예제 #1
0
void check_self_consistency(SkeletonPtr skeleton)
{
  for(size_t i=0; i<skeleton->getNumBodyNodes(); ++i)
  {
    BodyNode* bn = skeleton->getBodyNode(i);
    EXPECT_TRUE(bn->getIndexInSkeleton() == i);
    EXPECT_TRUE(skeleton->getBodyNode(bn->getName()) == bn);

    Joint* joint = bn->getParentJoint();
    EXPECT_TRUE(skeleton->getJoint(joint->getName()) == joint);

    for(size_t j=0; j<joint->getNumDofs(); ++j)
    {
      DegreeOfFreedom* dof = joint->getDof(j);
      EXPECT_TRUE(dof->getIndexInJoint() == j);
      EXPECT_TRUE(skeleton->getDof(dof->getName()) == dof);
    }
  }

  for(size_t i=0; i<skeleton->getNumDofs(); ++i)
  {
    DegreeOfFreedom* dof = skeleton->getDof(i);
    EXPECT_TRUE(dof->getIndexInSkeleton() == i);
    EXPECT_TRUE(skeleton->getDof(dof->getName()) == dof);
  }
}
예제 #2
0
SkeletonPtr createWall()
{
  SkeletonPtr wall = Skeleton::create("wall");

  BodyNode* bn = wall->createJointAndBodyNodePair<WeldJoint>().second;

  std::shared_ptr<BoxShape> shape = std::make_shared<BoxShape>(
        Eigen::Vector3d(default_wall_thickness, default_ground_width,
                        default_wall_height));
  auto shapeNode
      = bn->createShapeNodeWith<VisualAddon, CollisionAddon, DynamicsAddon>(shape);
  shapeNode->getVisualAddon()->setColor(Eigen::Vector3d(0.8, 0.8, 0.8));

  Eigen::Isometry3d tf(Eigen::Isometry3d::Identity());
  tf.translation() = Eigen::Vector3d(
        (default_ground_width + default_wall_thickness)/2.0, 0.0,
        (default_wall_height  - default_wall_thickness)/2.0);
  bn->getParentJoint()->setTransformFromParentBodyNode(tf);

  bn->setRestitutionCoeff(0.2);

  return wall;
}
예제 #3
0
//==============================================================================
void SoftDynamicsTest::compareEquationsOfMotion(const std::string& _fileName)
{
  using namespace std;
  using namespace Eigen;
  using namespace dart;
  using namespace math;
  using namespace dynamics;
  using namespace simulation;
  using namespace utils;

  //---------------------------- Settings --------------------------------------
  // Number of random state tests for each skeletons
#ifndef NDEBUG  // Debug mode
  size_t nRandomItr = 1;
#else
  size_t nRandomItr = 1;
#endif

  // Lower and upper bound of configuration for system
  double lb = -1.5 * DART_PI;
  double ub =  1.5 * DART_PI;

  // Lower and upper bound of joint damping and stiffness
  double lbD =  0.0;
  double ubD = 10.0;
  double lbK =  0.0;
  double ubK = 10.0;

  simulation::World* myWorld = NULL;

  //----------------------------- Tests ----------------------------------------
  // Check whether multiplication of mass matrix and its inverse is identity
  // matrix.
  myWorld = utils::SkelParser::readWorld(_fileName);
  EXPECT_TRUE(myWorld != NULL);

  for (size_t i = 0; i < myWorld->getNumSkeletons(); ++i)
  {
    dynamics::Skeleton* skel = myWorld->getSkeleton(i);
    dynamics::Skeleton* softSkel
        = dynamic_cast<dynamics::Skeleton*>(skel);

    int dof            = skel->getNumDofs();
//    int nBodyNodes     = skel->getNumBodyNodes();
    int nSoftBodyNodes = 0;
    if (softSkel != NULL)
      nSoftBodyNodes = softSkel->getNumSoftBodyNodes();

    if (dof == 0)
    {
      dtmsg << "Skeleton [" << skel->getName() << "] is skipped since it has "
           << "0 DOF." << endl;
      continue;
    }

    for (size_t j = 0; j < nRandomItr; ++j)
    {
      // Random joint stiffness and damping coefficient
      for (size_t k = 0; k < skel->getNumBodyNodes(); ++k)
      {
        BodyNode* body     = skel->getBodyNode(k);
        Joint*    joint    = body->getParentJoint();
        int       localDof = joint->getNumDofs();

        for (int l = 0; l < localDof; ++l)
        {
          joint->setDampingCoefficient(l, random(lbD,  ubD));
          joint->setSpringStiffness   (l, random(lbK,  ubK));

          double lbRP = joint->getPositionLowerLimit(l);
          double ubRP = joint->getPositionUpperLimit(l);
          joint->setRestPosition      (l, random(lbRP, ubRP));
        }
      }

      // Set random states
      VectorXd x = skel->getState();
      for (int k = 0; k < x.size(); ++k)
        x[k] = random(lb, ub);
      skel->setState(x);
      skel->computeForwardKinematics(true, true, false);

      //------------------------ Mass Matrix Test ----------------------------
      // Get matrices
      MatrixXd M      = skel->getMassMatrix();
      MatrixXd M2     = getMassMatrix(skel);
      MatrixXd InvM   = skel->getInvMassMatrix();
      MatrixXd M_InvM = M * InvM;
      MatrixXd InvM_M = InvM * M;

