コード例 #1
0
bool MatrixTest::matrixAssignmentTests(void)
{
	Matrix3f m;
	m.setZero();
	m(0, 0) = 1;
	m(0, 1) = 2;
	m(0, 2) = 3;
	m(1, 0) = 4;
	m(1, 1) = 5;
	m(1, 2) = 6;
	m(2, 0) = 7;
	m(2, 1) = 8;
	m(2, 2) = 9;

	float data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
	Matrix3f m2(data);

	double eps = 1e-6f;

	for (int i = 0; i < 9; i++) {
		ut_test(fabs(data[i] - m2.data()[i]) < eps);
	}

	float data_times_2[9] = {2, 4, 6, 8, 10, 12, 14, 16, 18};
	Matrix3f m3(data_times_2);

	ut_test(isEqual(m, m2));
	ut_test(!isEqual(m, m3));

	m2 *= 2;
	ut_test(isEqual(m2, m3));

	m2 /= 2;
	m2 -= 1;
	float data_minus_1[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
	ut_test(isEqual(Matrix3f(data_minus_1), m2));

	m2 += 1;
	ut_test(isEqual(Matrix3f(data), m2));

	m3 -= m2;

	ut_test(isEqual(m3, m2));

	float data_row_02_swap[9] = {
		7, 8, 9,
		4, 5, 6,
		1, 2, 3,
	};

	float data_col_02_swap[9] = {
		3, 2, 1,
		6, 5, 4,
		9, 8, 7
	};

	Matrix3f m4(data);

	ut_test(isEqual(-m4, m4 * (-1)));

	m4.swapCols(0, 2);
	ut_test(isEqual(m4, Matrix3f(data_col_02_swap)));
	m4.swapCols(0, 2);
	m4.swapRows(0, 2);
	ut_test(isEqual(m4, Matrix3f(data_row_02_swap)));
	ut_test(fabs(m4.min() - 1) < 1e-5);

	Scalar<float> s;
	s = 1;
	ut_test(fabs(s - 1) < 1e-5);

	Matrix<float, 1, 1> m5 = s;
	ut_test(fabs(m5(0, 0) - s) < 1e-5);

	Matrix<float, 2, 2> m6;
	m6.setRow(0, Vector2f(1, 1));
	m6.setCol(0, Vector2f(1, 1));

	return true;
}
コード例 #2
0
void CalibrationNode::performEstimation(){
	if(rotationRB_vec.size() < 5 ){
		std::cout << "Insufficient data" << std::endl;
		return;
	}

	//perform least squares estimation
	Matrix3f M;
	Matrix4f rbi, rbj, cbi, cbj;
	Matrix4f A, B;

	Matrix3f I;
	I.setIdentity();

	MatrixXf C(0,3), bA(0,1), bB(0,1);

	Vector3f ai, bi;

	VectorXf V_tmp;
	MatrixXf C_tmp;

	M.setZero();

	for(int i=0; i < (int)rotationRB_vec.size(); i++){
		for(int j=0; j < (int)rotationRB_vec.size(); j++){
			if(i!=j){
				rbi << rotationRB_vec[i] , translationRB_vec[i] ,  0, 0, 0, 1;
				rbj << rotationRB_vec[j] , translationRB_vec[j] ,  0, 0, 0, 1;
				A = rbj.inverse()*rbi;

				cbi << rotationCB_vec[i] , translationCB_vec[i] ,  0, 0, 0, 1;
				cbj << rotationCB_vec[j] , translationCB_vec[j] ,  0, 0, 0, 1;
				B = cbj*cbi.inverse();

				ai = getLogTheta(A.block(0,0,3,3));
				bi = getLogTheta(B.block(0,0,3,3));

				M += bi*ai.transpose();

				MatrixXf C_tmp = C;
				C.resize(C.rows()+3, NoChange);
				C << C_tmp,  Matrix3f::Identity() - A.block(0,0,3,3);

				V_tmp = bA;
				bA.resize(bA.rows()+3, NoChange);
				bA << V_tmp, A.block(0,3,3,1);

				V_tmp = bB;
				bB.resize(bB.rows()+3, NoChange);
				bB << V_tmp, B.block(0,3,3,1);

			}//end of if i!=j
		}
	}//end of for(.. i < rotationRB_vec.size(); ..)

