Esempio n. 1
0
static void generateMask(const SkMask& mask, const SkPath& path,
                         const SkMaskGamma::PreBlend& maskPreBlend) {
    SkPaint paint;

    int srcW = mask.fBounds.width();
    int srcH = mask.fBounds.height();
    int dstW = srcW;
    int dstH = srcH;
    int dstRB = mask.fRowBytes;

    SkMatrix matrix;
    matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
                        -SkIntToScalar(mask.fBounds.fTop));

    paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
    switch (mask.fFormat) {
        case SkMask::kBW_Format:
            dstRB = 0;  // signals we need a copy
            break;
        case SkMask::kA8_Format:
            break;
        case SkMask::kLCD16_Format:
        case SkMask::kLCD32_Format:
            // TODO: trigger off LCD orientation
            dstW = 4*dstW - 8;
            matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
                                -SkIntToScalar(mask.fBounds.fTop));
            matrix.postScale(SkIntToScalar(4), SK_Scalar1);
            dstRB = 0;  // signals we need a copy
            break;
        default:
            SkDEBUGFAIL("unexpected mask format");
    }

    SkRasterClip clip;
    clip.setRect(SkIRect::MakeWH(dstW, dstH));

    const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
    SkBitmap bm;

    if (0 == dstRB) {
        if (!bm.tryAllocPixels(info)) {
            // can't allocate offscreen, so empty the mask and return
            sk_bzero(mask.fImage, mask.computeImageSize());
            return;
        }
    } else {
        bm.installPixels(info, mask.fImage, dstRB);
    }
    sk_bzero(bm.getPixels(), bm.getSafeSize());

    SkDraw  draw;
    draw.fRC    = &clip;
    draw.fClip  = &clip.bwRgn();
    draw.fMatrix = &matrix;
    draw.fBitmap = &bm;
    draw.drawPath(path, paint);

    switch (mask.fFormat) {
        case SkMask::kBW_Format:
            packA8ToA1(mask, bm.getAddr8(0, 0), bm.rowBytes());
            break;
        case SkMask::kA8_Format:
            if (maskPreBlend.isApplicable()) {
                applyLUTToA8Mask(mask, maskPreBlend.fG);
            }
            break;
        case SkMask::kLCD16_Format:
            if (maskPreBlend.isApplicable()) {
                pack4xHToLCD16<true>(bm, mask, maskPreBlend);
            } else {
                pack4xHToLCD16<false>(bm, mask, maskPreBlend);
            }
            break;
        case SkMask::kLCD32_Format:
            if (maskPreBlend.isApplicable()) {
                pack4xHToLCD32<true>(bm, mask, maskPreBlend);
            } else {
                pack4xHToLCD32<false>(bm, mask, maskPreBlend);
            }
            break;
        default:
            break;
    }
}
Esempio n. 2
0
    void onDraw(SkCanvas* canvas) override {
        // We don't create pixels in an onOnceBeforeDraw() override because we want access to
        // GrContext.
        GrContext* context = canvas->getGrContext();
#if SK_SUPPORT_GPU
        // Workaround for SampleApp.
        if (GrTexture* tex = fBigTestPixels.fBitmap.getTexture()) {
            if (tex->wasDestroyed()) {
                fCreatedPixels = false;
            }
        }
#endif
        bool madePixels = fCreatedPixels;

        if (!madePixels) {
            madePixels =  gBleedRec[fBT].fPixelMaker(context, &fSmallTestPixels, kSmallTextureSize,
                                                     kSmallTextureSize);
            madePixels &= gBleedRec[fBT].fPixelMaker(context, &fBigTestPixels, 2 * kMaxTileSize,
                                                     2 * kMaxTileSize);
            fCreatedPixels = madePixels;
        }

        // Assume that if we coulnd't make the bitmap/image it's because it's a GPU test on a
        // non-GPU backend.
        if (!madePixels) {
            skiagm::GM::DrawGpuOnlyMessage(canvas);
            return;
        }

        fShader = gBleedRec[fBT].fShaderMaker();

        canvas->clear(SK_ColorGRAY);
        SkTDArray<SkMatrix> matrices;
        // Draw with identity
        *matrices.append() = SkMatrix::I();

        // Draw with rotation and scale down in x, up in y.
        SkMatrix m;
        static const SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing);
        m.setTranslate(0, kBottom);
        m.preRotate(15.f, 0, kBottom + kBlockSpacing);
        m.preScale(0.71f, 1.22f);
        *matrices.append() = m;

        // Align the next set with the middle of the previous in y, translated to the right in x.
        SkPoint corners[] = {{0, 0}, { 0, kBottom }, { kWidth, kBottom }, {kWidth, 0} };
        matrices[matrices.count()-1].mapPoints(corners, 4);
        SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4;
        SkScalar x = SkTMax(SkTMax(corners[0].fX, corners[1].fX),
                            SkTMax(corners[2].fX, corners[3].fX));
        m.setTranslate(x, y);
        m.preScale(0.2f, 0.2f);
        *matrices.append() = m;

        SkScalar maxX = 0;
        for (int antiAlias = 0; antiAlias < 2; ++antiAlias) {
            canvas->save();
            canvas->translate(maxX, 0);
            for (int m = 0; m < matrices.count(); ++m) {
                canvas->save();
                canvas->concat(matrices[m]);
                bool aa = SkToBool(antiAlias);

                // First draw a column with no bleeding and no filtering
                this->drawCase1(canvas, kCol0X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase2(canvas, kCol0X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase3(canvas, kCol0X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase4(canvas, kCol0X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase5(canvas, kCol0X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);

                // Then draw a column with no bleeding and low filtering
                this->drawCase1(canvas, kCol1X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase2(canvas, kCol1X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase3(canvas, kCol1X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase4(canvas, kCol1X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase5(canvas, kCol1X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);

                // Then draw a column with no bleeding and high filtering
                this->drawCase1(canvas, kCol2X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase2(canvas, kCol2X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase3(canvas, kCol2X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase4(canvas, kCol2X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase5(canvas, kCol2X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);

                // Then draw a column with bleeding and no filtering (bleed should have no effect w/out blur)
                this->drawCase1(canvas, kCol3X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase2(canvas, kCol3X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase3(canvas, kCol3X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase4(canvas, kCol3X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase5(canvas, kCol3X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);

                // Then draw a column with bleeding and low filtering
                this->drawCase1(canvas, kCol4X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase2(canvas, kCol4X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase3(canvas, kCol4X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase4(canvas, kCol4X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase5(canvas, kCol4X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);

                // Finally draw a column with bleeding and high filtering
                this->drawCase1(canvas, kCol5X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase2(canvas, kCol5X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase3(canvas, kCol5X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase4(canvas, kCol5X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase5(canvas, kCol5X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);

                SkPoint corners[] = { { 0, 0 },{ 0, kBottom },{ kWidth, kBottom },{ kWidth, 0 } };
                matrices[m].mapPoints(corners, 4);
                SkScalar x = kBlockSize + SkTMax(SkTMax(corners[0].fX, corners[1].fX),
                                                 SkTMax(corners[2].fX, corners[3].fX));
                maxX = SkTMax(maxX, x);
                canvas->restore();
            }
            canvas->restore();
        }
    }
Esempio n. 3
0
bool SkDisplacementMapEffect::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
                                             SkBitmap* result, SkIPoint* offset) const {
    SkBitmap colorBM = src;
    SkIPoint colorOffset = SkIPoint::Make(0, 0);
    if (getColorInput() && !getColorInput()->getInputResultGPU(proxy, src, ctx, &colorBM,
                                                               &colorOffset)) {
        return false;
    }
    SkBitmap displacementBM = src;
    SkIPoint displacementOffset = SkIPoint::Make(0, 0);
    if (getDisplacementInput() &&
        !getDisplacementInput()->getInputResultGPU(proxy, src, ctx, &displacementBM,
                                                   &displacementOffset)) {
        return false;
    }
    SkIRect bounds;
    // Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to
    // pad the color bitmap to bounds here.
    if (!this->applyCropRect(ctx, colorBM, colorOffset, &bounds)) {
        return false;
    }
    SkIRect displBounds;
    if (!this->applyCropRect(ctx, proxy, displacementBM,
                             &displacementOffset, &displBounds, &displacementBM)) {
        return false;
    }
    if (!bounds.intersect(displBounds)) {
        return false;
    }
    GrTexture* color = colorBM.getTexture();
    GrTexture* displacement = displacementBM.getTexture();
    GrContext* context = color->getContext();

    GrSurfaceDesc desc;
    desc.fFlags = kRenderTarget_GrSurfaceFlag;
    desc.fWidth = bounds.width();
    desc.fHeight = bounds.height();
    desc.fConfig = kSkia8888_GrPixelConfig;

    SkAutoTUnref<GrTexture> dst(context->textureProvider()->refScratchTexture(desc,
        GrTextureProvider::kApprox_ScratchTexMatch));

    if (!dst) {
        return false;
    }

    SkVector scale = SkVector::Make(fScale, fScale);
    ctx.ctm().mapVectors(&scale, 1);

    GrPaint paint;
    SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement);
    offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX),
                              SkIntToScalar(colorOffset.fY - displacementOffset.fY));

    paint.addColorProcessor(
        GrDisplacementMapEffect::Create(fXChannelSelector,
                                        fYChannelSelector,
                                        scale,
                                        displacement,
                                        offsetMatrix,
                                        color,
                                        colorBM.dimensions()))->unref();
    SkIRect colorBounds = bounds;
    colorBounds.offset(-colorOffset);
    SkMatrix matrix;
    matrix.setTranslate(-SkIntToScalar(colorBounds.x()),
                        -SkIntToScalar(colorBounds.y()));
    context->drawRect(dst->asRenderTarget(), GrClip::WideOpen(), paint, matrix,
                      SkRect::Make(colorBounds));
    offset->fX = bounds.left();
    offset->fY = bounds.top();
    WrapTexture(dst, bounds.width(), bounds.height(), result);
    return true;
}
Esempio n. 4
0
static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
    SkScalar scales[2];
    bool success;

    SkMatrix identity;
    identity.reset();
    REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale());
    REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale());
    success = identity.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);

    SkMatrix scale;
    scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
    REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale());
    REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale());
    success = scale.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]);

    SkMatrix rot90Scale;
    rot90Scale.setRotate(90 * SK_Scalar1);
    rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
    REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
    REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
    success = rot90Scale.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4  == scales[0] && SK_Scalar1 / 2 == scales[1]);

    SkMatrix rotate;
    rotate.setRotate(128 * SK_Scalar1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero));
    success = rotate.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, success);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero));

    SkMatrix translate;
    translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
    REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale());
    REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale());
    success = translate.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);

    SkMatrix perspX;
    perspX.reset();
    perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000));
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale());
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale());
    // Verify that getMinMaxScales() doesn't update the scales array on failure.
    scales[0] = -5;
    scales[1] = -5;
    success = perspX.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);

    SkMatrix perspY;
    perspY.reset();
    perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500));
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale());
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale());
    scales[0] = -5;
    scales[1] = -5;
    success = perspY.getMinMaxScales(scales);
    REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);

    SkMatrix baseMats[] = {scale, rot90Scale, rotate,
                           translate, perspX, perspY};
    SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
    for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
        mats[i] = baseMats[i];
        bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
        REPORTER_ASSERT(reporter, invertable);
    }
    SkRandom rand;
    for (int m = 0; m < 1000; ++m) {
        SkMatrix mat;
        mat.reset();
        for (int i = 0; i < 4; ++i) {
            int x = rand.nextU() % SK_ARRAY_COUNT(mats);
            mat.postConcat(mats[x]);
        }

        SkScalar minScale = mat.getMinScale();
        SkScalar maxScale = mat.getMaxScale();
        REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
        REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());

        SkScalar scales[2];
        bool success = mat.getMinMaxScales(scales);
        REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
        REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));

        if (mat.hasPerspective()) {
            m -= 1; // try another non-persp matrix
            continue;
        }

        // test a bunch of vectors. All should be scaled by between minScale and maxScale
        // (modulo some error) and we should find a vector that is scaled by almost each.
        static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
        static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
        SkScalar max = 0, min = SK_ScalarMax;
        SkVector vectors[1000];
        for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
            vectors[i].fX = rand.nextSScalar1();
            vectors[i].fY = rand.nextSScalar1();
            if (!vectors[i].normalize()) {
                i -= 1;
                continue;
            }
        }
        mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
        for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
            SkScalar d = vectors[i].length();
            REPORTER_ASSERT(reporter, SkScalarDiv(d, maxScale) < gVectorScaleTol);
            REPORTER_ASSERT(reporter, SkScalarDiv(minScale, d) < gVectorScaleTol);
            if (max < d) {
                max = d;
            }
            if (min > d) {
                min = d;
            }
        }
        REPORTER_ASSERT(reporter, SkScalarDiv(max, maxScale) >= gCloseScaleTol);
        REPORTER_ASSERT(reporter, SkScalarDiv(minScale, min) >= gCloseScaleTol);
    }
}
Esempio n. 5
0
SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) {
    fState.get()->fImage.lockPixels();

    // The image shader pattern cell will be drawn into a separate device
    // in pattern cell space (no scaling on the bitmap, though there may be
    // translations so that all content is in the device, coordinates > 0).