      MatrixXd AugM         = skel->getAugMassMatrix();
      MatrixXd AugM2        = getAugMassMatrix(skel);
      MatrixXd InvAugM      = skel->getInvAugMassMatrix();
      MatrixXd AugM_InvAugM = AugM * InvAugM;
      MatrixXd InvAugM_AugM = InvAugM * AugM;

      MatrixXd I        = MatrixXd::Identity(dof, dof);

      // Check if the number of generalized coordinates and dimension of mass
      // matrix are same.
      EXPECT_EQ(M.rows(), dof);
      EXPECT_EQ(M.cols(), dof);

      // Check mass matrix
      EXPECT_TRUE(equals(M, M2, 1e-6));
      if (!equals(M, M2, 1e-6))
      {
        cout << "M :" << endl << M  << endl << endl;
        cout << "M2:" << endl << M2 << endl << endl;
      }

      // Check augmented mass matrix
      EXPECT_TRUE(equals(AugM, AugM2, 1e-6));
      if (!equals(AugM, AugM2, 1e-6))
      {
        cout << "AugM :" << endl << AugM  << endl << endl;
        cout << "AugM2:" << endl << AugM2 << endl << endl;
      }

      // Check if both of (M * InvM) and (InvM * M) are identity.
      EXPECT_TRUE(equals(M_InvM, I, 1e-6));
      if (!equals(M_InvM, I, 1e-6))
      {
        cout << "InvM  :" << endl << InvM << endl << endl;
      }
      EXPECT_TRUE(equals(InvM_M, I, 1e-6));
      if (!equals(InvM_M, I, 1e-6))
      {
        cout << "InvM_M:" << endl << InvM_M << endl << endl;
      }

      // Check if both of (M * InvM) and (InvM * M) are identity.
      EXPECT_TRUE(equals(AugM_InvAugM, I, 1e-6));
      if (!equals(AugM_InvAugM, I, 1e-6))
      {
        cout << "InvAugM  :" << endl << InvAugM << endl << endl;
        cout << "InvAugM2  :" << endl << AugM.inverse() << endl << endl;
        cout << "AugM_InvAugM  :" << endl << AugM_InvAugM << endl << endl;
      }
      EXPECT_TRUE(equals(InvAugM_AugM, I, 1e-6));
      if (!equals(InvAugM_AugM, I, 1e-6))
      {
        cout << "InvAugM_AugM:" << endl << InvAugM_AugM << endl << endl;
      }

      //------- Coriolis Force Vector and Combined Force Vector Tests --------
      // Get C1, Coriolis force vector using recursive method
      VectorXd C  = skel->getCoriolisForces();
      VectorXd Cg = skel->getCoriolisAndGravityForces();

      // Get C2, Coriolis force vector using inverse dynamics algorithm
      Vector3d oldGravity = skel->getGravity();
      VectorXd oldTau     = skel->getForces();
      VectorXd oldDdq     = skel->getAccelerations();
      // TODO(JS): Save external forces of body nodes
      vector<double> oldKv(nSoftBodyNodes, 0.0);
      vector<double> oldKe(nSoftBodyNodes, 0.0);
      vector<double>  oldD(nSoftBodyNodes, 0.0);
      for (int k = 0; k < nSoftBodyNodes; ++k)
      {
        assert(softSkel != NULL);
        dynamics::SoftBodyNode* sbn = softSkel->getSoftBodyNode(k);
        oldKv[k] = sbn->getVertexSpringStiffness();
        oldKe[k] = sbn->getEdgeSpringStiffness();
        oldD[k]  = sbn->getDampingCoefficient();
      }

      skel->resetForces();
      skel->clearExternalForces();
      skel->setAccelerations(VectorXd::Zero(dof));
      for (int k = 0; k < nSoftBodyNodes; ++k)
      {
        assert(softSkel != NULL);
        dynamics::SoftBodyNode* sbn = softSkel->getSoftBodyNode(k);
        sbn->setVertexSpringStiffness(0.0);
        sbn->setEdgeSpringStiffness(0.0);
        sbn->setDampingCoefficient(0.0);
      }

      EXPECT_TRUE(skel->getForces()         == VectorXd::Zero(dof));
      EXPECT_TRUE(skel->getExternalForces() == VectorXd::Zero(dof));
      EXPECT_TRUE(skel->getAccelerations()  == VectorXd::Zero(dof));

      skel->setGravity(Vector3d::Zero());
      EXPECT_TRUE(skel->getGravity() == Vector3d::Zero());
      skel->computeInverseDynamics(false, false);
      VectorXd C2 = skel->getForces();

      skel->setGravity(oldGravity);
      EXPECT_TRUE(skel->getGravity() == oldGravity);
      skel->computeInverseDynamics(false, false);
      VectorXd Cg2 = skel->getForces();

      EXPECT_TRUE(equals(C, C2, 1e-6));
      if (!equals(C, C2, 1e-6))
      {
        cout << "C :" << C.transpose()  << endl;
        cout << "C2:" << C2.transpose() << endl;
      }

      EXPECT_TRUE(equals(Cg, Cg2, 1e-6));
      if (!equals(Cg, Cg2, 1e-6))
      {
        cout << "Cg :" << Cg.transpose()  << endl;
        cout << "Cg2:" << Cg2.transpose() << endl;
      }

      skel->setForces(oldTau);
      skel->setAccelerations(oldDdq);
      // TODO(JS): Restore external forces of body nodes
    }
  }

  delete myWorld;
}
예제 #4
0
//==============================================================================
void ConstraintTest::SingleContactTest(const std::string& /*_fileName*/)
{
  using namespace std;
  using namespace Eigen;
  using namespace dart::math;
  using namespace dart::collision;
  using namespace dart::constraint;
  using namespace dart::dynamics;
  using namespace dart::simulation;
  using namespace dart::io;