#if ESTIMATION_DEBUG
	std::cout << "M = [ " << M << " ]; " << endl;
#endif

	EigenSolver<Matrix3f> es(M.transpose()*M);
	Matrix3cf D = es.eigenvalues().asDiagonal();
	Matrix3cf V = es.eigenvectors();

	Matrix3cf Lambda = D.inverse().array().sqrt();
	Matrix3cf Theta_X = V * Lambda * V.inverse() * M.transpose();
	std::cout << "Orientation of Camera Frame with respect to Robot tool-tip frame." << std::endl;
	std::cout << "Theta_X = [ " << Theta_X.real()  << " ]; " << endl;

	//Estimating translational offset
	for(int i=0; i < bB.rows()/3; i++){
		bB.block(i*3,0,3,1) = Theta_X.real()*bB.block(i*3,0,3,1);
	}
	bA = bA - bB; // this is d. saving memory

	std::cout << "Translation of Camera Frame with respect to Robot tool-tip frame." << std::endl;
	cout << "bX = [ " << (C.transpose()*C).inverse() * C.transpose() * bA << " ]; " << endl;

}
コード例 #3
0
  // assumes cv::Mats are of type <float>
  int PoseEstimator::estimate(const matches_t &matches, 
                              const cv::Mat &train_kpts, const cv::Mat &query_kpts,
                              const cv::Mat &train_pts, const cv::Mat &query_pts,
			      const cv::Mat &K, const double baseline)
  {
    // make sure we're using floats
    if (train_kpts.depth() != CV_32F ||
	query_kpts.depth() != CV_32F ||
	train_pts.depth() != CV_32F ||
	query_pts.depth() != CV_32F)
      throw std::runtime_error("Expected input to be of floating point (CV_32F)");

    int nmatch = matches.size();

    cout << endl << "[pe3d] Matches: " << nmatch << endl;

    // set up data structures for fast processing
    // indices to good matches

    std::vector<Eigen::Vector3f> t3d, q3d;
    std::vector<Eigen::Vector2f> t2d, q2d;
    std::vector<int> m;		// keep track of matches 

    for (int i=0; i<nmatch; i++)
      {
	const float* ti = train_pts.ptr<float>(matches[i].trainIdx);
	const float* qi = query_pts.ptr<float>(matches[i].queryIdx);
	const float* ti2 = train_kpts.ptr<float>(matches[i].trainIdx);
	const float* qi2 = query_kpts.ptr<float>(matches[i].queryIdx);

	// make sure we have points within range; eliminates NaNs as well
        if (matches[i].distance < 60 && // TODO: get this out of the estimator
	    ti[2] < maxMatchRange && 
	    qi[2] < maxMatchRange)
	  {
	    m.push_back(i);
	    t2d.push_back(Eigen::Vector2f(ti2[0],ti2[1]));
	    q2d.push_back(Eigen::Vector2f(qi2[0],qi2[1]));
	    t3d.push_back(Eigen::Vector3f(ti[0],ti[1],ti[2]));
	    q3d.push_back(Eigen::Vector3f(qi[0],qi[1],qi[2]));
          }
      }


    nmatch = m.size();
    cout << "[pe3d] Filtered matches: " << nmatch << endl;

    if (nmatch < 3) return 0;   // can't do it...

    int bestinl = 0;
    Matrix3f Kf;
    cv::cv2eigen(K,Kf);		    // camera matrix
    float fb = Kf(0,0)*baseline; // focal length times baseline
    float maxInlierXDist2 = maxInlierXDist*maxInlierXDist;
    float maxInlierDDist2 = maxInlierDDist*maxInlierDDist;

    // set up minimum hyp pixel distance
    float minpdist = minPDist * Kf(0,2) * 2.0;