    // Map clip bounds to shader space to ensure the device is large enough
    // to handle fake clamping.
    SkMatrix finalMatrix = fState.get()->fCanvasTransform;
    finalMatrix.preConcat(fState.get()->fShaderTransform);
    SkRect deviceBounds;
    deviceBounds.set(fState.get()->fBBox);
    if (!inverseTransformBBox(finalMatrix, &deviceBounds)) {
        return;
    }

    const SkBitmap* image = &fState.get()->fImage;
    SkRect bitmapBounds;
    image->getBounds(&bitmapBounds);

    // For tiling modes, the bounds should be extended to include the bitmap,
    // otherwise the bitmap gets clipped out and the shader is empty and awful.
    // For clamp modes, we're only interested in the clip region, whether
    // or not the main bitmap is in it.
    SkShader::TileMode tileModes[2];
    tileModes[0] = fState.get()->fImageTileModes[0];
    tileModes[1] = fState.get()->fImageTileModes[1];
    if (tileModes[0] != SkShader::kClamp_TileMode ||
            tileModes[1] != SkShader::kClamp_TileMode) {
        deviceBounds.join(bitmapBounds);
    }

    SkMatrix unflip;
    unflip.setTranslate(0, SkScalarRoundToScalar(deviceBounds.height()));
    unflip.preScale(SK_Scalar1, -SK_Scalar1);
    SkISize size = SkISize::Make(SkScalarRound(deviceBounds.width()),
                                 SkScalarRound(deviceBounds.height()));
    SkPDFDevice pattern(size, size, unflip);
    SkCanvas canvas(&pattern);

    SkRect patternBBox;
    image->getBounds(&patternBBox);

    // Translate the canvas so that the bitmap origin is at (0, 0).
    canvas.translate(-deviceBounds.left(), -deviceBounds.top());
    patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
    // Undo the translation in the final matrix
    finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());

    // If the bitmap is out of bounds (i.e. clamp mode where we only see the
    // stretched sides), canvas will clip this out and the extraneous data
    // won't be saved to the PDF.
    canvas.drawBitmap(*image, 0, 0);

    SkScalar width = SkIntToScalar(image->width());
    SkScalar height = SkIntToScalar(image->height());

    // Tiling is implied.  First we handle mirroring.
    if (tileModes[0] == SkShader::kMirror_TileMode) {
        SkMatrix xMirror;
        xMirror.setScale(-1, 1);
        xMirror.postTranslate(2 * width, 0);
        canvas.drawBitmapMatrix(*image, xMirror);
        patternBBox.fRight += width;
    }
    if (tileModes[1] == SkShader::kMirror_TileMode) {
        SkMatrix yMirror;
        yMirror.setScale(SK_Scalar1, -SK_Scalar1);
        yMirror.postTranslate(0, 2 * height);
        canvas.drawBitmapMatrix(*image, yMirror);
        patternBBox.fBottom += height;
    }
    if (tileModes[0] == SkShader::kMirror_TileMode &&
            tileModes[1] == SkShader::kMirror_TileMode) {
        SkMatrix mirror;
        mirror.setScale(-1, -1);
        mirror.postTranslate(2 * width, 2 * height);
        canvas.drawBitmapMatrix(*image, mirror);
    }

    // Then handle Clamping, which requires expanding the pattern canvas to
    // cover the entire surfaceBBox.

    // If both x and y are in clamp mode, we start by filling in the corners.
    // (Which are just a rectangles of the corner colors.)
    if (tileModes[0] == SkShader::kClamp_TileMode &&
            tileModes[1] == SkShader::kClamp_TileMode) {
        SkPaint paint;
        SkRect rect;
        rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(0, 0));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(width, deviceBounds.top(),
                                deviceBounds.right(), 0);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(image->width() - 1, 0));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(width, height,
                                deviceBounds.right(), deviceBounds.bottom());
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(image->width() - 1,
                                           image->height() - 1));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(deviceBounds.left(), height,
                                0, deviceBounds.bottom());
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(0, image->height() - 1));
            canvas.drawRect(rect, paint);
        }
    }

    // Then expand the left, right, top, then bottom.
    if (tileModes[0] == SkShader::kClamp_TileMode) {
        SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
        if (deviceBounds.left() < 0) {
            SkBitmap left;
            SkAssertResult(image->extractSubset(&left, subset));

            SkMatrix leftMatrix;
            leftMatrix.setScale(-deviceBounds.left(), 1);
            leftMatrix.postTranslate(deviceBounds.left(), 0);
            canvas.drawBitmapMatrix(left, leftMatrix);

            if (tileModes[1] == SkShader::kMirror_TileMode) {
                leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
                leftMatrix.postTranslate(0, 2 * height);
                canvas.drawBitmapMatrix(left, leftMatrix);
            }
            patternBBox.fLeft = 0;
        }

        if (deviceBounds.right() > width) {
            SkBitmap right;
            subset.offset(image->width() - 1, 0);
            SkAssertResult(image->extractSubset(&right, subset));

            SkMatrix rightMatrix;
            rightMatrix.setScale(deviceBounds.right() - width, 1);
            rightMatrix.postTranslate(width, 0);
            canvas.drawBitmapMatrix(right, rightMatrix);

            if (tileModes[1] == SkShader::kMirror_TileMode) {
                rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
                rightMatrix.postTranslate(0, 2 * height);
                canvas.drawBitmapMatrix(right, rightMatrix);
            }
            patternBBox.fRight = deviceBounds.width();
        }
    }

    if (tileModes[1] == SkShader::kClamp_TileMode) {
        SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
        if (deviceBounds.top() < 0) {
            SkBitmap top;
            SkAssertResult(image->extractSubset(&top, subset));

            SkMatrix topMatrix;
            topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
            topMatrix.postTranslate(0, deviceBounds.top());
            canvas.drawBitmapMatrix(top, topMatrix);

            if (tileModes[0] == SkShader::kMirror_TileMode) {
                topMatrix.postScale(-1, 1);
                topMatrix.postTranslate(2 * width, 0);
                canvas.drawBitmapMatrix(top, topMatrix);
            }
            patternBBox.fTop = 0;
        }

        if (deviceBounds.bottom() > height) {
            SkBitmap bottom;
            subset.offset(0, image->height() - 1);
            SkAssertResult(image->extractSubset(&bottom, subset));

            SkMatrix bottomMatrix;
            bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
            bottomMatrix.postTranslate(0, height);
            canvas.drawBitmapMatrix(bottom, bottomMatrix);

            if (tileModes[0] == SkShader::kMirror_TileMode) {
                bottomMatrix.postScale(-1, 1);
                bottomMatrix.postTranslate(2 * width, 0);
                canvas.drawBitmapMatrix(bottom, bottomMatrix);
            }
            patternBBox.fBottom = deviceBounds.height();
        }
    }

    // Put the canvas into the pattern stream (fContent).
    SkAutoTUnref<SkStream> content(pattern.content());
    setData(content.get());
    SkPDFResourceDict* resourceDict = pattern.getResourceDict();
    resourceDict->getReferencedResources(fResources, &fResources, false);

    populate_tiling_pattern_dict(this, patternBBox,
                                 pattern.getResourceDict(), finalMatrix);

    fState.get()->fImage.unlockPixels();
}
Esempio n. 6
0
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device
// (as opposed to canvas) coordinates
bool GrClipMaskManager::createStencilClipMask(int32_t elementsGenID,
                                              InitialState initialState,
                                              const ElementList& elements,
                                              const SkIRect& clipSpaceIBounds,
                                              const SkIPoint& clipSpaceToStencilOffset) {

    SkASSERT(kNone_ClipMaskType == fCurrClipMaskType);

    GrDrawState* drawState = fGpu->drawState();
    SkASSERT(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    SkASSERT(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset)) {

        stencilBuffer->setLastClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset);

        // Set the matrix so that rendered clip elements are transformed from clip to stencil space.
        SkVector translate = {
            SkIntToScalar(clipSpaceToStencilOffset.fX),
            SkIntToScalar(clipSpaceToStencilOffset.fY)
        };
        SkMatrix matrix;
        matrix.setTranslate(translate);
        GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &matrix);
        drawState = fGpu->drawState();

        drawState->setRenderTarget(rt);

        // We set the current clip to the bounds so that our recursive draws are scissored to them.
        SkIRect stencilSpaceIBounds(clipSpaceIBounds);
        stencilSpaceIBounds.offset(clipSpaceToStencilOffset);
        GrDrawTarget::AutoClipRestore acr(fGpu, stencilSpaceIBounds);
        drawState->enableState(GrDrawState::kClip_StateBit);

#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) && "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        fGpu->clearStencilClip(stencilSpaceIBounds, kAllIn_InitialState == initialState);

        // walk through each clip element and perform its set op
        // with the existing clip.
        for (ElementList::Iter iter(elements.headIter()); NULL != iter.get(); iter.next()) {
            const Element* element = iter.get();
            bool fillInverted = false;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
            // if the target is MSAA then we want MSAA enabled when the clip is soft
            if (rt->isMultisampled()) {
                drawState->setState(GrDrawState::kHWAntialias_StateBit, element->isAA());
            }

            // This will be used to determine whether the clip shape can be rendered into the
            // stencil with arbitrary stencil settings.
            GrPathRenderer::StencilSupport stencilSupport;

            SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);

            SkRegion::Op op = element->getOp();

            GrPathRenderer* pr = NULL;
            SkPath clipPath;
            if (Element::kRect_Type == element->getType()) {
                stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport;
                fillInverted = false;
            } else {
                element->asPath(&clipPath);
                fillInverted = clipPath.isInverseFillType();
                if (fillInverted) {
                    clipPath.toggleInverseFillType();
                }
                pr = this->getContext()->getPathRenderer(clipPath,
                                                         stroke,
                                                         fGpu,
                                                         false,
                                                         GrPathRendererChain::kStencilOnly_DrawType,
                                                         &stencilSupport);
                if (NULL == pr) {
                    return false;
                }
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canRenderDirectToStencil =
                GrPathRenderer::kNoRestriction_StencilSupport == stencilSupport;
            bool canDrawDirectToClip; // Given the renderer, the element,
                                      // fill rule, and set operation can
                                      // we render the element directly to
                                      // stencil bit used for clipping.
            canDrawDirectToClip = GrStencilSettings::GetClipPasses(op,
                                                                   canRenderDirectToStencil,
                                                                   clipBit,
                                                                   fillInverted,
                                                                   &passes,
                                                                   stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                                             kIncClamp_StencilOp,
                                             kIncClamp_StencilOp,
                                             kAlways_StencilFunc,
                                             0xffff,
                                             0x0000,
                                             0xffff);
                SET_RANDOM_COLOR
                if (Element::kRect_Type == element->getType()) {
                    *drawState->stencil() = gDrawToStencil;
                    fGpu->drawSimpleRect(element->getRect(), NULL);
                } else {
                    if (!clipPath.isEmpty()) {
                        if (canRenderDirectToStencil) {
                            *drawState->stencil() = gDrawToStencil;
                            pr->drawPath(clipPath, stroke, fGpu, false);
                        } else {
                            pr->stencilPath(clipPath, stroke, fGpu);
                        }
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (Element::kRect_Type == element->getType()) {
                        SET_RANDOM_COLOR
                        fGpu->drawSimpleRect(element->getRect(), NULL);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(clipPath, stroke, fGpu, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    // The view matrix is setup to do clip space -> stencil space translation, so
                    // draw rect in clip space.
                    fGpu->drawSimpleRect(SkRect::Make(clipSpaceIBounds), NULL);
                }
            }
        }
Esempio n. 7
0
sk_sp<SkSpecialImage> SkXfermodeImageFilter::filterImageGPU(SkSpecialImage* source,
                                                            sk_sp<SkSpecialImage> background,
                                                            const SkIPoint& backgroundOffset,
                                                            sk_sp<SkSpecialImage> foreground,
                                                            const SkIPoint& foregroundOffset,
                                                            const SkIRect& bounds) const {
    SkASSERT(source->isTextureBacked());