  //----------------------------------------------------------------------------
  // Settings
  //----------------------------------------------------------------------------
  // Number of random state tests for each skeletons
#ifndef NDEBUG  // Debug mode
  // std::size_t testCount = 1;
#else
  // std::size_t testCount = 1;
#endif

  WorldPtr world = World::create();
  EXPECT_TRUE(world != nullptr);
  world->setGravity(Vector3d(0.0, -10.00, 0.0));
  world->setTimeStep(0.001);
  world->getConstraintSolver()->setCollisionDetector(
        DARTCollisionDetector::create());

  SkeletonPtr sphereSkel = createSphere(0.05, Vector3d(0.0, 1.0, 0.0));
  BodyNode* sphere = sphereSkel->getBodyNode(0);
  Joint* sphereJoint = sphere->getParentJoint();
  sphereJoint->setVelocity(3, Random::uniform(-2.0, 2.0));  // x-axis
  sphereJoint->setVelocity(5, Random::uniform(-2.0, 2.0));  // z-axis
  world->addSkeleton(sphereSkel);
  EXPECT_EQ(sphereSkel->getGravity(), world->getGravity());
  assert(sphere);

  SkeletonPtr boxSkel = createBox(Vector3d(1.0, 1.0, 1.0),
                                  Vector3d(0.0, 1.0, 0.0));
  BodyNode* box = boxSkel->getBodyNode(0);
  Joint* boxJoint = box->getParentJoint();
  boxJoint->setVelocity(3, Random::uniform(-2.0, 2.0));  // x-axis
  boxJoint->setVelocity(5, Random::uniform(-2.0, 2.0));  // z-axis
//  world->addSkeleton(boxSkel);
//  EXPECT_EQ(boxSkel->getGravity(), world->getGravity());
//  assert(box);

  SkeletonPtr groundSkel = createGround(Vector3d(10000.0, 0.1, 10000.0),
                                      Vector3d(0.0, -0.05, 0.0));
  groundSkel->setMobile(false);
  // BodyNode* ground = groundSkel->getBodyNode(0);
  world->addSkeleton(groundSkel);
  EXPECT_EQ(groundSkel->getGravity(), world->getGravity());
  // assert(ground);

  EXPECT_EQ((int)world->getNumSkeletons(), 2);

  // Lower and upper bound of configuration for system
  // double lb = -1.5 * constantsd::pi();
  // double ub =  1.5 * constantsd::pi();

  int maxSteps = 500;
  for (int i = 0; i < maxSteps; ++i)
  {
//    Vector3d pos1 = sphere->getWorldTransform().translation();
//    Vector3d vel1 = sphere->getWorldLinearVelocity(pos1);

//    std::cout << "pos1:" << pos1.transpose() << std::endl;
//    std::cout << "vel1:" << vel1.transpose() << std::endl;

    if (!world->checkCollision())
    {
      world->step();
      continue;
    }

    // for (std::size_t j = 0; j < cd->getNumContacts(); ++j)
    // {
      // Contact contact = cd->getContact(j);
      // Vector3d pos1 = sphere->getTransform().inverse() * contact.point;
      // Vector3d vel1 = sphere->getWorldLinearVelocity(pos1);

      // std::cout << "pos1:" << pos1.transpose() << std::endl;
      // std::cout << "vel1:" << vel1.transpose() << std::endl;
    // }

    world->step();

    const auto& result = world->getConstraintSolver()->getLastCollisionResult();

    for (const auto& contact : result.getContacts())
    {
      Vector3d pos1 = sphere->getTransform().inverse() * contact.point;
      Vector3d vel1 = sphere->getLinearVelocity(pos1);

//      std::cout << "pos1:" << pos1.transpose() << std::endl;

//      std::cout << "pos1[1]: " << pos1[1] << std::endl;

//      std::cout << "pos1:" << pos1.transpose() << std::endl;
      std::cout << "vel1:" << vel1.transpose() << ", pos1[1]: " << pos1[1] << std::endl;

//      EXPECT_NEAR(pos1[0], 0.0, 1e-9);
//      EXPECT_NEAR(pos1[1], -0.05, 1e-2);
//      EXPECT_NEAR(pos1[2], 0.0, 1e-9);

//      EXPECT_NEAR(vel1[0], 0.0, 1e-9);
//      EXPECT_NEAR(vel1[1], 0.0, 1e-9);
//      EXPECT_NEAR(vel1[2], 0.0, 1e-9);

//      if (!equals(vel1, Vector3d(0.0, 0.0, 0.0)))
//        std::cout << "vel1:" << vel1.transpose() << std::endl;

//      EXPECT_EQ(vel1, Vector3d::Zero());
    }

//    std::cout << std::endl;

    break;
  }
}
예제 #5
0
//==============================================================================
void DynamicsTest::testImpulseBasedDynamics(const std::string& _fileName)
{
  using namespace std;
  using namespace Eigen;
  using namespace dart;
  using namespace math;
  using namespace dynamics;
  using namespace simulation;
  using namespace utils;

  //---------------------------- Settings --------------------------------------
  // Number of random state tests for each skeletons
#ifndef NDEBUG  // Debug mode
  int nRandomItr = 1;
#else
  int nRandomItr = 100;
#endif

  // Lower and upper bound of configuration for system
  double lb = -1.5 * DART_PI;
  double ub =  1.5 * DART_PI;

  simulation::World* myWorld = NULL;

