inline void gpu_train_batch(FeedForward_Network<activation, error>& network,
    arma::Mat<float> inputs, arma::Mat<float> targets, int batch_size, float learning_rate = 0.8f, float momentum = 0.8f) {

  network.resize_activation(batch_size);
  Raw_FeedForward_Network<activation, error> raw_net = convert_to_raw(network);
  Raw_FeedForward_Network<activation, error> * d_network = network_to_gpu(raw_net);

  int batches_in_train = targets.n_rows/batch_size - 1;
  for (int i = 0; i < batches_in_train; ++i) {
    arma::Mat<float> input_slice = inputs.rows(i*batch_size, (i+1) * batch_size - 1);

    Raw_Matrix raw_input = to_raw(input_slice);
    Raw_Matrix * d_input = matrix_to_gpu(raw_input);
    int num_trials = input_slice.n_rows;

    calculate_activation(num_trials, network.layer_sizes, d_network, d_input);
    //TODO make this memory shared as to not realloc
    free_gpu_matrix(d_input);

    arma::Mat<float> targets_slice = targets.rows(i*batch_size, (i+1) * batch_size - 1);

    Raw_Matrix raw_targets = to_raw(targets_slice);
    Raw_Matrix * d_targets = matrix_to_gpu(raw_targets);

    backprop(num_trials, network.layer_sizes, d_network, d_targets, learning_rate, momentum);
    free_gpu_matrix(d_targets);
  }

  network_to_cpu_free(d_network, raw_net);
  update_from_raw(network, raw_net);

}
Esempio n. 2
0
  /**
   * Impute function searches through the input looking for mappedValue and
   * remove the whole row or column. The result is overwritten to the input.
   *
   * @param input Matrix that contains mappedValue.
   * @param mappedValue Value that the user wants to get rid of.
   * @param dimension Index of the dimension of the mappedValue.
   * @param columnMajor State of whether the input matrix is columnMajor or not.
   */
  void Impute(arma::Mat<T>& input,
              const T& mappedValue,
              const size_t dimension,
              const bool columnMajor = true)
  {
    std::vector<arma::uword> colsToKeep;

    if (columnMajor)
    {
      for (size_t i = 0; i < input.n_cols; ++i)
      {
         if (!(input(dimension, i) == mappedValue ||
             std::isnan(input(dimension, i))))
         {
           colsToKeep.push_back(i);
         }
      }
      input = input.cols(arma::uvec(colsToKeep));
    }
    else
    {
      for (size_t i = 0; i < input.n_rows; ++i)
      {
        if (!(input(i, dimension) == mappedValue ||
             std::isnan(input(i, dimension))))
        {
           colsToKeep.push_back(i);
        }
      }
      input = input.rows(arma::uvec(colsToKeep));
    }
  }