinity()) ?
    std::numeric_limits<double>::infinity() :
    precision * kernel.normalizer2()(0,0) * kernel.normalizer2()(0,0);

  std::vector<ErrorIndex> vec_residuals(nData); // [residual,index]
  std::vector<double> vec_residuals_(nData);
  std::vector<size_t> vec_sample(sizeSample); // Sample indices

  // Possible sampling indices (could change in the optimization phase)
  std::vector<size_t> vec_index(nData);
  for (size_t i = 0; i < nData; ++i)
    vec_index[i] = i;

  // Precompute log combi
  double loge0 = log10((double)Kernel::MAX_MODELS * (nData-sizeSample));
  std::vector<float> vec_logc_n, vec_logc_k;
  makelogcombi_n(nData, vec_logc_n);
  makelogcombi_k(sizeSample, nData, vec_logc_k);

  // Output parameters
  double minNFA = std::numeric_limits<double>::infinity();
  double errorMax = std::numeric_limits<double>::infinity();

  // Reserve 10% of iterations for focused sampling
  size_t nIterReserve = nIter/10;
  nIter -= nIterReserve;

  // Main estimation loop.
  for (size_t iter=0; iter < nIter; ++iter) {
    UniformSample(sizeSample, vec_index, &vec_sample); // Get random sample

    std::vector<typename Kernel::Model> vec_models; // Up to max_models solutions
    kernel.Fit(vec_sample, &vec_models);

    // Evaluate models
    bool better = false;
    for (size_t k = 0; k < vec_models.size(); ++k)  {
      // Residuals computation and ordering
      kernel.Errors(vec_models[k], vec_residuals_);
      for (size_t i = 0; i < nData; ++i)  {
        const double error = vec_residuals_[i];
        vec_residuals[i] = ErrorIndex(error, i);
      }
      std::sort(vec_residuals.begin(), vec_residuals.end());

      // Most meaningful discrimination inliers/outliers
      const ErrorIndex best = bestNFA(
        sizeSample,
        kernel.logalpha0(),
        vec_residuals,
        loge0,
        maxThreshold,
        vec_logc_n,
        vec_logc_k,
        kernel.multError());

      if (best.first < minNFA /*&& vec_residuals[best.second-1].first < errorMax*/)  {
        // A better model was found
        better = true;
        minNFA = best.first;
        vec_inliers.resize(best.second);
        for (size_t i=0; i<best.second; ++i)
          vec_inliers[i] = vec_residuals[i].second;
        errorMax = vec_residuals[best.second-1].first; // Error threshold
        if(model) *model = vec_models[k];

        if(bVerbose)  {
          std::cout << "  nfa=" << minNFA
            << " inliers=" << best.second
            << " precisionNormalized=" << errorMax
            << " precision=" << kernel.unormalizeError(errorMax)
            << " (iter=" << iter;
          std::cout << ",sample=";
          std::copy(vec_sample.begin(), vec_sample.end(),
            std::ostream_iterator<size_t>(std::cout, ","));
          std::cout << ")" <<std::endl;
        }
      }
    }

    // ACRANSAC optimization: draw samples among best set of inliers so far
    if((better && minNFA<0) || (iter+1==nIter && nIterReserve)) {
      if(vec_inliers.empty()) { // No model found at all so far
        nIter++; // Continue to look for any model, even not meaningful
        nIterReserve--;
      } else {
        // ACRANSAC optimization: draw samples among best set of inliers so far
        vec_index = vec_inliers;
        if(nIterReserve) {
            nIter = iter+1+nIterReserve;
            nIterReserve=0;
        }
      }
    }
  }

  if(minNFA >= 0)
    vec_inliers.clear();

  if (!vec_inliers.empty())
  {
    if (model)
      kernel.Unnormalize(model);
    errorMax = kernel.unormalizeError(errorMax);
  }

  return std::make_pair(errorMax, minNFA);
}
typename Kernel::Model RANSAC(
  const Kernel &kernel,
  const Scorer &scorer,
  std::vector<size_t> *best_inliers = NULL,
  double *best_score = NULL,
  double outliers_probability = 1e-2)
{
  assert(outliers_probability < 1.0);
  assert(outliers_probability > 0.0);
  size_t iteration = 0;
  const size_t min_samples = Kernel::MINIMUM_SAMPLES;
  const size_t total_samples = kernel.NumSamples();

  size_t max_iterations = 100;
  const size_t really_max_iterations = 4096;

  size_t best_num_inliers = 0;
  double best_cost = std::numeric_limits<double>::infinity();
  double best_inlier_ratio = 0.0;
  typename Kernel::Model best_model;

  // Test if we have sufficient points for the kernel.
  if (total_samples < min_samples) {
    if (best_inliers) {
      best_inliers->resize(0);
    }
    return best_model;
  }

  // In this robust estimator, the scorer always works on all the data points
  // at once. So precompute the list ahead of time.
  std::vector<size_t> all_samples;
  for (size_t i = 0; i < total_samples; ++i) {
    all_samples.push_back(i);
  }

  std::vector<size_t> sample;
  for (iteration = 0;
    iteration < max_iterations &&
    iteration < really_max_iterations; ++iteration) {
      UniformSample(min_samples, total_samples, &sample);

      std::vector<typename Kernel::Model> models;
      kernel.Fit(sample, &models);

      // Compute costs for each fit.
      for (size_t i = 0; i < models.size(); ++i) {
        std::vector<size_t> inliers;
        double cost = scorer.Score(kernel, models[i], all_samples, &inliers);

        if (cost < best_cost) {
          best_cost = cost;
          best_inlier_ratio = inliers.size() / double(total_samples);
          best_num_inliers = inliers.size();
          best_model = models[i];
          if (best_inliers) {
            best_inliers->swap(inliers);
          }
        }
        if (best_inlier_ratio) {
          max_iterations = IterationsRequired(min_samples,
            outliers_probability,
            best_inlier_ratio);
        }
      }
  }
  if (best_score)
    *best_score = best_cost;
  return best_model;
}