  //----------------------------- Tests ----------------------------------------
  // Check whether multiplication of mass matrix and its inverse is identity
  // matrix.
  myWorld = utils::SkelParser::readWorld(_fileName);
  EXPECT_TRUE(myWorld != NULL);

  for (int i = 0; i < myWorld->getNumSkeletons(); ++i)
  {
    dynamics::Skeleton* skel = myWorld->getSkeleton(i);

    int dof            = skel->getNumGenCoords();
//    int nBodyNodes     = skel->getNumBodyNodes();

    if (dof == 0 || !skel->isMobile())
    {
      dtdbg << "Skeleton [" << skel->getName() << "] is skipped since it has "
            << "0 DOF or is immobile." << endl;
      continue;
    }

    for (int j = 0; j < nRandomItr; ++j)
    {
      // Set random configurations
      for (int k = 0; k < skel->getNumBodyNodes(); ++k)
      {
        BodyNode* body     = skel->getBodyNode(k);
        Joint*    joint    = body->getParentJoint();
        int       localDof = joint->getNumGenCoords();

        for (int l = 0; l < localDof; ++l)
        {
          double lbRP = joint->getGenCoord(l)->getPosMin();
          double ubRP = joint->getGenCoord(l)->getPosMax();
          if (lbRP < -DART_PI)
            lbRP = -DART_PI;
          if (ubRP > DART_PI)
            ubRP = DART_PI;
          joint->setConfig(l, random(lbRP, ubRP), true, false, false);
        }
      }
      skel->setConfigs(VectorXd::Zero(dof));

      // TODO(JS): Just clear what should be
      skel->clearExternalForces();
      skel->clearConstraintImpulses();

      // Set random impulses
      VectorXd impulses = VectorXd::Zero(dof);
      for (size_t k = 0; k < impulses.size(); ++k)
        impulses[k] = random(lb, ub);
      skel->setConstraintImpulses(impulses);

      // Compute impulse-based forward dynamics
      skel->computeImpulseForwardDynamics();

      // Compare resultant velocity change and invM * impulses
      VectorXd deltaVel1 = skel->getVelsChange();
      MatrixXd invM = skel->getInvMassMatrix();
      VectorXd deltaVel2 = invM * impulses;

      EXPECT_TRUE(equals(deltaVel1, deltaVel2, 1e-6));
      if (!equals(deltaVel1, deltaVel2, 1e-6))
      {
        cout << "deltaVel1: " << deltaVel1.transpose()  << endl;
        cout << "deltaVel2: " << deltaVel2.transpose() << endl;
      }
    }
  }

  delete myWorld;
}
예제 #6
0
//==============================================================================
void DynamicsTest::centerOfMass(const std::string& _fileName)
{
  using namespace std;
  using namespace Eigen;
  using namespace dart;
  using namespace math;
  using namespace dynamics;
  using namespace simulation;
  using namespace utils;

  //---------------------------- Settings --------------------------------------
  // Number of random state tests for each skeletons
#ifndef NDEBUG  // Debug mode
  int nRandomItr = 10;
#else
  int nRandomItr = 100;
#endif

  // Lower and upper bound of configuration for system
  double lb = -1.5 * DART_PI;
  double ub =  1.5 * DART_PI;

  // Lower and upper bound of joint damping and stiffness
  double lbD =  0.0;
  double ubD = 10.0;
  double lbK =  0.0;
  double ubK = 10.0;

  simulation::World* myWorld = NULL;

  //----------------------------- Tests ----------------------------------------
  // Check whether multiplication of mass matrix and its inverse is identity
  // matrix.
  myWorld = utils::SkelParser::readWorld(_fileName);
  EXPECT_TRUE(myWorld != NULL);

  for (int i = 0; i < myWorld->getNumSkeletons(); ++i)
  {
    dynamics::Skeleton* skel = myWorld->getSkeleton(i);

    int dof            = skel->getNumGenCoords();
//    int nBodyNodes     = skel->getNumBodyNodes();

    if (dof == 0)
    {
      dtmsg << "Skeleton [" << skel->getName() << "] is skipped since it has "
            << "0 DOF." << endl;
      continue;
    }

    for (int j = 0; j < nRandomItr; ++j)
    {
      // Random joint stiffness and damping coefficient
      for (int k = 0; k < skel->getNumBodyNodes(); ++k)
      {
        BodyNode* body     = skel->getBodyNode(k);
        Joint*    joint    = body->getParentJoint();
        int       localDof = joint->getNumGenCoords();

        for (int l = 0; l < localDof; ++l)
        {
          joint->setDampingCoefficient(l, random(lbD,  ubD));
          joint->setSpringStiffness   (l, random(lbK,  ubK));

          double lbRP = joint->getGenCoord(l)->getPosMin();
          double ubRP = joint->getGenCoord(l)->getPosMax();
          if (lbRP < -DART_PI)
            lbRP = -DART_PI;
          if (ubRP > DART_PI)
            ubRP = DART_PI;
          joint->setRestPosition      (l, random(lbRP, ubRP));
        }
      }

      // Set random states
      VectorXd x = skel->getState();
      for (int k = 0; k < x.size(); ++k)
        x[k] = random(lb, ub);
      skel->setState(x, true, true, false);

      VectorXd tau = skel->getGenForces();
      for (int k = 0; k < tau.size(); ++k)
        tau[k] = random(lb, ub);
      skel->setGenForces(tau);

      skel->computeForwardDynamics();