    // RANSAC loop
    int numchoices = 1 + numRansac / 10;
    for (int ii=0; ii<numRansac; ii++) 
      {
        // find a candidate
	int k;
        int a=rand()%nmatch;
	int b;
	for (k=0; k<numchoices; k++)
	  {
	    b=rand()%nmatch;
	    if (a!=b && (t2d[a]-t2d[b]).norm() > minpdist
		     && (q2d[a]-q2d[b]).norm() > minpdist)
	      // TODO: add distance check
	      break;
	  }
	if (k >= numchoices) continue;
        int c;
	for (k=0; k<numchoices+numchoices; k++)
	  {
	    c=rand()%nmatch;
	    if (c!=b && c!=a && (t2d[a]-t2d[c]).norm() > minpdist
		&& (t2d[b]-t2d[c]).norm() > minpdist
		&& (q2d[a]-q2d[c]).norm() > minpdist
		&& (q2d[b]-q2d[c]).norm() > minpdist)
	      // TODO: add distance check
	      break;
	  }
	if (k >= numchoices+numchoices) continue;

        // get centroids
        Vector3f p0a = t3d[a];
        Vector3f p0b = t3d[b];
        Vector3f p0c = t3d[c];

        Vector3f p1a = q3d[a];
        Vector3f p1b = q3d[b];
        Vector3f p1c = q3d[c];

        Vector3f c0 = (p0a+p0b+p0c)*(1.0/3.0);
        Vector3f c1 = (p1a+p1b+p1c)*(1.0/3.0);

        // subtract out
        p0a -= c0;
        p0b -= c0;
        p0c -= c0;
        p1a -= c1;
        p1b -= c1;
        p1c -= c1;

        Matrix3f Hf = p1a*p0a.transpose() + p1b*p0b.transpose() +
	              p1c*p0c.transpose();
	Matrix3d H = Hf.cast<double>();

#if 0
        cout << p0a.transpose() << endl;
        cout << p0b.transpose() << endl;
        cout << p0c.transpose() << endl;
#endif

        // do the SVD thang
        JacobiSVD<Matrix3d> svd(H, ComputeFullU | ComputeFullV);
        Matrix3d V = svd.matrixV();
        Matrix3d R = V * svd.matrixU().transpose();          
        double det = R.determinant();
        //ntot++;
        if (det < 0.0)
          {
            //nneg++;
            V.col(2) = V.col(2)*-1.0;
            R = V * svd.matrixU().transpose();
          }

	Vector3d cd0 = c0.cast<double>();
	Vector3d cd1 = c1.cast<double>();
        Vector3d tr = cd0-R*cd1;    // translation 

	//      cout << "[PE test] R: " << endl << R << endl;
	//	cout << "[PE test] t: " << tr.transpose() << endl;

        Vector3f trf = tr.cast<float>();      // convert to floats
        Matrix3f Rf = R.cast<float>();
	Rf = Kf*Rf;
	trf = Kf*trf;

        // find inliers, based on image reprojection
        int inl = 0;
        for (int i=0; i<nmatch; i++)
          {
            const Vector3f &pt1 = q3d[i];
            Vector3f ipt = Rf*pt1+trf; // transform query point
            float iz = 1.0/ipt.z();
	    Vector2f &kp = t2d[i];
	    //	    cout << kp.transpose() << " " << pt1.transpose() << " " << ipt.transpose() << endl;
            float dx = kp.x() - ipt.x()*iz;
            float dy = kp.y() - ipt.y()*iz;
            float dd = fb/t3d[i].z() - fb/ipt.z(); // diff of disparities, could pre-compute t3d
            if (dx*dx < maxInlierXDist2 && dy*dy < maxInlierXDist2
                && dd*dd < maxInlierDDist2)
               //              inl+=(int)fsqrt(ipt.z()); // clever way to weight closer points
              inl++;
          }
        
        if (inl > bestinl) 
          {
            bestinl = inl;
            trans = tr.cast<float>();      // convert to floats
            rot = R.cast<float>();
          }

      }

    cout << "[pe3d] Best inliers: " << bestinl << endl;
//    printf("Total ransac: %d  Neg det: %d\n", ntot, nneg);

    // reduce matches to inliers
    matches_t inls;    // temporary for current inliers
    inliers.clear();
    Matrix3f Rf = Kf*rot;
    Vector3f trf = Kf*trans;