    GrContext* context = source->getContext();

    sk_sp<GrTexture> backgroundTex, foregroundTex;
    
    if (background) {
        backgroundTex = background->asTextureRef(context);
    }

    if (foreground) {
        foregroundTex = foreground->asTextureRef(context);
    }

    GrPaint paint;
    // SRGBTODO: AllowSRGBInputs?
    SkAutoTUnref<const GrFragmentProcessor> bgFP;

    if (backgroundTex) {
        SkMatrix backgroundMatrix;
        backgroundMatrix.setIDiv(backgroundTex->width(), backgroundTex->height());
        backgroundMatrix.preTranslate(SkIntToScalar(-backgroundOffset.fX),
                                      SkIntToScalar(-backgroundOffset.fY));
        bgFP.reset(GrTextureDomainEffect::Create(
                            backgroundTex.get(), backgroundMatrix,
                            GrTextureDomain::MakeTexelDomain(backgroundTex.get(),
                                                             background->subset()),
                            GrTextureDomain::kDecal_Mode,
                            GrTextureParams::kNone_FilterMode));
    } else {
        bgFP.reset(GrConstColorProcessor::Create(GrColor_TRANSPARENT_BLACK,
                                                 GrConstColorProcessor::kIgnore_InputMode));
    }

    if (foregroundTex) {
        SkMatrix foregroundMatrix;
        foregroundMatrix.setIDiv(foregroundTex->width(), foregroundTex->height());
        foregroundMatrix.preTranslate(SkIntToScalar(-foregroundOffset.fX),
                                      SkIntToScalar(-foregroundOffset.fY));

        SkAutoTUnref<const GrFragmentProcessor> foregroundFP;

        foregroundFP.reset(GrTextureDomainEffect::Create(
                            foregroundTex.get(), foregroundMatrix,
                            GrTextureDomain::MakeTexelDomain(foregroundTex.get(), 
                                                             foreground->subset()),
                            GrTextureDomain::kDecal_Mode,
                            GrTextureParams::kNone_FilterMode));

        paint.addColorFragmentProcessor(foregroundFP.get());

        // A null fMode is interpreted to mean kSrcOver_Mode (to match raster).
        SkAutoTUnref<SkXfermode> mode(SkSafeRef(fMode.get()));
        if (!mode) {
            // It would be awesome to use SkXfermode::Create here but it knows better
            // than us and won't return a kSrcOver_Mode SkXfermode. That means we
            // have to get one the hard way.
            struct ProcCoeff rec;
            rec.fProc = SkXfermode::GetProc(SkXfermode::kSrcOver_Mode);
            SkXfermode::ModeAsCoeff(SkXfermode::kSrcOver_Mode, &rec.fSC, &rec.fDC);

            mode.reset(new SkProcCoeffXfermode(rec, SkXfermode::kSrcOver_Mode));
        }

        sk_sp<const GrFragmentProcessor> xferFP(mode->getFragmentProcessorForImageFilter(bgFP));

        // A null 'xferFP' here means kSrc_Mode was used in which case we can just proceed
        if (xferFP) {
            paint.addColorFragmentProcessor(xferFP.get());
        }
    } else {
        paint.addColorFragmentProcessor(bgFP);
    }

    paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);

    sk_sp<GrDrawContext> drawContext(context->newDrawContext(GrContext::kLoose_BackingFit,
                                                             bounds.width(), bounds.height(),
                                                             kSkia8888_GrPixelConfig));
    if (!drawContext) {
        return nullptr;
    }

    SkMatrix matrix;
    matrix.setTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
    drawContext->drawRect(GrClip::WideOpen(), paint, matrix, SkRect::Make(bounds));

    return SkSpecialImage::MakeFromGpu(SkIRect::MakeWH(bounds.width(), bounds.height()),
                                       kNeedNewImageUniqueID_SpecialImage,
                                       drawContext->asTexture());
}
Esempio n. 8
0
  static void setTranslate(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
     SkMatrix* obj = reinterpret_cast<SkMatrix*>(objHandle);
     obj->setTranslate(dx, dy);
 }
Esempio n. 9
0
static void test_matrix_preserve_shape(skiatest::Reporter* reporter) {
    SkMatrix mat;

    // identity
    mat.setIdentity();
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // translation only
    mat.reset();
    mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scale with same size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scale with one negative
    mat.reset();
    mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scale with different size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scale with same size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scale with different size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // skew with same size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // skew with different size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // skew with same size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // skew with different size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // perspective x
    mat.reset();
    mat.setPerspX(SK_Scalar1 / 2);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // perspective y
    mat.reset();
    mat.setPerspY(SK_Scalar1 / 2);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // rotate
    for (int angle = 0; angle < 360; ++angle) {
        mat.reset();
        mat.setRotate(SkIntToScalar(angle));
        REPORTER_ASSERT(reporter, mat.isSimilarity());
        REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    }

    // see if there are any accumulated precision issues
    mat.reset();
    for (int i = 1; i < 360; i++) {
        mat.postRotate(SkIntToScalar(1));
    }
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // rotate + translate
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // rotate + uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // rotate + non-uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // non-uniform scale + rotate
    mat.reset();
    mat.setScale(SkIntToScalar(3), SkIntToScalar(2));
    mat.postRotate(SkIntToScalar(30));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // all zero
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // all zero except perspective
    mat.reset();
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());
    REPORTER_ASSERT(reporter, !mat.preservesRightAngles());

    // scales zero, only skews (rotation)
    mat.setAll(0, SK_Scalar1, 0,
               -SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());

    // scales zero, only skews (reflection)
    mat.setAll(0, SK_Scalar1, 0,
               SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
    REPORTER_ASSERT(reporter, mat.preservesRightAngles());
}
void GrDistanceFieldTextContext::drawPackedGlyph(GrGlyph::PackedID packed,
                                                 GrFixed vx, GrFixed vy,
                                                 GrFontScaler* scaler) {
    if (NULL == fDrawTarget) {
        return;
    }
    if (NULL == fStrike) {
        fStrike = fContext->getFontCache()->getStrike(scaler, true);
    }

    GrGlyph* glyph = fStrike->getGlyph(packed, scaler);
    if (NULL == glyph || glyph->fBounds.isEmpty()) {
        return;
    }

    SkScalar sx = SkFixedToScalar(vx);
    SkScalar sy = SkFixedToScalar(vy);
/*
    // not valid, need to find a different solution for this
    vx += SkIntToFixed(glyph->fBounds.fLeft);
    vy += SkIntToFixed(glyph->fBounds.fTop);

    // keep them as ints until we've done the clip-test
    GrFixed width = glyph->fBounds.width();
    GrFixed height = glyph->fBounds.height();

    // check if we clipped out
    if (true || NULL == glyph->fPlot) {
        int x = vx >> 16;
        int y = vy >> 16;
        if (fClipRect.quickReject(x, y, x + width, y + height)) {
//            SkCLZ(3);    // so we can set a break-point in the debugger
            return;
        }
    }
*/
    if (NULL == glyph->fPlot) {
        if (fStrike->getGlyphAtlas(glyph, scaler)) {
            goto HAS_ATLAS;
        }

        // try to clear out an unused plot before we flush
        fContext->getFontCache()->freePlotExceptFor(fStrike);
        if (fStrike->getGlyphAtlas(glyph, scaler)) {
            goto HAS_ATLAS;
        }

        if (c_DumpFontCache) {
#ifdef SK_DEVELOPER
            fContext->getFontCache()->dump();
#endif
        }

        // before we purge the cache, we must flush any accumulated draws
        this->flushGlyphs();
        fContext->flush();

        // try to purge
        fContext->getFontCache()->purgeExceptFor(fStrike);
        // need to use new flush count here
        if (fStrike->getGlyphAtlas(glyph, scaler)) {
            goto HAS_ATLAS;
        }

        if (NULL == glyph->fPath) {
            SkPath* path = SkNEW(SkPath);
            if (!scaler->getGlyphPath(glyph->glyphID(), path)) {
                // flag the glyph as being dead?
                delete path;
                return;
            }
            glyph->fPath = path;
        }

        GrContext::AutoMatrix am;
        SkMatrix translate;
        translate.setTranslate(sx, sy);
        GrPaint tmpPaint(fPaint);
        am.setPreConcat(fContext, translate, &tmpPaint);
        SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
        fContext->drawPath(tmpPaint, *glyph->fPath, stroke);
        return;
    }

HAS_ATLAS:
    SkASSERT(glyph->fPlot);
    GrDrawTarget::DrawToken drawToken = fDrawTarget->getCurrentDrawToken();
    glyph->fPlot->setDrawToken(drawToken);

    GrTexture* texture = glyph->fPlot->texture();
    SkASSERT(texture);

    if (fCurrTexture != texture || fCurrVertex + 4 > fMaxVertices) {
        this->flushGlyphs();
        fCurrTexture = texture;
        fCurrTexture->ref();
    }

    if (NULL == fVertices) {
       // If we need to reserve vertices allow the draw target to suggest
        // a number of verts to reserve and whether to perform a flush.
        fMaxVertices = kMinRequestedVerts;
        fDrawTarget->drawState()->setVertexAttribs<gTextVertexAttribs>(
            SK_ARRAY_COUNT(gTextVertexAttribs));
        bool flush = fDrawTarget->geometryHints(&fMaxVertices, NULL);
        if (flush) {
            this->flushGlyphs();
            fContext->flush();
            fDrawTarget->drawState()->setVertexAttribs<gTextVertexAttribs>(
                SK_ARRAY_COUNT(gTextVertexAttribs));
        }
        fMaxVertices = kDefaultRequestedVerts;
        // ignore return, no point in flushing again.
        fDrawTarget->geometryHints(&fMaxVertices, NULL);

        int maxQuadVertices = 4 * fContext->getQuadIndexBuffer()->maxQuads();
        if (fMaxVertices < kMinRequestedVerts) {
            fMaxVertices = kDefaultRequestedVerts;
        } else if (fMaxVertices > maxQuadVertices) {
            // don't exceed the limit of the index buffer
            fMaxVertices = maxQuadVertices;
        }
        bool success = fDrawTarget->reserveVertexAndIndexSpace(fMaxVertices,
                                                               0,
                                                               GrTCast<void**>(&fVertices),
                                                               NULL);
        GrAlwaysAssert(success);
        SkASSERT(2*sizeof(GrPoint) == fDrawTarget->getDrawState().getVertexSize());
    }

    SkScalar dx = SkIntToScalar(glyph->fBounds.fLeft);
    SkScalar dy = SkIntToScalar(glyph->fBounds.fTop);
    SkScalar width = SkIntToScalar(glyph->fBounds.width());
    SkScalar height = SkIntToScalar(glyph->fBounds.height());

    SkScalar scale = fTextRatio;
    dx *= scale;
    dy *= scale;
    sx += dx;
    sy += dy;
    width *= scale;
    height *= scale;

    GrFixed tx = SkIntToFixed(glyph->fAtlasLocation.fX);
    GrFixed ty = SkIntToFixed(glyph->fAtlasLocation.fY);
    GrFixed tw = SkIntToFixed(glyph->fBounds.width());
    GrFixed th = SkIntToFixed(glyph->fBounds.height());

    fVertices[2*fCurrVertex].setRectFan(sx,
                                        sy,
                                        sx + width,
                                        sy + height,
                                        2 * sizeof(SkPoint));
    fVertices[2*fCurrVertex+1].setRectFan(SkFixedToFloat(texture->normalizeFixedX(tx)),
                                          SkFixedToFloat(texture->normalizeFixedY(ty)),
                                          SkFixedToFloat(texture->normalizeFixedX(tx + tw)),
                                          SkFixedToFloat(texture->normalizeFixedY(ty + th)),
                                          2 * sizeof(SkPoint));
    fCurrVertex += 4;
}
Esempio n. 11
0
    void onDraw(int loops, SkCanvas* canvas) override {
        SkRandom scaleRand;
        SkRandom transRand;
        SkRandom rotRand;

        int width, height;
        if (fUseAtlas) {
            width = kAtlasCellWidth;
            height = kAtlasCellHeight;
        } else {
            width = kCheckerboardWidth;
            height = kCheckerboardHeight;
        }

        SkPaint clearPaint;
        clearPaint.setColor(0xFF000000);
        clearPaint.setAntiAlias(true);

        SkISize size = canvas->getDeviceSize();

        SkScalar maxTransX, maxTransY;

        if (kScale_Type == fType) {
            maxTransX = size.fWidth  - (1.5f * width);
            maxTransY = size.fHeight - (1.5f * height);
        } else if (kTranslate_Type == fType) {
            maxTransX = SkIntToScalar(size.fWidth  - width);
            maxTransY = SkIntToScalar(size.fHeight - height);
        } else {
            SkASSERT(kRotate_Type == fType);
            // Yes, some rotations will be off the top and left sides
            maxTransX = size.fWidth  - SK_ScalarSqrt2 * height;
            maxTransY = size.fHeight - SK_ScalarSqrt2 * height;
        }