      VectorXd q  = skel->getConfigs();
      VectorXd dq = skel->getGenVels();
      VectorXd ddq = skel->getGenAccs();

      VectorXd com   = skel->getWorldCOM();
      VectorXd dcom  = skel->getWorldCOMVelocity();
      VectorXd ddcom = skel->getWorldCOMAcceleration();

      MatrixXd comJ  = skel->getWorldCOMJacobian();
      MatrixXd comdJ = skel->getWorldCOMJacobianTimeDeriv();

      VectorXd dcom2  = comJ * dq;
      VectorXd ddcom2 = comdJ * dq + comJ * ddq;

      EXPECT_TRUE(equals(dcom, dcom2, 1e-6));
      if (!equals(dcom, dcom2, 1e-6))
      {
        cout << "dcom :" << dcom.transpose()  << endl;
        cout << "dcom2:" << dcom2.transpose() << endl;
      }

      EXPECT_TRUE(equals(ddcom, ddcom2, 1e-6));
      if (!equals(ddcom, ddcom2, 1e-6))
      {
        cout << "ddcom :" << ddcom.transpose()  << endl;
        cout << "ddcom2:" << ddcom2.transpose() << endl;
      }
    }
  }

  delete myWorld;
}
예제 #7
0
TEST(Skeleton, Restructuring)
{
  std::vector<SkeletonPtr> skeletons = getSkeletons();

#ifndef NDEBUG
  size_t numIterations = 10;
#else
  size_t numIterations = 2*skeletons.size();
#endif

  // Test moves within the current Skeleton
  for(size_t i=0; i<numIterations; ++i)
  {
    size_t index = floor(math::random(0, skeletons.size()));
    index = std::min(index, skeletons.size()-1);
    SkeletonPtr skeleton = skeletons[index];
    SkeletonPtr original = skeleton->clone();

    size_t maxNode = skeleton->getNumBodyNodes()-1;
    BodyNode* bn1 = skeleton->getBodyNode(floor(math::random(0, maxNode)));
    BodyNode* bn2 = skeleton->getBodyNode(ceil(math::random(0, maxNode)));

    if(bn1 == bn2)
    {
      --i;
      continue;
    }

    BodyNode* child = bn1->descendsFrom(bn2)? bn1 : bn2;
    BodyNode* parent = child == bn1? bn2 : bn1;

    child->moveTo(parent);

    EXPECT_TRUE(skeleton->getNumBodyNodes() == original->getNumBodyNodes());
    if(skeleton->getNumBodyNodes() == original->getNumBodyNodes())
    {
      for(size_t j=0; j<skeleton->getNumBodyNodes(); ++j)
      {
        // Make sure no BodyNodes have been lost or gained in translation
        std::string name = original->getBodyNode(j)->getName();
        BodyNode* bn = skeleton->getBodyNode(name);
        EXPECT_FALSE(bn == nullptr);
        if(bn)
          EXPECT_TRUE(bn->getName() == name);

        name = skeleton->getBodyNode(j)->getName();
        bn = original->getBodyNode(name);
        EXPECT_FALSE(bn == nullptr);
        if(bn)
          EXPECT_TRUE(bn->getName() == name);


        // Make sure no Joints have been lost or gained in translation
        name = original->getJoint(j)->getName();
        Joint* joint = skeleton->getJoint(name);
        EXPECT_FALSE(joint == nullptr);
        if(joint)
          EXPECT_TRUE(joint->getName() == name);

        name = skeleton->getJoint(j)->getName();
        joint = original->getJoint(name);
        EXPECT_FALSE(joint == nullptr);
        if(joint)
          EXPECT_TRUE(joint->getName() == name);
      }
    }

    EXPECT_TRUE(skeleton->getNumDofs() == original->getNumDofs());
    for(size_t j=0; j<skeleton->getNumDofs(); ++j)
    {
      std::string name = original->getDof(j)->getName();
      DegreeOfFreedom* dof = skeleton->getDof(name);
      EXPECT_FALSE(dof == nullptr);
      if(dof)
        EXPECT_TRUE(dof->getName() == name);

      name = skeleton->getDof(j)->getName();
      dof = original->getDof(name);
      EXPECT_FALSE(dof == nullptr);
      if(dof)
        EXPECT_TRUE(dof->getName() == name);
    }
  }

  // Test moves between Skeletons
  for(size_t i=0; i<numIterations; ++i)
  {
    size_t fromIndex = floor(math::random(0, skeletons.size()));
    fromIndex = std::min(fromIndex, skeletons.size()-1);
    SkeletonPtr fromSkel = skeletons[fromIndex];

    if(fromSkel->getNumBodyNodes() == 0)
    {
      --i;
      continue;
    }

    size_t toIndex = floor(math::random(0, skeletons.size()));
    toIndex = std::min(toIndex, skeletons.size()-1);
    SkeletonPtr toSkel = skeletons[toIndex];

    if(toSkel->getNumBodyNodes() == 0)
    {
      --i;
      continue;
    }

    BodyNode* childBn = fromSkel->getBodyNode(
          floor(math::random(0, fromSkel->getNumBodyNodes()-1)));
    BodyNode* parentBn = toSkel->getBodyNode(
          floor(math::random(0, toSkel->getNumBodyNodes()-1)));

    if(fromSkel == toSkel)
    {
      if(childBn == parentBn)
      {
        --i;
        continue;
      }

      if(parentBn->descendsFrom(childBn))
      {
        BodyNode* tempBn = childBn;
        childBn = parentBn;
        parentBn = tempBn;