    //    cout << "[pe3e] R: " << endl << rot << endl;
    cout << "[pe3d] t: " << trans.transpose() << endl;

    AngleAxisf aa;
    aa.fromRotationMatrix(rot);
    cout << "[pe3d] AA: " << aa.angle()*180.0/M_PI << "   " << aa.axis().transpose() << endl;

    for (int i=0; i<nmatch; i++)
      {
	Vector3f &pt1 = q3d[i];
        Vector3f ipt = Rf*pt1+trf; // transform query point
        float iz = 1.0/ipt.z();
	Vector2f &kp = t2d[i];
	//	cout << kp.transpose() << " " << pt1.transpose() << " " << ipt.transpose() << endl;
        float dx = kp.x() - ipt.x()*iz;
        float dy = kp.y() - ipt.y()*iz;
        float dd = fb/t3d[i].z() - fb/ipt.z(); // diff of disparities, could pre-compute t3d

        if (dx*dx < maxInlierXDist2 && dy*dy < maxInlierXDist2 && 
            dd*dd < maxInlierDDist2)
	  inls.push_back(matches[m[i]]); 
      }

    cout << "[pe3d] Final inliers: " << inls.size() << endl;

    // polish with SVD
    if (polish)
      {
	Matrix3d Rd = rot.cast<double>();
	Vector3d trd = trans.cast<double>();
	StereoPolish pol(5,false);
	pol.polish(inls,train_kpts,query_kpts,train_pts,query_pts,K,baseline,
	   Rd,trd);

	AngleAxisd aa;
	aa.fromRotationMatrix(Rd);
	cout << "[pe3d] Polished t: " << trd.transpose() << endl;
	cout << "[pe3d] Polished AA: " << aa.angle()*180.0/M_PI << "   " << aa.axis().transpose() << endl;

	int num = inls.size();
	// get centroids
	Vector3f c0(0,0,0);
	Vector3f c1(0,0,0);
	for (int i=0; i<num; i++)
	  {
	    c0 += t3d[i];
	    c1 += q3d[i];
	  }

	c0 = c0 / (float)num;
	c1 = c1 / (float)num;

        // subtract out and create H matrix
	Matrix3f Hf;
	Hf.setZero();

	for (int i=0; i<num; i++)
	  {
	    Vector3f p0 = t3d[i]-c0;
	    Vector3f p1 = q3d[i]-c1;
	    Hf += p1*p0.transpose();
	  }

	Matrix3d H = Hf.cast<double>();

        // do the SVD thang
        JacobiSVD<Matrix3d> svd(H, ComputeFullU | ComputeFullV);
        Matrix3d V = svd.matrixV();
        Matrix3d R = V * svd.matrixU().transpose();          
        double det = R.determinant();
        //ntot++;
        if (det < 0.0)
          {
            //nneg++;
            V.col(2) = V.col(2)*-1.0;
            R = V * svd.matrixU().transpose();
          }

	Vector3d cd0 = c0.cast<double>();
	Vector3d cd1 = c1.cast<double>();
        Vector3d tr = cd0-R*cd1;    // translation 


	aa.fromRotationMatrix(R);
	cout << "[pe3d] t: " << tr.transpose() << endl;
	cout << "[pe3d] AA: " << aa.angle()*180.0/M_PI << "   " << aa.axis().transpose() << endl;

#if 0
        // system
        SysSBA sba;
        sba.verbose = 0;

        // set up nodes
        // should have a frame => node function        
        Vector4d v0 = Vector4d(0,0,0,1);
        Quaterniond q0 = Quaternion<double>(Vector4d(0,0,0,1));
        sba.addNode(v0, q0, f0.cam, true);
        
        Quaterniond qr1(rot);   // from rotation matrix
        Vector4d temptrans = Vector4d(trans(0), trans(1), trans(2), 1.0);

        //        sba.addNode(temptrans, qr1.normalized(), f1.cam, false);
        qr1.normalize();
        sba.addNode(temptrans, qr1, f1.cam, false);

        int in = 3;
        if (in > (int)inls.size())
          in = inls.size();