        SkMatrix mat;
        SkRect dst = { 0, 0, SkIntToScalar(width), SkIntToScalar(height) };
        SkRect clearRect = { -1.0f, -1.0f, width+1.0f, height+1.0f };
        SkPoint verts[4] = { // for drawVertices path
            { 0, 0 },
            { 0, SkIntToScalar(height) },
            { SkIntToScalar(width), SkIntToScalar(height) },
            { SkIntToScalar(width), 0 }
        };
        uint16_t indices[6] = { 0, 1, 2, 0, 2, 3 };

        SkPaint p;
        p.setColor(0xFF000000);
        p.setFilterQuality(kLow_SkFilterQuality);

        SkPaint p2;         // for drawVertices path
        p2.setColor(0xFF000000);
        p2.setFilterQuality(kLow_SkFilterQuality);
        p2.setShader(SkShader::CreateBitmapShader(fAtlas,
                                                  SkShader::kClamp_TileMode,
                                                  SkShader::kClamp_TileMode))->unref();

        for (int i = 0; i < loops; ++i, ++fNumSaved) {
            if (0 == i % kNumBeforeClear) {
                if (kPartial_Clear == fClear) {
                    for (int j = 0; j < fNumSaved; ++j) {
                        canvas->setMatrix(SkMatrix::I());
                        mat.setTranslate(fSaved[j][0], fSaved[j][1]);

                        if (kScale_Type == fType) {
                            mat.preScale(fSaved[j][2], fSaved[j][2]);
                        } else if (kRotate_Type == fType) {
                            mat.preRotate(fSaved[j][2]);
                        }

                        canvas->concat(mat);
                        canvas->drawRect(clearRect, clearPaint);
                    }
                } else {
                    canvas->clear(0xFF000000);
                }

                fNumSaved = 0;
            }

            SkASSERT(fNumSaved < kNumBeforeClear);

            canvas->setMatrix(SkMatrix::I());

            fSaved[fNumSaved][0] = transRand.nextRangeScalar(0.0f, maxTransX);
            fSaved[fNumSaved][1] = transRand.nextRangeScalar(0.0f, maxTransY);
            if (fAligned) {
                // make the translations integer aligned
                fSaved[fNumSaved][0] = SkScalarFloorToScalar(fSaved[fNumSaved][0]);
                fSaved[fNumSaved][1] = SkScalarFloorToScalar(fSaved[fNumSaved][1]);
            }

            mat.setTranslate(fSaved[fNumSaved][0], fSaved[fNumSaved][1]);

            if (kScale_Type == fType) {
                fSaved[fNumSaved][2] = scaleRand.nextRangeScalar(0.5f, 1.5f);
                mat.preScale(fSaved[fNumSaved][2], fSaved[fNumSaved][2]);
            } else if (kRotate_Type == fType) {
                fSaved[fNumSaved][2] = rotRand.nextRangeScalar(0.0f, 360.0f);
                mat.preRotate(fSaved[fNumSaved][2]);
            }

            canvas->concat(mat);
            if (fUseAtlas) {
                const int curCell = i % (kNumAtlasedX * kNumAtlasedY);
                SkIRect src = fAtlasRects[curCell % (kNumAtlasedX)][curCell / (kNumAtlasedX)];

                if (fUseDrawVertices) {
                    SkPoint uvs[4] = {
                        { SkIntToScalar(src.fLeft),  SkIntToScalar(src.fBottom) },
                        { SkIntToScalar(src.fLeft),  SkIntToScalar(src.fTop) },
                        { SkIntToScalar(src.fRight), SkIntToScalar(src.fTop) },
                        { SkIntToScalar(src.fRight), SkIntToScalar(src.fBottom) },
                    };
                    canvas->drawVertices(SkCanvas::kTriangles_VertexMode,
                                         4, verts, uvs, nullptr, nullptr,
                                         indices, 6, p2);
                } else {
                    canvas->drawBitmapRect(fAtlas, src, dst, &p,
                                           SkCanvas::kFast_SrcRectConstraint);
                }
            } else {
                canvas->drawBitmapRect(fCheckerboard, dst, &p);
            }
        }
    }
Esempio n. 12
0
 SkMatrix makeMatrix() {
     SkMatrix matrix;
     matrix.reset();
     RandomSetMatrix setMatrix = (RandomSetMatrix) fRand.nextRangeU(0, kRandomSetMatrix_Last);
     if (fPrintName) {
         SkDebugf("%.*s%s\n", fPathDepth * 3, fTab, gRandomSetMatrixNames[setMatrix]);
     }
     switch (setMatrix) {
     case kSetIdentity:
         break;
     case kSetTranslateX:
         matrix.setTranslateX(makeScalar());
         break;
     case kSetTranslateY:
         matrix.setTranslateY(makeScalar());
         break;
     case kSetTranslate:
         matrix.setTranslate(makeScalar(), makeScalar());
         break;
     case kSetScaleX:
         matrix.setScaleX(makeScalar());
         break;
     case kSetScaleY:
         matrix.setScaleY(makeScalar());
         break;
     case kSetScale:
         matrix.setScale(makeScalar(), makeScalar());
         break;
     case kSetScaleTranslate:
         matrix.setScale(makeScalar(), makeScalar(), makeScalar(), makeScalar());
         break;
     case kSetSkewX:
         matrix.setSkewX(makeScalar());
         break;
     case kSetSkewY:
         matrix.setSkewY(makeScalar());
         break;
     case kSetSkew:
         matrix.setSkew(makeScalar(), makeScalar());
         break;
     case kSetSkewTranslate:
         matrix.setSkew(makeScalar(), makeScalar(), makeScalar(), makeScalar());
         break;
     case kSetRotate:
         matrix.setRotate(makeScalar());
         break;
     case kSetRotateTranslate:
         matrix.setRotate(makeScalar(), makeScalar(), makeScalar());
         break;
     case kSetPerspectiveX:
         matrix.setPerspX(makeScalar());
         break;
     case kSetPerspectiveY:
         matrix.setPerspY(makeScalar());
         break;
     case kSetAll:
         matrix.setAll(makeScalar(), makeScalar(), makeScalar(),
                       makeScalar(), makeScalar(), makeScalar(),
                       makeScalar(), makeScalar(), makeScalar());
         break;
     }
     return matrix;
 }
Esempio n. 13
0
void NativeImageSkia::drawPattern(
    GraphicsContext* context,
    const FloatRect& floatSrcRect,
    const FloatSize& scale,
    const FloatPoint& phase,
    CompositeOperator compositeOp,
    const FloatRect& destRect,
    WebBlendMode blendMode,
    const IntSize& repeatSpacing) const
{
    FloatRect normSrcRect = floatSrcRect;
    normSrcRect.intersect(FloatRect(0, 0, bitmap().width(), bitmap().height()));
    if (destRect.isEmpty() || normSrcRect.isEmpty())
        return; // nothing to draw

    SkMatrix totalMatrix = context->getTotalMatrix();
    AffineTransform ctm = context->getCTM();
    SkScalar ctmScaleX = ctm.xScale();
    SkScalar ctmScaleY = ctm.yScale();
    totalMatrix.preScale(scale.width(), scale.height());

    // Figure out what size the bitmap will be in the destination. The
    // destination rect is the bounds of the pattern, we need to use the
    // matrix to see how big it will be.
    SkRect destRectTarget;
    totalMatrix.mapRect(&destRectTarget, normSrcRect);

    float destBitmapWidth = SkScalarToFloat(destRectTarget.width());
    float destBitmapHeight = SkScalarToFloat(destRectTarget.height());

    bool isLazyDecoded = DeferredImageDecoder::isLazyDecoded(bitmap());

    // Compute the resampling mode.
    InterpolationQuality resampling;
    if (context->isAccelerated())
        resampling = InterpolationLow;
    else if (isLazyDecoded)
        resampling = InterpolationHigh;
    else
        resampling = computeInterpolationQuality(totalMatrix, normSrcRect.width(), normSrcRect.height(), destBitmapWidth, destBitmapHeight, isDataComplete());
    resampling = limitInterpolationQuality(context, resampling);

    SkMatrix localMatrix;
    // We also need to translate it such that the origin of the pattern is the
    // origin of the destination rect, which is what WebKit expects. Skia uses
    // the coordinate system origin as the base for the pattern. If WebKit wants
    // a shifted image, it will shift it from there using the localMatrix.
    const float adjustedX = phase.x() + normSrcRect.x() * scale.width();
    const float adjustedY = phase.y() + normSrcRect.y() * scale.height();
    localMatrix.setTranslate(SkFloatToScalar(adjustedX), SkFloatToScalar(adjustedY));

    sk_sp<SkShader> shader;
    SkFilterQuality filterLevel = static_cast<SkFilterQuality>(resampling);

    // Bicubic filter is only applied to defer-decoded images, see
    // NativeImageSkia::draw for details.
    if (resampling == InterpolationHigh && !isLazyDecoded) {
        // Do nice resampling.
        filterLevel = kNone_SkFilterQuality;
        float scaleX = destBitmapWidth / normSrcRect.width();
        float scaleY = destBitmapHeight / normSrcRect.height();
        SkRect scaledSrcRect;

        // Since we are resizing the bitmap, we need to remove the scale
        // applied to the pixels in the bitmap shader. This means we need
        // CTM * localMatrix to have identity scale. Since we
        // can't modify CTM (or the rectangle will be drawn in the wrong
        // place), we must set localMatrix's scale to the inverse of
        // CTM scale.
        localMatrix.preScale(ctmScaleX ? 1 / ctmScaleX : 1, ctmScaleY ? 1 / ctmScaleY : 1);

        // The image fragment generated here is not exactly what is
        // requested. The scale factor used is approximated and image
        // fragment is slightly larger to align to integer
        // boundaries.
        SkBitmap resampled = extractScaledImageFragment(normSrcRect, scaleX, scaleY, &scaledSrcRect);
        if (repeatSpacing.isZero()) {
            shader = SkShader::MakeBitmapShader(resampled, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix);
        } else {
            shader = SkShader::MakeBitmapShader(
                createBitmapWithSpace(resampled, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY),
                SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix);
        }
    } else {
        // Because no resizing occurred, the shader transform should be
        // set to the pattern's transform, which just includes scale.
        localMatrix.preScale(scale.width(), scale.height());

        // No need to resample before drawing.
        SkBitmap srcSubset;
        bitmap().extractSubset(&srcSubset, enclosingIntRect(normSrcRect));
        if (repeatSpacing.isZero()) {
            shader = SkShader::MakeBitmapShader(srcSubset, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix);
        } else {
            shader = SkShader::MakeBitmapShader(
                createBitmapWithSpace(srcSubset, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY),
                SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix);
        }
    }

    SkPaint paint;
    paint.setShader(shader);
    paint.setXfermodeMode(WebCoreCompositeToSkiaComposite(compositeOp, blendMode));
    paint.setColorFilter(sk_ref_sp(context->colorFilter()));
    paint.setFilterQuality(filterLevel);
    context->drawRect(destRect, paint);
}
Esempio n. 14
0
static void test_savelayer_extraction(skiatest::Reporter* reporter) {
    static const int kWidth = 100;
    static const int kHeight = 100;

    // Create complex paint that the bounding box computation code can't
    // optimize away
    SkScalar blueToRedMatrix[20] = { 0 };
    blueToRedMatrix[2] = blueToRedMatrix[18] = SK_Scalar1;
    SkAutoTUnref<SkColorFilter> blueToRed(SkColorMatrixFilter::Create(blueToRedMatrix));
    SkAutoTUnref<SkImageFilter> filter(SkColorFilterImageFilter::Create(blueToRed.get()));

    SkPaint complexPaint;
    complexPaint.setImageFilter(filter);

    SkAutoTUnref<SkPicture> pict, child;
    SkRTreeFactory bbhFactory;

    {
        SkPictureRecorder recorder;

        SkCanvas* c = recorder.beginRecording(SkIntToScalar(kWidth), SkIntToScalar(kHeight),
                                              &bbhFactory,
                                              SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag);

        c->saveLayer(NULL, &complexPaint);
        c->restore();

        child.reset(recorder.endRecording());
    }

    // create a picture with the structure:
    // 1)
    //      SaveLayer
    //      Restore
    // 2)
    //      SaveLayer
    //          Translate
    //          SaveLayer w/ bound
    //          Restore
    //      Restore
    // 3)
    //      SaveLayer w/ copyable paint
    //      Restore
    // 4)
    //      SaveLayer
    //          DrawPicture (which has a SaveLayer/Restore pair)
    //      Restore
    // 5)
    //      SaveLayer
    //          DrawPicture with Matrix & Paint (with SaveLayer/Restore pair)
    //      Restore
    {
        SkPictureRecorder recorder;