        SkeletonPtr tempSkel = fromSkel;
        fromSkel = toSkel;
        toSkel = tempSkel;
      }
    }

    BodyNode* originalParent = childBn->getParentBodyNode();
    std::vector<BodyNode*> subtree;
    constructSubtree(subtree, childBn);

    // Move to a new Skeleton
    childBn->moveTo(parentBn);

    // Make sure all the objects have moved
    for(size_t j=0; j<subtree.size(); ++j)
    {
      BodyNode* bn = subtree[j];
      EXPECT_TRUE(bn->getSkeleton() == toSkel);
    }

    // Move to the Skeleton's root while producing a new Joint type
    sub_ptr<Joint> originalJoint = childBn->getParentJoint();
    childBn->moveTo<FreeJoint>(nullptr);

    // The original parent joint should be deleted now
    EXPECT_TRUE(originalJoint == nullptr);

    // The BodyNode should now be a root node
    EXPECT_TRUE(childBn->getParentBodyNode() == nullptr);

    // The subtree should still be in the same Skeleton
    for(size_t j=0; j<subtree.size(); ++j)
    {
      BodyNode* bn = subtree[j];
      EXPECT_TRUE(bn->getSkeleton() == toSkel);
    }

    // Create some new Skeletons and mangle them all up

    childBn->copyTo<RevoluteJoint>(fromSkel, originalParent);

    SkeletonPtr temporary = childBn->split("temporary");
    SkeletonPtr other_temporary =
        childBn->split<PrismaticJoint>("other temporary");
    SkeletonPtr another_temporary = childBn->copyAs("another temporary");
    SkeletonPtr last_temporary = childBn->copyAs<ScrewJoint>("last temporary");

    childBn->copyTo(another_temporary->getBodyNode(
                      another_temporary->getNumBodyNodes()-1));
    childBn->copyTo<PlanarJoint>(another_temporary->getBodyNode(0));
    childBn->copyTo<TranslationalJoint>(temporary, nullptr);
    childBn->moveTo(last_temporary,
        last_temporary->getBodyNode(last_temporary->getNumBodyNodes()-1));
    childBn->moveTo<BallJoint>(last_temporary, nullptr);
    childBn->moveTo<EulerJoint>(last_temporary,
                                last_temporary->getBodyNode(0));
    childBn->changeParentJointType<FreeJoint>();

    // Test the non-recursive copying
    if(toSkel->getNumBodyNodes() > 1)
    {
      SkeletonPtr singleBodyNode =
          toSkel->getBodyNode(0)->copyAs("single", false);
      EXPECT_TRUE(singleBodyNode->getNumBodyNodes() == 1);

      std::pair<Joint*, BodyNode*> singlePair =
          toSkel->getBodyNode(0)->copyTo(nullptr, false);
      EXPECT_TRUE(singlePair.second->getNumChildBodyNodes() == 0);
    }

    // Check that the mangled Skeletons are all self-consistent
    check_self_consistency(fromSkel);
    check_self_consistency(toSkel);
    check_self_consistency(temporary);
    check_self_consistency(other_temporary);
    check_self_consistency(another_temporary);
    check_self_consistency(last_temporary);
  }
}
예제 #8
0
// Current code only works for the left leg with only one constraint
VectorXd MyWorld::updateGradients() {
  // compute c(q)
  mC = mSkel->getMarker(mConstrainedMarker)->getWorldPosition() - mTarget;

  // compute J(q)
  Vector4d offset;
  offset << mSkel->getMarker(mConstrainedMarker)->getLocalPosition(), 1; // Create a vector in homogeneous coordinates
  // w.r.t ankle dofs
  BodyNode *node = mSkel->getMarker(mConstrainedMarker)->getBodyNode();
  Joint *joint = node->getParentJoint();
  Matrix4d worldToParent = node->getParentBodyNode()->getTransform().matrix();
  Matrix4d parentToJoint = joint->getTransformFromParentBodyNode().matrix();
  Matrix4d dR = joint->getTransformDerivative(0); // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
  Matrix4d R = joint->getTransform(1).matrix();
  Matrix4d jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();
  Vector4d jCol = worldToParent * parentToJoint * dR * R * jointToChild * offset;
  int colIndex = joint->getIndexInSkeleton(0);
  mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of jCol
  dR = joint->getTransformDerivative(1);
  R = joint->getTransform(0).matrix();
  jCol = worldToParent * parentToJoint * R * dR * jointToChild * offset;
  colIndex = joint->getIndexInSkeleton(1);
  mJ.col(colIndex) = jCol.head(3);
  offset = parentToJoint * joint->getTransform(0).matrix() * joint->getTransform(1).matrix() * jointToChild * offset; // Update offset so it stores the chain below the parent joint

  // w.r.t knee dof
  node = node->getParentBodyNode(); // return NULL if node is the root node
  joint = node->getParentJoint();
  worldToParent = node->getParentBodyNode()->getTransform().matrix();
  parentToJoint = joint->getTransformFromParentBodyNode().matrix();
  dR = joint->getTransformDerivative(0); // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
  jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();
  jCol = worldToParent * parentToJoint * dR * jointToChild * offset;
  colIndex = joint->getIndexInSkeleton(0);
  mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of jCol
  offset = parentToJoint * joint->getTransform(0).matrix() * jointToChild * offset;