        // set up projections
        for (int i=0; i<(int)inls.size(); i++)
          {
            // add point
            int i0 = inls[i].queryIdx;
            int i1 = inls[i].trainIdx;
            Vector4d pt = query_pts[i0];
            sba.addPoint(pt);
            
            // projected point, ul,vl,ur
            Vector3d ipt;
            ipt(0) = f0.kpts[i0].pt.x;
            ipt(1) = f0.kpts[i0].pt.y;
            ipt(2) = ipt(0)-f0.disps[i0];
            sba.addStereoProj(0, i, ipt);

            // projected point, ul,vl,ur
            ipt(0) = f1.kpts[i1].pt.x;
            ipt(1) = f1.kpts[i1].pt.y;
            ipt(2) = ipt(0)-f1.disps[i1];
            sba.addStereoProj(1, i, ipt);
          }

        sba.huber = 2.0;
        sba.doSBA(5,10e-4,SBA_DENSE_CHOLESKY);
        int nbad = sba.removeBad(2.0);
//        cout << endl << "Removed " << nbad << " projections > 2 pixels error" << endl;
        sba.doSBA(5,10e-5,SBA_DENSE_CHOLESKY);

//        cout << endl << sba.nodes[1].trans.transpose().head(3) << endl;

        // get the updated transform
	      trans = sba.nodes[1].trans.head(3);
	      Quaterniond q1;
	      q1 = sba.nodes[1].qrot;
	      rot = q1.toRotationMatrix();

        // set up inliers
        inliers.clear();
        for (int i=0; i<(int)inls.size(); i++)
          {
            ProjMap &prjs = sba.tracks[i].projections;
            if (prjs[0].isValid && prjs[1].isValid) // valid track
              inliers.push_back(inls[i]);
          }
#if 0
        printf("Inliers: %d   After polish: %d\n", (int)inls.size(), (int)inliers.size());
#endif

#endif

      }

    inliers = inls;
    return (int)inls.size();
  }
コード例 #4
0
ファイル: matrixAssignment.cpp プロジェクト: 9DSmart/Matrix
int main()
{
    Matrix3f m;
    m.setZero();
    m(0, 0) = 1;
    m(0, 1) = 2;
    m(0, 2) = 3;
    m(1, 0) = 4;
    m(1, 1) = 5;
    m(1, 2) = 6;
    m(2, 0) = 7;
    m(2, 1) = 8;
    m(2, 2) = 9;

    float data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
    Matrix3f m2(data);

    for(int i=0; i<9; i++) {
        TEST(fabs(data[i] - m2.data()[i]) < 1e-6f);
    }

    float data_times_2[9] = {2, 4, 6, 8, 10, 12, 14, 16, 18};
    Matrix3f m3(data_times_2);

    TEST(isEqual(m, m2));
    TEST(!(m == m3));

    m2 *= 2;
    TEST(m2 == m3);

    m2 /= 2;
    m2 -= 1;
    float data_minus_1[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
    TEST(Matrix3f(data_minus_1) == m2);

    m2 += 1;
    TEST(Matrix3f(data) == m2);

    m3 -= m2;

    TEST(m3 == m2);

    float data_row_02_swap[9] = {
        7, 8, 9,
        4, 5, 6,
        1, 2, 3,
    };

    float data_col_02_swap[9] = {
        3, 2, 1,
        6, 5, 4,
        9, 8, 7
    };

    Matrix3f m4(data);

    TEST(-m4 == m4*(-1));

    m4.swapCols(0, 2);
    TEST(m4 == Matrix3f(data_col_02_swap));
    m4.swapCols(0, 2);
    m4.swapRows(0, 2);
    TEST(m4 == Matrix3f(data_row_02_swap));
    TEST(fabs(m4.min() - 1) < 1e-5);

    Scalar<float> s;
    s = 1;
    TEST(fabs(s - 1) < 1e-5);

    Matrix<float, 1, 1> m5 = s;
    TEST(fabs(m5(0,0) - s) < 1e-5);

    Matrix<float, 2, 2> m6;
    m6.setRow(0, Vector2f(1, 1));
    m6.setCol(0, Vector2f(1, 1));

    return 0;
}