        SkCanvas* c = recorder.beginRecording(SkIntToScalar(kWidth),
                                              SkIntToScalar(kHeight),
                                              &bbhFactory,
                                              SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag);
        // 1)
        c->saveLayer(NULL, &complexPaint); // layer #0
        c->restore();

        // 2)
        c->saveLayer(NULL, NULL); // layer #1
            c->translate(kWidth / 2.0f, kHeight / 2.0f);
            SkRect r = SkRect::MakeXYWH(0, 0, kWidth/2, kHeight/2);
            c->saveLayer(&r, &complexPaint); // layer #2
            c->restore();
        c->restore();

        // 3)
        {
            c->saveLayer(NULL, &complexPaint); // layer #3
            c->restore();
        }

        SkPaint layerPaint;
        layerPaint.setColor(SK_ColorRED);  // Non-alpha only to avoid SaveLayerDrawRestoreNooper
        // 4)
        {
            c->saveLayer(NULL, &layerPaint);  // layer #4
                c->drawPicture(child);  // layer #5 inside picture
            c->restore();
        }
        // 5
        {
            SkPaint picturePaint;
            SkMatrix trans;
            trans.setTranslate(10, 10);

            c->saveLayer(NULL, &layerPaint);  // layer #6
                c->drawPicture(child, &trans, &picturePaint); // layer #7 inside picture
            c->restore();
        }

        pict.reset(recorder.endRecording());
    }

    // Now test out the SaveLayer extraction
    if (!SkCanvas::Internal_Private_GetIgnoreSaveLayerBounds()) {
        SkPicture::AccelData::Key key = SkLayerInfo::ComputeKey();

        const SkPicture::AccelData* data = pict->EXPERIMENTAL_getAccelData(key);
        REPORTER_ASSERT(reporter, data);

        const SkLayerInfo *gpuData = static_cast<const SkLayerInfo*>(data);
        REPORTER_ASSERT(reporter, 8 == gpuData->numBlocks());

        const SkLayerInfo::BlockInfo& info0 = gpuData->block(0);
        // The parent/child layers appear in reverse order
        const SkLayerInfo::BlockInfo& info1 = gpuData->block(2);
        const SkLayerInfo::BlockInfo& info2 = gpuData->block(1);

        const SkLayerInfo::BlockInfo& info3 = gpuData->block(3);

        // The parent/child layers appear in reverse order
        const SkLayerInfo::BlockInfo& info4 = gpuData->block(5);
        const SkLayerInfo::BlockInfo& info5 = gpuData->block(4);

        // The parent/child layers appear in reverse order
        const SkLayerInfo::BlockInfo& info6 = gpuData->block(7);
        const SkLayerInfo::BlockInfo& info7 = gpuData->block(6);

        REPORTER_ASSERT(reporter, NULL == info0.fPicture);
        REPORTER_ASSERT(reporter, kWidth == info0.fBounds.width() &&
                                  kHeight == info0.fBounds.height());
        REPORTER_ASSERT(reporter, info0.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info0.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, 0 == info0.fBounds.fLeft && 0 == info0.fBounds.fTop);
        REPORTER_ASSERT(reporter, NULL != info0.fPaint);
        REPORTER_ASSERT(reporter, !info0.fIsNested && !info0.fHasNestedLayers);

        REPORTER_ASSERT(reporter, NULL == info1.fPicture);
        REPORTER_ASSERT(reporter, kWidth/2.0 == info1.fBounds.width() &&
                                  kHeight/2.0 == info1.fBounds.height());
        REPORTER_ASSERT(reporter, info1.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info1.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, kWidth/2.0 == info1.fBounds.fLeft &&
                                  kHeight/2.0 == info1.fBounds.fTop);
        REPORTER_ASSERT(reporter, NULL == info1.fPaint);
        REPORTER_ASSERT(reporter, !info1.fIsNested &&
                                  info1.fHasNestedLayers); // has a nested SL

        REPORTER_ASSERT(reporter, NULL == info2.fPicture);
        REPORTER_ASSERT(reporter, kWidth / 2 == info2.fBounds.width() &&
                                  kHeight / 2 == info2.fBounds.height()); // bound reduces size
        REPORTER_ASSERT(reporter, !info2.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info2.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, kWidth / 2 == info2.fBounds.fLeft &&   // translated
                                  kHeight / 2 == info2.fBounds.fTop);
        REPORTER_ASSERT(reporter, NULL != info2.fPaint);
        REPORTER_ASSERT(reporter, info2.fIsNested && !info2.fHasNestedLayers); // is nested

        REPORTER_ASSERT(reporter, NULL == info3.fPicture);
        REPORTER_ASSERT(reporter, kWidth == info3.fBounds.width() &&
                                  kHeight == info3.fBounds.height());
        REPORTER_ASSERT(reporter, info3.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info3.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, 0 == info3.fBounds.fLeft && 0 == info3.fBounds.fTop);
        REPORTER_ASSERT(reporter, info3.fPaint);
        REPORTER_ASSERT(reporter, !info3.fIsNested && !info3.fHasNestedLayers);

        REPORTER_ASSERT(reporter, NULL == info4.fPicture);
        REPORTER_ASSERT(reporter, kWidth == info4.fBounds.width() &&
                                  kHeight == info4.fBounds.height());
        REPORTER_ASSERT(reporter, 0 == info4.fBounds.fLeft && 0 == info4.fBounds.fTop);
        REPORTER_ASSERT(reporter, info4.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info4.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, info4.fPaint);
        REPORTER_ASSERT(reporter, !info4.fIsNested &&
                                  info4.fHasNestedLayers); // has a nested SL

        REPORTER_ASSERT(reporter, child == info5.fPicture); // in a child picture
        REPORTER_ASSERT(reporter, kWidth == info5.fBounds.width() &&
                                  kHeight == info5.fBounds.height());
        REPORTER_ASSERT(reporter, 0 == info5.fBounds.fLeft && 0 == info5.fBounds.fTop);
        REPORTER_ASSERT(reporter, info5.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info5.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, NULL != info5.fPaint);
        REPORTER_ASSERT(reporter, info5.fIsNested && !info5.fHasNestedLayers); // is nested

        REPORTER_ASSERT(reporter, NULL == info6.fPicture);
        REPORTER_ASSERT(reporter, kWidth-10 == info6.fBounds.width() &&
                                  kHeight-10 == info6.fBounds.height());
        REPORTER_ASSERT(reporter, 10 == info6.fBounds.fLeft && 10 == info6.fBounds.fTop);
        REPORTER_ASSERT(reporter, info6.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info6.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, info6.fPaint);
        REPORTER_ASSERT(reporter, !info6.fIsNested &&
                                  info6.fHasNestedLayers); // has a nested SL

        REPORTER_ASSERT(reporter, child == info7.fPicture); // in a child picture
        REPORTER_ASSERT(reporter, kWidth == info7.fBounds.width() &&
                                  kHeight == info7.fBounds.height());
        REPORTER_ASSERT(reporter, 0 == info7.fBounds.fLeft && 0 == info7.fBounds.fTop);
        REPORTER_ASSERT(reporter, info7.fLocalMat.isIdentity());
        REPORTER_ASSERT(reporter, info7.fPreMat.isIdentity());
        REPORTER_ASSERT(reporter, NULL != info7.fPaint);
        REPORTER_ASSERT(reporter, info7.fIsNested && !info7.fHasNestedLayers); // is nested
    }
}
Esempio n. 15
0
File: 3dgm.cpp Progetto: google/skia
    DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
        if (!fAnim) {
            *errorMsg = "No animation.";
            return DrawResult::kFail;
        }
        SkMatrix44  camera,
                    perspective,
                    mv;
        SkMatrix    viewport;

        {
            float w = this->width();
            float h = this->height();
            float s = std::min(w, h);
            viewport.setTranslate(1, -1);
            viewport.postScale(s/2, -s/2);

            draw_viewport(canvas, viewport);
        }

        Sk3Perspective(&perspective, fNear, fFar, fAngle);
        Sk3LookAt(&camera, fEye, fCOA, fUp);
        mv.postConcat(camera);
        mv.postConcat(perspective);
        SkPoint pts[8];
        Sk3MapPts(pts, mv, fP3, 8);
        viewport.mapPoints(pts, 8);

        SkPaint paint;
        paint.setStyle(SkPaint::kStroke_Style);
        SkFont font;
        font.setEdging(SkFont::Edging::kAlias);

        SkPath cube;

        cube.moveTo(pts[0]);
        cube.lineTo(pts[2]);
        cube.lineTo(pts[6]);
        cube.lineTo(pts[4]);
        cube.close();

        cube.moveTo(pts[1]);
        cube.lineTo(pts[3]);
        cube.lineTo(pts[7]);
        cube.lineTo(pts[5]);
        cube.close();

        cube.moveTo(pts[0]);    cube.lineTo(pts[1]);
        cube.moveTo(pts[2]);    cube.lineTo(pts[3]);
        cube.moveTo(pts[4]);    cube.lineTo(pts[5]);
        cube.moveTo(pts[6]);    cube.lineTo(pts[7]);

        canvas->drawPath(cube, paint);

        {
            SkPoint3 src[4] = {
                { 0, 0, 0 }, { 2, 0, 0 }, { 0, 2, 0 }, { 0, 0, 2 },
            };
            SkPoint dst[4];
            mv.setConcat(perspective, camera);
            Sk3MapPts(dst, mv, src, 4);
            viewport.mapPoints(dst, 4);
            const char* str[3] = { "X", "Y", "Z" };
            for (int i = 1; i <= 3; ++i) {
                canvas->drawLine(dst[0], dst[i], paint);
            }

            for (int i = 0; i < 3; ++i) {
                canvas->drawString(str[i], dst[i + 1].fX, dst[i + 1].fY, font, paint);
            }
        }

        fAnim->seek(fAnimT);
        draw_skia(canvas, mv, viewport, fAnim.get());
        return DrawResult::kOk;
    }
Esempio n. 16
0
void test_matrix_max_stretch(skiatest::Reporter* reporter) {
    SkMatrix identity;
    identity.reset();
    REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxStretch());

    SkMatrix scale;
    scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
    REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxStretch());

    SkMatrix rot90Scale;
    rot90Scale.setRotate(90 * SK_Scalar1);
    rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
    REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxStretch());

    SkMatrix rotate;
    rotate.setRotate(128 * SK_Scalar1);
    REPORTER_ASSERT(reporter, SkScalarAbs(SK_Scalar1 - rotate.getMaxStretch()) <= SK_ScalarNearlyZero);

    SkMatrix translate;
    translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
    REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxStretch());

    SkMatrix perspX;
    perspX.reset();
    perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000));
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxStretch());

    SkMatrix perspY;
    perspY.reset();
    perspY.setPerspX(SkScalarToPersp(-SK_Scalar1 / 500));
    REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxStretch());

    SkMatrix baseMats[] = {scale, rot90Scale, rotate,
                           translate, perspX, perspY};
    SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
    for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
        mats[i] = baseMats[i];
        bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
        REPORTER_ASSERT(reporter, invertable);
    }
    SkRandom rand;
    for (int m = 0; m < 1000; ++m) {
        SkMatrix mat;
        mat.reset();
        for (int i = 0; i < 4; ++i) {
            int x = rand.nextU() % SK_ARRAY_COUNT(mats);
            mat.postConcat(mats[x]);
        }
        SkScalar stretch = mat.getMaxStretch();
        
        if ((stretch < 0) != mat.hasPerspective()) {
            stretch = mat.getMaxStretch();
        }

        REPORTER_ASSERT(reporter, (stretch < 0) == mat.hasPerspective());

        if (mat.hasPerspective()) {
            m -= 1; // try another non-persp matrix
            continue;
        }

        // test a bunch of vectors. None should be scaled by more than stretch
        // (modulo some error) and we should find a vector that is scaled by
        // almost stretch.
        static const SkScalar gStretchTol = (105 * SK_Scalar1) / 100;
        static const SkScalar gMaxStretchTol = (97 * SK_Scalar1) / 100;
        SkScalar max = 0;
        SkVector vectors[1000];
        for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
            vectors[i].fX = rand.nextSScalar1();
            vectors[i].fY = rand.nextSScalar1();
            if (!vectors[i].normalize()) {
                i -= 1;
                continue;
            }
        }
        mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
        for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
            SkScalar d = vectors[i].length();
            REPORTER_ASSERT(reporter, SkScalarDiv(d, stretch) < gStretchTol);
            if (max < d) {
                max = d;
            }
        }
        REPORTER_ASSERT(reporter, SkScalarDiv(max, stretch) >= gMaxStretchTol);
    }
}
Esempio n. 17
0
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
GrTexture* GrClipMaskManager::createAlphaClipMask(int32_t elementsGenID,
                                                  InitialState initialState,
                                                  const ElementList& elements,
                                                  const SkIRect& clipSpaceIBounds) {
    SkASSERT(kNone_ClipMaskType == fCurrClipMaskType);