  // w.r.t hip dofs
  node = node->getParentBodyNode();
  joint = node->getParentJoint();
  worldToParent = node->getParentBodyNode()->getTransform().matrix();
  parentToJoint = joint->getTransformFromParentBodyNode().matrix();
  dR = joint->getTransformDerivative(0); // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
  Matrix4d R1 = joint->getTransform(1).matrix();
  Matrix4d R2 = joint->getTransform(2).matrix();
  jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();
  jCol = worldToParent * parentToJoint * dR * R1 * R2 * jointToChild * offset;
  colIndex = joint->getIndexInSkeleton(0);
  mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of J

  R1 = joint->getTransform(0).matrix();
  dR = joint->getTransformDerivative(1);
  R2 = joint->getTransform(2).matrix();
  jCol = worldToParent * parentToJoint * R1 * dR * R2 * jointToChild * offset;
  colIndex = joint->getIndexInSkeleton(1);
  mJ.col(colIndex) = jCol.head(3);

  R1 = joint->getTransform(0).matrix();
  R2 = joint->getTransform(1).matrix();
  dR = joint->getTransformDerivative(2);
  jCol = worldToParent * parentToJoint * R1 * R2 * dR * jointToChild * offset;
  colIndex = joint->getIndexInSkeleton(2);
  mJ.col(colIndex) = jCol.head(3);

  // compute gradients
  VectorXd gradients = 2 * mJ.transpose() * mC;
  return gradients;
}
예제 #9
0
// Current code only works for the left leg with only one constraint
VectorXd MyWorld::updateGradients() {
    mJ.setZero();
    mC.setZero();

  // compute c(q)
  //std::cout << "HAMYDEBUG: mConstrainedMarker = " << getMarker(mConstrainedMarker) << std::endl;
  mC = getMarker(mConstrainedMarker)->getWorldPosition() - mTarget;
  std::cout << "C(q) = " << mC << std::endl;

  // compute J(q)
  Vector4d offset;
  offset << getMarker(mConstrainedMarker)->getLocalPosition(), 1; // Create a vector in homogeneous coordinates

  //Setup vars

  BodyNode *node = getMarker(mConstrainedMarker)->getBodyNode();
  Joint *joint = node->getParentJoint();
  Matrix4d worldToParent;
  Matrix4d parentToJoint;
  
  //Declare Vars
  Matrix4d dR; // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
  Matrix4d R;
  Matrix4d R1;
  Matrix4d R2;
  Matrix4d jointToChild;
  Vector4d jCol;
  int colIndex;

  //TODO: Might want to change this to check if root using given root fcn

  //Iterate until we get to the root node
  while(true) {

    //std::cout << "HAMY DEBUG: Beginning new looop" << std::endl;

    if(node->getParentBodyNode() == NULL) {
      worldToParent = worldToParent.setIdentity();
    } else {
      worldToParent = node->getParentBodyNode()->getTransform().matrix();
    }
    parentToJoint = joint->getTransformFromParentBodyNode().matrix();
     // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
    jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();

    //TODO: R1, R2, ... Rn code depending on DOFs
    int nDofs = joint->getNumDofs();
    //std::cout << "HAMY: nDofs=" << nDofs << std::endl;
    //Can only have up to 3 DOFs on any one piece
    switch(nDofs){
      case 1: //std::cout << "HAMY: 1 nDOF" << std::endl;

        dR = joint->getTransformDerivative(0);
        jCol = worldToParent * parentToJoint * dR * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(0);
        mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of jCol
        offset = parentToJoint * joint->getTransform(0).matrix() * jointToChild * offset;

        break;
      case 2: //std::cout << "HAMY: 2 nDOF" << std::endl;

        dR = joint->getTransformDerivative(0); // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
        R = joint->getTransform(1).matrix();
        jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();
        jCol = worldToParent * parentToJoint * dR * R * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(0);
        mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of jCol

        dR = joint->getTransformDerivative(1);
        R = joint->getTransform(0).matrix();
        jCol = worldToParent * parentToJoint * R * dR * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(1);
        mJ.col(colIndex) = jCol.head(3);
        offset = parentToJoint * joint->getTransform(0).matrix() * joint->getTransform(1).matrix() * jointToChild * offset; // Upd

        break;
      case 3: //std::cout << "HAMY: 3 nDOF" << std::endl;

        dR = joint->getTransformDerivative(0); // Doesn't need .matrix() because it returns a Matrix4d instead of Isometry3d
        R1 = joint->getTransform(1).matrix();
        R2 = joint->getTransform(2).matrix();
        jointToChild = joint->getTransformFromChildBodyNode().inverse().matrix();
        jCol = worldToParent * parentToJoint * dR * R1 * R2 * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(0);
        mJ.col(colIndex) = jCol.head(3); // Take the first 3 elelemtns of J

        R1 = joint->getTransform(0).matrix();
        dR = joint->getTransformDerivative(1);
        R2 = joint->getTransform(2).matrix();
        jCol = worldToParent * parentToJoint * R1 * dR * R2 * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(1);
        mJ.col(colIndex) = jCol.head(3);

        R1 = joint->getTransform(0).matrix();
        R2 = joint->getTransform(1).matrix();
        dR = joint->getTransformDerivative(2);
        jCol = worldToParent * parentToJoint * R1 * R2 * dR * jointToChild * offset;
        colIndex = joint->getIndexInSkeleton(2);
        mJ.col(colIndex) = jCol.head(3);

        offset = parentToJoint * joint->getTransform(0).matrix() * joint->getTransform(1).matrix() * joint->getTransform(2).matrix() * jointToChild * offset;

        break;
      default: //std::cout << "HAMY: Unexpected nDOF = " << nDofs << std::endl;
        break;
    }

    if(node != mSkel->getRootBodyNode()) {
      //std::cout << "HAMY DEBUG: Not root, continue loop" << std::endl;
      node = node->getParentBodyNode(); // return NULL if node is the root node
      joint = node->getParentJoint();
    } else {
      break;
    }
  }

  // compute gradients
  VectorXd gradients = 2 * mJ.transpose() * mC;
  return gradients;
}
예제 #10
0
//==============================================================================
void ConstraintTest::SingleContactTest(const std::string& _fileName)
{
  using namespace std;
  using namespace Eigen;
  using namespace dart::math;
  using namespace dart::collision;
  using namespace dart::constraint;
  using namespace dart::dynamics;
  using namespace dart::simulation;
  using namespace dart::utils;

  //----------------------------------------------------------------------------
  // Settings
  //----------------------------------------------------------------------------
  // Number of random state tests for each skeletons
#ifndef NDEBUG  // Debug mode
  int testCount = 1;
#else
  int testCount = 1;
#endif

  World* world = new World;
  EXPECT_TRUE(world != NULL);
  world->setGravity(Vector3d(0.0, -10.00, 0.0));
  world->setTimeStep(0.001);
  world->getConstraintSolver()->setCollisionDetector(
        new DARTCollisionDetector());

  Skeleton* sphereSkel = createSphere(0.05, Vector3d(0.0, 1.0, 0.0));
  BodyNode* sphere = sphereSkel->getBodyNode(0);
  Joint* sphereJoint = sphere->getParentJoint();
  sphereJoint->setVelocity(3, random(-2.0, 2.0));  // x-axis
  sphereJoint->setVelocity(5, random(-2.0, 2.0));  // z-axis
  world->addSkeleton(sphereSkel);
  EXPECT_EQ(sphereSkel->getGravity(), world->getGravity());
  assert(sphere);

  Skeleton* boxSkel = createBox(Vector3d(1.0, 1.0, 1.0),
                                Vector3d(0.0, 1.0, 0.0));
  BodyNode* box = boxSkel->getBodyNode(0);
  Joint* boxJoint = box->getParentJoint();
  boxJoint->setVelocity(3, random(-2.0, 2.0));  // x-axis
  boxJoint->setVelocity(5, random(-2.0, 2.0));  // z-axis
//  world->addSkeleton(boxSkel);
//  EXPECT_EQ(boxSkel->getGravity(), world->getGravity());
//  assert(box);

  Skeleton* groundSkel = createGround(Vector3d(10000.0, 0.1, 10000.0),
                                      Vector3d(0.0, -0.05, 0.0));
  groundSkel->setMobile(false);
  BodyNode* ground = groundSkel->getBodyNode(0);
  world->addSkeleton(groundSkel);
  EXPECT_EQ(groundSkel->getGravity(), world->getGravity());
  assert(ground);

  EXPECT_EQ(world->getNumSkeletons(), 2);

  ConstraintSolver* cs = world->getConstraintSolver();
  CollisionDetector* cd = cs->getCollisionDetector();

  // Lower and upper bound of configuration for system
  double lb = -1.5 * DART_PI;
  double ub =  1.5 * DART_PI;

  int maxSteps = 500;
  for (int i = 0; i < maxSteps; ++i)
  {
//    Vector3d pos1 = sphere->getWorldTransform().translation();
//    Vector3d vel1 = sphere->getWorldLinearVelocity(pos1);

//    std::cout << "pos1:" << pos1.transpose() << std::endl;
//    std::cout << "vel1:" << vel1.transpose() << std::endl;

    cd->detectCollision(true, true);
    if (cd->getNumContacts() == 0)
    {
      world->step();
      continue;
    }

    for (int j = 0; j < cd->getNumContacts(); ++j)
    {
      Contact contact = cd->getContact(j);
      Vector3d pos1 = sphere->getTransform().inverse() * contact.point;
      Vector3d vel1 = sphere->getWorldLinearVelocity(pos1);

//      std::cout << "pos1:" << pos1.transpose() << std::endl;
//      std::cout << "vel1:" << vel1.transpose() << std::endl;
    }

    world->step();

    for (int j = 0; j < cd->getNumContacts(); ++j)
    {
      Contact contact = cd->getContact(j);
      Vector3d pos1 = sphere->getTransform().inverse() * contact.point;
      Vector3d vel1 = sphere->getWorldLinearVelocity(pos1);

//      std::cout << "pos1:" << pos1.transpose() << std::endl;

//      std::cout << "pos1[1]: " << pos1[1] << std::endl;

//      std::cout << "pos1:" << pos1.transpose() << std::endl;
      std::cout << "vel1:" << vel1.transpose() << ", pos1[1]: " << pos1[1] << std::endl;

//      EXPECT_NEAR(pos1[0], 0.0, 1e-9);
//      EXPECT_NEAR(pos1[1], -0.05, 1e-2);
//      EXPECT_NEAR(pos1[2], 0.0, 1e-9);

//      EXPECT_NEAR(vel1[0], 0.0, 1e-9);
//      EXPECT_NEAR(vel1[1], 0.0, 1e-9);
//      EXPECT_NEAR(vel1[2], 0.0, 1e-9);

//      if (!equals(vel1, Vector3d(0.0, 0.0, 0.0)))
//        std::cout << "vel1:" << vel1.transpose() << std::endl;

//      EXPECT_EQ(vel1, Vector3d::Zero());
    }

//    std::cout << std::endl;

    break;
  }

  delete world;
}