    GrTexture* result;
    if (this->getMaskTexture(elementsGenID, clipSpaceIBounds, &result, false)) {
        fCurrClipMaskType = kAlpha_ClipMaskType;
        return result;
    }

    if (NULL == result) {
        fAACache.reset();
        return NULL;
    }

    // The top-left of the mask corresponds to the top-left corner of the bounds.
    SkVector clipToMaskOffset = {
        SkIntToScalar(-clipSpaceIBounds.fLeft),
        SkIntToScalar(-clipSpaceIBounds.fTop)
    };
    // The texture may be larger than necessary, this rect represents the part of the texture
    // we populate with a rasterization of the clip.
    SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height());

    // Set the matrix so that rendered clip elements are transformed to mask space from clip space.
    SkMatrix translate;
    translate.setTranslate(clipToMaskOffset);
    GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &translate);

    GrDrawState* drawState = fGpu->drawState();

    // We're drawing a coverage mask and want coverage to be run through the blend function.
    drawState->enableState(GrDrawState::kCoverageDrawing_StateBit);

    // The scratch texture that we are drawing into can be substantially larger than the mask. Only
    // clear the part that we care about.
    fGpu->clear(&maskSpaceIBounds,
                kAllIn_InitialState == initialState ? 0xffffffff : 0x00000000,
                true,
                result->asRenderTarget());

    // When we use the stencil in the below loop it is important to have this clip installed.
    // The second pass that zeros the stencil buffer renders the rect maskSpaceIBounds so the first
    // pass must not set values outside of this bounds or stencil values outside the rect won't be
    // cleared.
    GrDrawTarget::AutoClipRestore acr(fGpu, maskSpaceIBounds);
    drawState->enableState(GrDrawState::kClip_StateBit);

    GrAutoScratchTexture temp;
    // walk through each clip element and perform its set op
    for (ElementList::Iter iter = elements.headIter(); iter.get(); iter.next()) {
        const Element* element = iter.get();
        SkRegion::Op op = element->getOp();
        bool invert = element->isInverseFilled();

        if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) {
            GrPathRenderer* pr = NULL;
            bool useTemp = !this->canStencilAndDrawElement(result, element, &pr);
            GrTexture* dst;
            // This is the bounds of the clip element in the space of the alpha-mask. The temporary
            // mask buffer can be substantially larger than the actually clip stack element. We
            // touch the minimum number of pixels necessary and use decal mode to combine it with
            // the accumulator.
            SkIRect maskSpaceElementIBounds;

            if (useTemp) {
                if (invert) {
                    maskSpaceElementIBounds = maskSpaceIBounds;
                } else {
                    SkRect elementBounds = element->getBounds();
                    elementBounds.offset(clipToMaskOffset);
                    elementBounds.roundOut(&maskSpaceElementIBounds);
                }

                this->getTemp(maskSpaceIBounds.fRight, maskSpaceIBounds.fBottom, &temp);
                if (NULL == temp.texture()) {
                    fAACache.reset();
                    return NULL;
                }
                dst = temp.texture();
                // clear the temp target and set blend to replace
                fGpu->clear(&maskSpaceElementIBounds,
                            invert ? 0xffffffff : 0x00000000,
                            true,
                            dst->asRenderTarget());
                setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op);

            } else {
                // draw directly into the result with the stencil set to make the pixels affected
                // by the clip shape be non-zero.
                dst = result;
                GR_STATIC_CONST_SAME_STENCIL(kStencilInElement,
                                             kReplace_StencilOp,
                                             kReplace_StencilOp,
                                             kAlways_StencilFunc,
                                             0xffff,
                                             0xffff,
                                             0xffff);
                drawState->setStencil(kStencilInElement);
                setup_boolean_blendcoeffs(drawState, op);
            }

            drawState->setAlpha(invert ? 0x00 : 0xff);

            if (!this->drawElement(dst, element, pr)) {
                fAACache.reset();
                return NULL;
            }

            if (useTemp) {
                // Now draw into the accumulator using the real operation and the temp buffer as a
                // texture
                this->mergeMask(result,
                                temp.texture(),
                                op,
                                maskSpaceIBounds,
                                maskSpaceElementIBounds);
            } else {
                // Draw to the exterior pixels (those with a zero stencil value).
                drawState->setAlpha(invert ? 0xff : 0x00);
                GR_STATIC_CONST_SAME_STENCIL(kDrawOutsideElement,
                                             kZero_StencilOp,
                                             kZero_StencilOp,
                                             kEqual_StencilFunc,
                                             0xffff,
                                             0x0000,
                                             0xffff);
                drawState->setStencil(kDrawOutsideElement);
                fGpu->drawSimpleRect(clipSpaceIBounds);
                drawState->disableStencil();
            }
        } else {
            // all the remaining ops can just be directly draw into the accumulation buffer
            drawState->setAlpha(0xff);
            setup_boolean_blendcoeffs(drawState, op);
            this->drawElement(result, element);
        }
    }

    fCurrClipMaskType = kAlpha_ClipMaskType;
    return result;
}
Esempio n. 18
0
static SkMatrix translate(SkScalar dx, SkScalar dy) {
    SkMatrix matrix;
    matrix.setTranslate(dx, dy);
    return matrix;
}
static void generateMask(const SkMask& mask, const SkPath& path) {
    SkBitmap::Config config;
    SkPaint     paint;

    int srcW = mask.fBounds.width();
    int srcH = mask.fBounds.height();
    int dstW = srcW;
    int dstH = srcH;
    int dstRB = mask.fRowBytes;

    SkMatrix matrix;
    matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
                        -SkIntToScalar(mask.fBounds.fTop));

    if (SkMask::kBW_Format == mask.fFormat) {
        config = SkBitmap::kA1_Config;
        paint.setAntiAlias(false);
    } else {
        config = SkBitmap::kA8_Config;
        paint.setAntiAlias(true);
        switch (mask.fFormat) {
            case SkMask::kA8_Format:
                break;
            case SkMask::kLCD16_Format:
            case SkMask::kLCD32_Format:
                // TODO: trigger off LCD orientation
                dstW *= 3;
                matrix.postScale(SkIntToScalar(3), SK_Scalar1);
                dstRB = 0;  // signals we need a copy
                break;
            default:
                SkDEBUGFAIL("unexpected mask format");
        }
    }

    SkRasterClip clip;
    clip.setRect(SkIRect::MakeWH(dstW, dstH));

    SkBitmap bm;
    bm.setConfig(config, dstW, dstH, dstRB);

    if (0 == dstRB) {
        bm.allocPixels();
        bm.lockPixels();
    } else {
        bm.setPixels(mask.fImage);
    }
    sk_bzero(bm.getPixels(), bm.getSafeSize());
    
    SkDraw  draw;
    sk_bzero(&draw, sizeof(draw));
    draw.fRC    = &clip;
    draw.fClip  = &clip.bwRgn();
    draw.fMatrix = &matrix;
    draw.fBitmap = &bm;
    draw.drawPath(path, paint);
    
    if (0 == dstRB) {
        switch (mask.fFormat) {
            case SkMask::kLCD16_Format:
                pack3xHToLCD16(bm, mask);
                break;
            case SkMask::kLCD32_Format:
                pack3xHToLCD32(bm, mask);
                break;
            default:
                SkDEBUGFAIL("bad format for copyback");
        }
    }
}
Esempio n. 20
0
SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) {
    fState.get()->fImage.lockPixels();

    SkMatrix finalMatrix = fState.get()->fCanvasTransform;
    finalMatrix.preConcat(fState.get()->fShaderTransform);
    SkRect surfaceBBox;
    surfaceBBox.set(fState.get()->fBBox);
    if (!transformBBox(finalMatrix, &surfaceBBox)) {
        return;
    }

    SkMatrix unflip;
    unflip.setTranslate(0, SkScalarRoundToScalar(surfaceBBox.height()));
    unflip.preScale(SK_Scalar1, -SK_Scalar1);
    SkISize size = SkISize::Make(SkScalarRound(surfaceBBox.width()),
                                 SkScalarRound(surfaceBBox.height()));
    SkPDFDevice pattern(size, size, unflip);
    SkCanvas canvas(&pattern);
    canvas.translate(-surfaceBBox.fLeft, -surfaceBBox.fTop);
    finalMatrix.preTranslate(surfaceBBox.fLeft, surfaceBBox.fTop);

    const SkBitmap* image = &fState.get()->fImage;
    SkScalar width = SkIntToScalar(image->width());
    SkScalar height = SkIntToScalar(image->height());
    SkShader::TileMode tileModes[2];
    tileModes[0] = fState.get()->fImageTileModes[0];
    tileModes[1] = fState.get()->fImageTileModes[1];

    canvas.drawBitmap(*image, 0, 0);
    SkRect patternBBox = SkRect::MakeXYWH(-surfaceBBox.fLeft, -surfaceBBox.fTop,
                                          width, height);

    // Tiling is implied.  First we handle mirroring.
    if (tileModes[0] == SkShader::kMirror_TileMode) {
        SkMatrix xMirror;
        xMirror.setScale(-1, 1);
        xMirror.postTranslate(2 * width, 0);
        canvas.drawBitmapMatrix(*image, xMirror);
        patternBBox.fRight += width;
    }
    if (tileModes[1] == SkShader::kMirror_TileMode) {
        SkMatrix yMirror;
        yMirror.setScale(SK_Scalar1, -SK_Scalar1);
        yMirror.postTranslate(0, 2 * height);
        canvas.drawBitmapMatrix(*image, yMirror);
        patternBBox.fBottom += height;
    }
    if (tileModes[0] == SkShader::kMirror_TileMode &&
            tileModes[1] == SkShader::kMirror_TileMode) {
        SkMatrix mirror;
        mirror.setScale(-1, -1);
        mirror.postTranslate(2 * width, 2 * height);
        canvas.drawBitmapMatrix(*image, mirror);
    }

    // Then handle Clamping, which requires expanding the pattern canvas to
    // cover the entire surfaceBBox.

    // If both x and y are in clamp mode, we start by filling in the corners.
    // (Which are just a rectangles of the corner colors.)
    if (tileModes[0] == SkShader::kClamp_TileMode &&
            tileModes[1] == SkShader::kClamp_TileMode) {
        SkPaint paint;
        SkRect rect;
        rect = SkRect::MakeLTRB(surfaceBBox.fLeft, surfaceBBox.fTop, 0, 0);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(0, 0));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(width, surfaceBBox.fTop, surfaceBBox.fRight, 0);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(image->width() - 1, 0));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(width, height, surfaceBBox.fRight,
                                surfaceBBox.fBottom);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(image->width() - 1,
                                           image->height() - 1));
            canvas.drawRect(rect, paint);
        }

        rect = SkRect::MakeLTRB(surfaceBBox.fLeft, height, 0,
                                surfaceBBox.fBottom);
        if (!rect.isEmpty()) {
            paint.setColor(image->getColor(0, image->height() - 1));
            canvas.drawRect(rect, paint);
        }
    }

    // Then expand the left, right, top, then bottom.
    if (tileModes[0] == SkShader::kClamp_TileMode) {
        SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
        if (surfaceBBox.fLeft < 0) {
            SkBitmap left;
            SkAssertResult(image->extractSubset(&left, subset));

            SkMatrix leftMatrix;
            leftMatrix.setScale(-surfaceBBox.fLeft, 1);
            leftMatrix.postTranslate(surfaceBBox.fLeft, 0);
            canvas.drawBitmapMatrix(left, leftMatrix);

            if (tileModes[1] == SkShader::kMirror_TileMode) {
                leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
                leftMatrix.postTranslate(0, 2 * height);
                canvas.drawBitmapMatrix(left, leftMatrix);
            }
            patternBBox.fLeft = 0;
        }

        if (surfaceBBox.fRight > width) {
            SkBitmap right;
            subset.offset(image->width() - 1, 0);
            SkAssertResult(image->extractSubset(&right, subset));

            SkMatrix rightMatrix;
            rightMatrix.setScale(surfaceBBox.fRight - width, 1);
            rightMatrix.postTranslate(width, 0);
            canvas.drawBitmapMatrix(right, rightMatrix);

            if (tileModes[1] == SkShader::kMirror_TileMode) {
                rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
                rightMatrix.postTranslate(0, 2 * height);
                canvas.drawBitmapMatrix(right, rightMatrix);
            }
            patternBBox.fRight = surfaceBBox.width();
        }
    }

    if (tileModes[1] == SkShader::kClamp_TileMode) {
        SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
        if (surfaceBBox.fTop < 0) {
            SkBitmap top;
            SkAssertResult(image->extractSubset(&top, subset));

            SkMatrix topMatrix;
            topMatrix.setScale(SK_Scalar1, -surfaceBBox.fTop);
            topMatrix.postTranslate(0, surfaceBBox.fTop);
            canvas.drawBitmapMatrix(top, topMatrix);

            if (tileModes[0] == SkShader::kMirror_TileMode) {
                topMatrix.postScale(-1, 1);
                topMatrix.postTranslate(2 * width, 0);
                canvas.drawBitmapMatrix(top, topMatrix);
            }
            patternBBox.fTop = 0;
        }

        if (surfaceBBox.fBottom > height) {
            SkBitmap bottom;
            subset.offset(0, image->height() - 1);
            SkAssertResult(image->extractSubset(&bottom, subset));

            SkMatrix bottomMatrix;
            bottomMatrix.setScale(SK_Scalar1, surfaceBBox.fBottom - height);
            bottomMatrix.postTranslate(0, height);
            canvas.drawBitmapMatrix(bottom, bottomMatrix);

            if (tileModes[0] == SkShader::kMirror_TileMode) {
                bottomMatrix.postScale(-1, 1);
                bottomMatrix.postTranslate(2 * width, 0);
                canvas.drawBitmapMatrix(bottom, bottomMatrix);
            }
            patternBBox.fBottom = surfaceBBox.height();
        }
    }

    SkRefPtr<SkPDFArray> patternBBoxArray = new SkPDFArray;
    patternBBoxArray->unref();  // SkRefPtr and new both took a reference.
    patternBBoxArray->reserve(4);
    patternBBoxArray->appendScalar(patternBBox.fLeft);
    patternBBoxArray->appendScalar(patternBBox.fTop);
    patternBBoxArray->appendScalar(patternBBox.fRight);
    patternBBoxArray->appendScalar(patternBBox.fBottom);

    // Put the canvas into the pattern stream (fContent).
    SkRefPtr<SkStream> content = pattern.content();
    content->unref();  // SkRefPtr and content() both took a reference.
    pattern.getResources(&fResources, false);

    setData(content.get());
    insertName("Type", "Pattern");
    insertInt("PatternType", 1);
    insertInt("PaintType", 1);
    insertInt("TilingType", 1);
    insert("BBox", patternBBoxArray.get());
    insertScalar("XStep", patternBBox.width());
    insertScalar("YStep", patternBBox.height());
    insert("Resources", pattern.getResourceDict());
    insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();

    fState.get()->fImage.unlockPixels();
}
Esempio n. 21
0
static void test_treatAsSprite(skiatest::Reporter* reporter) {

    SkMatrix mat;
    SkISize  size;
    SkRandom rand;

    SkPaint noaaPaint;
    SkPaint aaPaint;
    aaPaint.setAntiAlias(true);

    // assert: translate-only no-aa can always be treated as sprite
    for (int i = 0; i < 1000; ++i) {
        rand_matrix(&mat, rand, SkMatrix::kTranslate_Mask);
        for (int j = 0; j < 1000; ++j) {
            rand_size(&size, rand);
            REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, noaaPaint));
        }
    }

    // assert: rotate/perspect is never treated as sprite
    for (int i = 0; i < 1000; ++i) {
        rand_matrix(&mat, rand, SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask);
        for (int j = 0; j < 1000; ++j) {
            rand_size(&size, rand);
            REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, noaaPaint));
            REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, aaPaint));
        }
    }

    size.set(500, 600);

    const SkScalar tooMuchSubpixel = 100.1f;
    mat.setTranslate(tooMuchSubpixel, 0);
    REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, aaPaint));
    mat.setTranslate(0, tooMuchSubpixel);
    REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, aaPaint));

    const SkScalar tinySubPixel = 100.02f;
    mat.setTranslate(tinySubPixel, 0);
    REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, aaPaint));
    mat.setTranslate(0, tinySubPixel);
    REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, aaPaint));

    const SkScalar twoThirds = SK_Scalar1 * 2 / 3;
    const SkScalar bigScale = (size.width() + twoThirds) / size.width();
    mat.setScale(bigScale, bigScale);
    REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, noaaPaint));
    REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, aaPaint));

    const SkScalar oneThird = SK_Scalar1 / 3;
    const SkScalar smallScale = (size.width() + oneThird) / size.width();
    mat.setScale(smallScale, smallScale);
    REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, noaaPaint));
    REPORTER_ASSERT(reporter, !SkTreatAsSprite(mat, size, aaPaint));

    const SkScalar oneFortyth = SK_Scalar1 / 40;
    const SkScalar tinyScale = (size.width() + oneFortyth) / size.width();
    mat.setScale(tinyScale, tinyScale);
    REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, noaaPaint));
    REPORTER_ASSERT(reporter, SkTreatAsSprite(mat, size, aaPaint));
}
Esempio n. 22
0
void SkScalerContext::getImage(const SkGlyph& origGlyph) {
    const SkGlyph*  glyph = &origGlyph;
    SkGlyph         tmpGlyph;

    if (fMaskFilter) {   // restore the prefilter bounds
        tmpGlyph.init(origGlyph.fID);

        // need the original bounds, sans our maskfilter
        SkMaskFilter* mf = fMaskFilter;
        fMaskFilter = NULL;             // temp disable
        this->getMetrics(&tmpGlyph);
        fMaskFilter = mf;               // restore

        tmpGlyph.fImage = origGlyph.fImage;

        // we need the prefilter bounds to be <= filter bounds
        SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth);
        SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight);
        glyph = &tmpGlyph;
    }

    if (fRec.fFrameWidth > 0 || fPathEffect != NULL || fRasterizer != NULL) {
        SkPath      devPath, fillPath;
        SkMatrix    fillToDevMatrix;

        this->internalGetPath(*glyph, &fillPath, &devPath, &fillToDevMatrix);

        const bool lcdMode = fRec.fMaskFormat == SkMask::kHorizontalLCD_Format ||
                             fRec.fMaskFormat == SkMask::kVerticalLCD_Format;

        if (fRasterizer) {
            SkMask  mask;

            glyph->toMask(&mask);
            mask.fFormat = SkMask::kA8_Format;
            sk_bzero(glyph->fImage, mask.computeImageSize());

            if (!fRasterizer->rasterize(fillPath, fillToDevMatrix, NULL,
                                        fMaskFilter, &mask,
                                        SkMask::kJustRenderImage_CreateMode)) {
                return;
            }
        } else {
            SkBitmap    bm;
            SkBitmap::Config config;
            SkMatrix    matrix;
            SkRegion    clip;
            SkPaint     paint;
            SkDraw      draw;

            if (SkMask::kA8_Format == fRec.fMaskFormat || lcdMode) {
                config = SkBitmap::kA8_Config;
                paint.setAntiAlias(true);
            } else {
                SkASSERT(SkMask::kBW_Format == fRec.fMaskFormat);
                config = SkBitmap::kA1_Config;
                paint.setAntiAlias(false);
            }

            clip.setRect(0, 0, glyph->fWidth, glyph->fHeight);
            matrix.setTranslate(-SkIntToScalar(glyph->fLeft),
                                -SkIntToScalar(glyph->fTop));
            bm.setConfig(config, glyph->fWidth, glyph->fHeight,
                         glyph->rowBytes());
            bm.setPixels(glyph->fImage);
            sk_bzero(glyph->fImage, bm.height() * bm.rowBytes());

            draw.fClip  = &clip;
            draw.fMatrix = &matrix;
            draw.fBitmap = &bm;
            draw.fBounder = NULL;
            draw.drawPath(devPath, paint);
        }

        if (lcdMode)
            glyph->expandA8ToLCD();
    } else {
        this->getGlyphContext(*glyph)->generateImage(*glyph);
    }

    if (fMaskFilter) {
        SkMask      srcM, dstM;
        SkMatrix    matrix;

        // the src glyph image shouldn't be 3D
        SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat);
        glyph->toMask(&srcM);
        fRec.getMatrixFrom2x2(&matrix);

        if (fMaskFilter->filterMask(&dstM, srcM, matrix, NULL)) {
            int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width());
            int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height());
            int dstRB = origGlyph.rowBytes();
            int srcRB = dstM.fRowBytes;

            const uint8_t* src = (const uint8_t*)dstM.fImage;
            uint8_t* dst = (uint8_t*)origGlyph.fImage;

            if (SkMask::k3D_Format == dstM.fFormat) {
                // we have to copy 3 times as much
                height *= 3;
            }

            // clean out our glyph, since it may be larger than dstM
            //sk_bzero(dst, height * dstRB);

            while (--height >= 0) {
                memcpy(dst, src, width);
                src += srcRB;
                dst += dstRB;
            }
            SkMask::FreeImage(dstM.fImage);
        }
    }

    // check to see if we should filter the alpha channel

    if (NULL == fMaskFilter &&
        fRec.fMaskFormat != SkMask::kBW_Format &&
        fRec.fMaskFormat != SkMask::kLCD16_Format &&
        (fRec.fFlags & (kGammaForBlack_Flag | kGammaForWhite_Flag)) != 0)
    {
        const uint8_t* table = (fRec.fFlags & kGammaForBlack_Flag) ? gBlackGammaTable : gWhiteGammaTable;
        if (NULL != table)
        {
            uint8_t* dst = (uint8_t*)origGlyph.fImage;
            unsigned rowBytes = origGlyph.rowBytes();

            for (int y = origGlyph.fHeight - 1; y >= 0; --y)
            {
                for (int x = origGlyph.fWidth - 1; x >= 0; --x)
                    dst[x] = table[dst[x]];
                dst += rowBytes;
            }
        }
    }
}
Esempio n. 23
0
static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
    SkMatrix mat;

    // identity
    mat.setIdentity();
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // translation only
    mat.reset();
    mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with same size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with one negative
    mat.reset();
    mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scale with same size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // scale with different size at a pivot point
    mat.reset();
    mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
                 SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with same size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // skew with different size at a pivot point
    mat.reset();
    mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
                SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective x
    mat.reset();
    mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // perspective y
    mat.reset();
    mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // rotate
    for (int angle = 0; angle < 360; ++angle) {
        mat.reset();
        mat.setRotate(SkIntToScalar(angle));
#ifndef SK_CPU_ARM64
        REPORTER_ASSERT(reporter, mat.isSimilarity());
#else
        // 64-bit ARM devices built with -O2 and -ffp-contract=fast have a loss
        // of precision and require that we have a higher tolerance
        REPORTER_ASSERT(reporter, mat.isSimilarity(SK_ScalarNearlyZero + 0.00010113f));
#endif
    }

    // see if there are any accumulated precision issues
    mat.reset();
    for (int i = 1; i < 360; i++) {
        mat.postRotate(SkIntToScalar(1));
    }
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + translate
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, mat.isSimilarity());

    // rotate + non-uniform scale
    mat.reset();
    mat.setRotate(SkIntToScalar(30));
    mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // all zero except perspective
    mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    REPORTER_ASSERT(reporter, !mat.isSimilarity());

    // scales zero, only skews
    mat.setAll(0, SK_Scalar1, 0,
               SK_Scalar1, 0, 0,
               0, 0, SkMatrix::I()[8]);
    REPORTER_ASSERT(reporter, mat.isSimilarity());
}
Esempio n. 24
0
    void onDraw(SkCanvas* canvas) override {
        fShader = gBleedRec[fBT].fShaderMaker();

        canvas->clear(SK_ColorGRAY);
        SkTDArray<SkMatrix> matrices;
        // Draw with identity
        *matrices.append() = SkMatrix::I();

        // Draw with rotation and scale down in x, up in y.
        SkMatrix m;
        constexpr SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing);
        m.setTranslate(0, kBottom);
        m.preRotate(15.f, 0, kBottom + kBlockSpacing);
        m.preScale(0.71f, 1.22f);
        *matrices.append() = m;

        // Align the next set with the middle of the previous in y, translated to the right in x.
        SkPoint corners[] = {{0, 0}, { 0, kBottom }, { kWidth, kBottom }, {kWidth, 0} };
        matrices[matrices.count()-1].mapPoints(corners, 4);
        SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4;
        SkScalar x = SkTMax(SkTMax(corners[0].fX, corners[1].fX),
                            SkTMax(corners[2].fX, corners[3].fX));
        m.setTranslate(x, y);
        m.preScale(0.2f, 0.2f);
        *matrices.append() = m;

        SkScalar maxX = 0;
        for (int antiAlias = 0; antiAlias < 2; ++antiAlias) {
            canvas->save();
            canvas->translate(maxX, 0);
            for (int m = 0; m < matrices.count(); ++m) {
                canvas->save();
                canvas->concat(matrices[m]);
                bool aa = SkToBool(antiAlias);

                // First draw a column with no bleeding and no filtering
                this->drawCase1(canvas, kCol0X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase2(canvas, kCol0X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase3(canvas, kCol0X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase4(canvas, kCol0X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase5(canvas, kCol0X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality);

                // Then draw a column with no bleeding and low filtering
                this->drawCase1(canvas, kCol1X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase2(canvas, kCol1X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase3(canvas, kCol1X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase4(canvas, kCol1X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase5(canvas, kCol1X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality);

                // Then draw a column with no bleeding and high filtering
                this->drawCase1(canvas, kCol2X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase2(canvas, kCol2X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase3(canvas, kCol2X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase4(canvas, kCol2X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase5(canvas, kCol2X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality);

                // Then draw a column with bleeding and no filtering (bleed should have no effect w/out blur)
                this->drawCase1(canvas, kCol3X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase2(canvas, kCol3X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase3(canvas, kCol3X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase4(canvas, kCol3X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);
                this->drawCase5(canvas, kCol3X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality);

                // Then draw a column with bleeding and low filtering
                this->drawCase1(canvas, kCol4X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase2(canvas, kCol4X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase3(canvas, kCol4X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase4(canvas, kCol4X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);
                this->drawCase5(canvas, kCol4X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality);

                // Finally draw a column with bleeding and high filtering
                this->drawCase1(canvas, kCol5X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase2(canvas, kCol5X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase3(canvas, kCol5X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase4(canvas, kCol5X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);
                this->drawCase5(canvas, kCol5X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality);

                SkPoint corners[] = { { 0, 0 },{ 0, kBottom },{ kWidth, kBottom },{ kWidth, 0 } };
                matrices[m].mapPoints(corners, 4);
                SkScalar x = kBlockSize + SkTMax(SkTMax(corners[0].fX, corners[1].fX),
                                                 SkTMax(corners[2].fX, corners[3].fX));
                maxX = SkTMax(maxX, x);
                canvas->restore();
            }
            canvas->restore();
        }
    }
Esempio n. 25
0
void GrLayerHoister::DrawLayers(const SkTDArray<GrHoistedLayer>& atlased,
                                const SkTDArray<GrHoistedLayer>& nonAtlased,
                                const SkTDArray<GrHoistedLayer>& recycled,
                                GrReplacements* replacements) {
    // Render the atlased layers that require it
    if (atlased.count() > 0) {
        // All the atlased layers are rendered into the same GrTexture
        SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect(
                                        atlased[0].fLayer->texture()->asRenderTarget(), NULL));

        SkCanvas* atlasCanvas = surface->getCanvas();

        SkPaint paint;
        paint.setColor(SK_ColorTRANSPARENT);
        paint.setXfermode(SkXfermode::Create(SkXfermode::kSrc_Mode))->unref();

        for (int i = 0; i < atlased.count(); ++i) {
            GrCachedLayer* layer = atlased[i].fLayer;
            const SkPicture* pict = atlased[i].fPicture;
            const SkIPoint offset = atlased[i].fOffset;

            atlasCanvas->save();

            // Add a rect clip to make sure the rendering doesn't
            // extend beyond the boundaries of the atlased sub-rect
            SkRect bound = SkRect::MakeXYWH(SkIntToScalar(layer->rect().fLeft),
                                            SkIntToScalar(layer->rect().fTop),
                                            SkIntToScalar(layer->rect().width()),
                                            SkIntToScalar(layer->rect().height()));
            atlasCanvas->clipRect(bound);

            // Since 'clear' doesn't respect the clip we need to draw a rect
            // TODO: ensure none of the atlased layers contain a clear call!
            atlasCanvas->drawRect(bound, paint);

            // info.fCTM maps the layer's top/left to the origin.
            // Since this layer is atlased, the top/left corner needs
            // to be offset to the correct location in the backing texture.
            SkMatrix initialCTM;
            initialCTM.setTranslate(SkIntToScalar(-offset.fX), 
                                    SkIntToScalar(-offset.fY));
            initialCTM.postTranslate(bound.fLeft, bound.fTop);
            
            atlasCanvas->translate(SkIntToScalar(-offset.fX), 
                                   SkIntToScalar(-offset.fY));
            atlasCanvas->translate(bound.fLeft, bound.fTop);
            atlasCanvas->concat(atlased[i].fCTM);

            SkRecordPartialDraw(*pict->fRecord.get(), atlasCanvas, bound,
                                layer->start()+1, layer->stop(), initialCTM);

            atlasCanvas->restore();
        }

        atlasCanvas->flush();
    }

    // Render the non-atlased layers that require it
    for (int i = 0; i < nonAtlased.count(); ++i) {
        GrCachedLayer* layer = nonAtlased[i].fLayer;
        const SkPicture* pict = nonAtlased[i].fPicture;
        const SkIPoint offset = nonAtlased[i].fOffset;

        // Each non-atlased layer has its own GrTexture
        SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect(
                                        layer->texture()->asRenderTarget(), NULL));

        SkCanvas* layerCanvas = surface->getCanvas();

        // Add a rect clip to make sure the rendering doesn't
        // extend beyond the boundaries of the atlased sub-rect
        SkRect bound = SkRect::MakeXYWH(SkIntToScalar(layer->rect().fLeft),
                                        SkIntToScalar(layer->rect().fTop),
                                        SkIntToScalar(layer->rect().width()),
                                        SkIntToScalar(layer->rect().height()));

        layerCanvas->clipRect(bound); // TODO: still useful?

        layerCanvas->clear(SK_ColorTRANSPARENT);

        SkMatrix initialCTM;
        initialCTM.setTranslate(SkIntToScalar(-offset.fX), 
                                SkIntToScalar(-offset.fY));

        layerCanvas->translate(SkIntToScalar(-offset.fX), 
                               SkIntToScalar(-offset.fY));
        layerCanvas->concat(nonAtlased[i].fCTM);

        SkRecordPartialDraw(*pict->fRecord.get(), layerCanvas, bound,
                            layer->start()+1, layer->stop(), initialCTM);

        layerCanvas->flush();
    }

    convert_layers_to_replacements(atlased, replacements);
    convert_layers_to_replacements(nonAtlased, replacements);
    convert_layers_to_replacements(recycled, replacements);
}
void GrStencilAndCoverTextContext::init(const GrPaint& paint,
                                        const SkPaint& skPaint,
                                        size_t textByteLength,
                                        RenderMode renderMode,
                                        SkScalar textTranslateY) {
    GrTextContext::init(paint, skPaint);

    fContextInitialMatrix = fContext->getMatrix();

    const bool otherBackendsWillDrawAsPaths =
        SkDraw::ShouldDrawTextAsPaths(skPaint, fContextInitialMatrix);

    fNeedsDeviceSpaceGlyphs = !otherBackendsWillDrawAsPaths &&
                              kMaxAccuracy_RenderMode == renderMode &&
                              SkToBool(fContextInitialMatrix.getType() &
                                       (SkMatrix::kScale_Mask | SkMatrix::kAffine_Mask));

    if (fNeedsDeviceSpaceGlyphs) {
        // SkDraw::ShouldDrawTextAsPaths takes care of perspective transforms.
        SkASSERT(!fContextInitialMatrix.hasPerspective());
        SkASSERT(0 == textTranslateY); // TODO: Handle textTranslateY in device-space usecase.

        fTextRatio = fTextInverseRatio = 1.0f;

        // Glyphs loaded by GPU path rendering have an inverted y-direction.
        SkMatrix m;
        m.setScale(1, -1);
        fContext->setMatrix(m);

        // Post-flip the initial matrix so we're left with just the flip after
        // the paint preConcats the inverse.
        m = fContextInitialMatrix;
        m.postScale(1, -1);
        fPaint.localCoordChangeInverse(m);

        // The whole shape (including stroke) will be baked into the glyph outlines. Make
        // NVPR just fill the baked shapes.
        fGlyphCache = fSkPaint.detachCache(&fDeviceProperties, &fContextInitialMatrix, false);
        fGlyphs = get_gr_glyphs(fContext, fGlyphCache->getScalerContext()->getTypeface(),
                                &fGlyphCache->getDescriptor(),
                                SkStrokeRec(SkStrokeRec::kFill_InitStyle));
    } else {
        // Don't bake strokes into the glyph outlines. We will stroke the glyphs
        // using the GPU instead. This is the fast path.
        SkStrokeRec gpuStroke = SkStrokeRec(fSkPaint);
        fSkPaint.setStyle(SkPaint::kFill_Style);

        if (gpuStroke.isHairlineStyle()) {
            // Approximate hairline stroke.
            SkScalar strokeWidth = SK_Scalar1 /
                (SkVector::Make(fContextInitialMatrix.getScaleX(),
                                fContextInitialMatrix.getSkewY()).length());
            gpuStroke.setStrokeStyle(strokeWidth, false /*strokeAndFill*/);

        } else if (fSkPaint.isFakeBoldText() &&
#ifdef SK_USE_FREETYPE_EMBOLDEN
                   kMaxPerformance_RenderMode == renderMode &&
#endif
                   SkStrokeRec::kStroke_Style != gpuStroke.getStyle()) {

            // Instead of baking fake bold into the glyph outlines, do it with the GPU stroke.
            SkScalar fakeBoldScale = SkScalarInterpFunc(fSkPaint.getTextSize(),
                                                        kStdFakeBoldInterpKeys,
                                                        kStdFakeBoldInterpValues,
                                                        kStdFakeBoldInterpLength);
            SkScalar extra = SkScalarMul(fSkPaint.getTextSize(), fakeBoldScale);
            gpuStroke.setStrokeStyle(gpuStroke.needToApply() ? gpuStroke.getWidth() + extra : extra,
                                     true /*strokeAndFill*/);

            fSkPaint.setFakeBoldText(false);
        }

        bool canUseRawPaths;

        if (otherBackendsWillDrawAsPaths || kMaxPerformance_RenderMode == renderMode) {
            // We can draw the glyphs from canonically sized paths.
            fTextRatio = fSkPaint.getTextSize() / SkPaint::kCanonicalTextSizeForPaths;
            fTextInverseRatio = SkPaint::kCanonicalTextSizeForPaths / fSkPaint.getTextSize();

            // Compensate for the glyphs being scaled by fTextRatio.
            if (!gpuStroke.isFillStyle()) {
                gpuStroke.setStrokeStyle(gpuStroke.getWidth() / fTextRatio,
                                         SkStrokeRec::kStrokeAndFill_Style == gpuStroke.getStyle());
            }

            fSkPaint.setLinearText(true);
            fSkPaint.setLCDRenderText(false);
            fSkPaint.setAutohinted(false);
            fSkPaint.setHinting(SkPaint::kNo_Hinting);
            fSkPaint.setSubpixelText(true);
            fSkPaint.setTextSize(SkIntToScalar(SkPaint::kCanonicalTextSizeForPaths));

            canUseRawPaths = SK_Scalar1 == fSkPaint.getTextScaleX() &&
                             0 == fSkPaint.getTextSkewX() &&
                             !fSkPaint.isFakeBoldText() &&
                             !fSkPaint.isVerticalText();
        } else {
            fTextRatio = fTextInverseRatio = 1.0f;
            canUseRawPaths = false;
        }

        SkMatrix textMatrix;
        textMatrix.setTranslate(0, textTranslateY);
        // Glyphs loaded by GPU path rendering have an inverted y-direction.
        textMatrix.preScale(fTextRatio, -fTextRatio);
        fPaint.localCoordChange(textMatrix);
        fContext->concatMatrix(textMatrix);

        fGlyphCache = fSkPaint.detachCache(&fDeviceProperties, NULL, false);
        fGlyphs = canUseRawPaths ?
                      get_gr_glyphs(fContext, fSkPaint.getTypeface(), NULL, gpuStroke) :
                      get_gr_glyphs(fContext, fGlyphCache->getScalerContext()->getTypeface(),
                                    &fGlyphCache->getDescriptor(), gpuStroke);
    }

    fStateRestore.set(fDrawTarget->drawState());

    fDrawTarget->drawState()->setFromPaint(fPaint, fContext->getMatrix(),
                                           fContext->getRenderTarget());

    GR_STATIC_CONST_SAME_STENCIL(kStencilPass,
                                 kZero_StencilOp,
                                 kZero_StencilOp,
                                 kNotEqual_StencilFunc,
                                 0xffff,
                                 0x0000,
                                 0xffff);

    *fDrawTarget->drawState()->stencil() = kStencilPass;

    SkASSERT(0 == fPendingGlyphCount);
}