/// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const CodeGenRegister *Reg = T.getRegBank().getReg(R); for (const auto &RC : T.getRegBank().getRegClasses()) { if (!RC.contains(Reg)) continue; if (!FoundRC) { FoundRC = true; const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); if (VVT.isSimple()) VT = VVT.getSimple().SimpleTy; continue; } #ifndef NDEBUG // If this occurs in multiple register classes, they all have to agree. const ValueTypeByHwMode &T = RC.getValueTypeNum(0); assert((!T.isSimple() || T.getSimple().SimpleTy == VT) && "ValueType mismatch between register classes for this register"); #endif } return VT; }
/// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const CodeGenRegister *Reg = T.getRegBank().getReg(R); for (const auto &RC : T.getRegBank().getRegClasses()) { if (!RC.contains(Reg)) continue; if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); continue; } // If this occurs in multiple register classes, they all have to agree. assert(VT == RC.getValueTypeNum(0)); } return VT; }
/// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const CodeGenRegister *Reg = T.getRegBank().getReg(R); ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses(); for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RCs[rc]; if (!RC.contains(Reg)) continue; if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); continue; } // If this occurs in multiple register classes, they all have to agree. assert(VT == RC.getValueTypeNum(0)); } return VT; }
static std::string PhyRegForNode(TreePatternNode *Op, const CodeGenTarget &Target) { std::string PhysReg; if (!Op->isLeaf()) return PhysReg; Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); if (!OpLeafRec->isSubClassOf("Register")) return PhysReg; PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) ->getValue(); PhysReg += "::"; PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); return PhysReg; }
// // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { EmitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters(); // The lists of sub-registers, super-registers, and overlaps all go in the // same array. That allows us to share suffixes. typedef std::vector<const CodeGenRegister*> RegVec; SmallVector<RegVec, 4> SubRegLists(Regs.size()); SmallVector<RegVec, 4> OverlapLists(Regs.size()); SequenceToOffsetTable<RegVec, CodeGenRegister::Less> RegSeqs; // Precompute register lists for the SequenceToOffsetTable. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; // Compute the ordered sub-register list. SetVector<const CodeGenRegister*> SR; Reg->addSubRegsPreOrder(SR, RegBank); RegVec &SubRegList = SubRegLists[i]; SubRegList.assign(SR.begin(), SR.end()); RegSeqs.add(SubRegList); // Super-registers are already computed. const RegVec &SuperRegList = Reg->getSuperRegs(); RegSeqs.add(SuperRegList); // The list of overlaps doesn't need to have any particular order, except // Reg itself must be the first element. Pick an ordering that has one of // the other lists as a suffix. RegVec &OverlapList = OverlapLists[i]; const RegVec &Suffix = SubRegList.size() > SuperRegList.size() ? SubRegList : SuperRegList; CodeGenRegister::Set Omit(Suffix.begin(), Suffix.end()); // First element is Reg itself. OverlapList.push_back(Reg); Omit.insert(Reg); // Any elements not in Suffix. CodeGenRegister::Set OSet; Reg->computeOverlaps(OSet, RegBank); std::set_difference(OSet.begin(), OSet.end(), Omit.begin(), Omit.end(), std::back_inserter(OverlapList), CodeGenRegister::Less()); // Finally, Suffix itself. OverlapList.insert(OverlapList.end(), Suffix.begin(), Suffix.end()); RegSeqs.add(OverlapList); } // Compute the final layout of the sequence table. RegSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); // Emit the shared table of register lists. OS << "extern const uint16_t " << TargetName << "RegLists[] = {\n"; RegSeqs.emit(OS, printRegister); OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { \"NOREG\", 0, 0, 0 },\n"; // Emit the register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; OS << " { \"" << Reg->getName() << "\", " << RegSeqs.get(OverlapLists[i]) << ", " << RegSeqs.get(SubRegLists[i]) << ", " << RegSeqs.get(Reg->getSuperRegs()) << " },\n"; } OS << "};\n\n"; // End of register descriptors... ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const uint16_t " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << '\"' << RC.getName() << "\", " << RC.getName() << ", " << RC.getName() << "Bits, " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; // Emit the data table for getSubReg(). ArrayRef<CodeGenSubRegIndex*> SubRegIndices = RegBank.getSubRegIndices(); if (SubRegIndices.size()) { OS << "const uint16_t " << TargetName << "SubRegTable[][" << SubRegIndices.size() << "] = {\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs(); OS << " /* " << Regs[i]->TheDef->getName() << " */\n"; if (SRM.empty()) { OS << " {0},\n"; continue; } OS << " {"; for (unsigned j = 0, je = SubRegIndices.size(); j != je; ++j) { // FIXME: We really should keep this to 80 columns... CodeGenRegister::SubRegMap::const_iterator SubReg = SRM.find(SubRegIndices[j]); if (SubReg != SRM.end()) OS << getQualifiedName(SubReg->second->TheDef); else OS << "0"; if (j != je - 1) OS << ", "; } OS << "}" << (i != e ? "," : "") << "\n"; } OS << "};\n\n"; OS << "const uint16_t *get" << TargetName << "SubRegTable() {\n return (const uint16_t *)" << TargetName << "SubRegTable;\n}\n\n"; } EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dynamic_cast<BitInit*>(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n"; OS << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegLists, "; if (SubRegIndices.size() != 0) OS << "(uint16_t*)" << TargetName << "SubRegTable, " << SubRegIndices.size() << ",\n"; else OS << "NULL, 0,\n"; OS << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; }
// // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters(); // The lists of sub-registers, super-registers, and overlaps all go in the // same array. That allows us to share suffixes. typedef std::vector<const CodeGenRegister*> RegVec; // Differentially encoded lists. SequenceToOffsetTable<DiffVec> DiffSeqs; SmallVector<DiffVec, 4> SubRegLists(Regs.size()); SmallVector<DiffVec, 4> SuperRegLists(Regs.size()); SmallVector<DiffVec, 4> OverlapLists(Regs.size()); SmallVector<DiffVec, 4> RegUnitLists(Regs.size()); SmallVector<unsigned, 4> RegUnitInitScale(Regs.size()); // Keep track of sub-register names as well. These are not differentially // encoded. typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec; SequenceToOffsetTable<SubRegIdxVec> SubRegIdxSeqs; SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size()); SequenceToOffsetTable<std::string> RegStrings; // Precompute register lists for the SequenceToOffsetTable. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; RegStrings.add(Reg->getName()); // Compute the ordered sub-register list. SetVector<const CodeGenRegister*> SR; Reg->addSubRegsPreOrder(SR, RegBank); diffEncode(SubRegLists[i], Reg->EnumValue, SR.begin(), SR.end()); DiffSeqs.add(SubRegLists[i]); // Compute the corresponding sub-register indexes. SubRegIdxVec &SRIs = SubRegIdxLists[i]; for (unsigned j = 0, je = SR.size(); j != je; ++j) SRIs.push_back(Reg->getSubRegIndex(SR[j])); SubRegIdxSeqs.add(SRIs); // Super-registers are already computed. const RegVec &SuperRegList = Reg->getSuperRegs(); diffEncode(SuperRegLists[i], Reg->EnumValue, SuperRegList.begin(), SuperRegList.end()); DiffSeqs.add(SuperRegLists[i]); // The list of overlaps doesn't need to have any particular order, and Reg // itself must be omitted. DiffVec &OverlapList = OverlapLists[i]; CodeGenRegister::Set OSet; Reg->computeOverlaps(OSet, RegBank); OSet.erase(Reg); diffEncode(OverlapList, Reg->EnumValue, OSet.begin(), OSet.end()); DiffSeqs.add(OverlapList); // Differentially encode the register unit list, seeded by register number. // First compute a scale factor that allows more diff-lists to be reused: // // D0 -> (S0, S1) // D1 -> (S2, S3) // // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial // value for the differential decoder is the register number multiplied by // the scale. // // Check the neighboring registers for arithmetic progressions. unsigned ScaleA = ~0u, ScaleB = ~0u; ArrayRef<unsigned> RUs = Reg->getNativeRegUnits(); if (i > 0 && Regs[i-1]->getNativeRegUnits().size() == RUs.size()) ScaleB = RUs.front() - Regs[i-1]->getNativeRegUnits().front(); if (i+1 != Regs.size() && Regs[i+1]->getNativeRegUnits().size() == RUs.size()) ScaleA = Regs[i+1]->getNativeRegUnits().front() - RUs.front(); unsigned Scale = std::min(ScaleB, ScaleA); // Default the scale to 0 if it can't be encoded in 4 bits. if (Scale >= 16) Scale = 0; RegUnitInitScale[i] = Scale; DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg->EnumValue, RUs)); } // Compute the final layout of the sequence table. DiffSeqs.layout(); SubRegIdxSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); // Emit the shared table of differential lists. OS << "extern const uint16_t " << TargetName << "RegDiffLists[] = {\n"; DiffSeqs.emit(OS, printDiff16); OS << "};\n\n"; // Emit the table of sub-register indexes. OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; SubRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit the string table. RegStrings.layout(); OS << "extern const char " << TargetName << "RegStrings[] = {\n"; RegStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; // Emit the register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; OS << " { " << RegStrings.get(Reg->getName()) << ", " << DiffSeqs.get(OverlapLists[i]) << ", " << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " << (DiffSeqs.get(RegUnitLists[i])*16 + RegUnitInitScale[i]) << " },\n"; } OS << "};\n\n"; // End of register descriptors... // Emit the table of register unit roots. Each regunit has one or two root // registers. OS << "extern const uint16_t " << TargetName << "RegUnitRoots[][2] = {\n"; for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots(); assert(!Roots.empty() && "All regunits must have a root register."); assert(Roots.size() <= 2 && "More than two roots not supported yet."); OS << " { " << getQualifiedName(Roots.front()->TheDef); for (unsigned r = 1; r != Roots.size(); ++r) OS << ", " << getQualifiedName(Roots[r]->TheDef); OS << " },\n"; } OS << "};\n\n"; ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const uint16_t " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << '\"' << RC.getName() << "\", " << RC.getName() << ", " << RC.getName() << "Bits, " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; ArrayRef<CodeGenSubRegIndex*> SubRegIndices = RegBank.getSubRegIndices(); EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dynamic_cast<BitInit*>(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n" << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " << TargetName << "RegStrings, " << TargetName << "SubRegIdxLists, " << SubRegIndices.size() << ",\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; }
// // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { EmitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps; RegBank.computeOverlaps(Overlaps); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); OS << "\nnamespace {\n"; const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters(); // Emit an overlap list for all registers. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; const CodeGenRegister::Set &O = Overlaps[Reg]; // Move Reg to the front so TRI::getAliasSet can share the list. OS << " const unsigned " << Reg->getName() << "_Overlaps[] = { " << getQualifiedName(Reg->TheDef) << ", "; for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end(); I != E; ++I) if (*I != Reg) OS << getQualifiedName((*I)->TheDef) << ", "; OS << "0 };\n"; } // Emit the empty sub-registers list OS << " const unsigned Empty_SubRegsSet[] = { 0 };\n"; // Loop over all of the registers which have sub-registers, emitting the // sub-registers list to memory. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; if (Reg.getSubRegs().empty()) continue; // getSubRegs() orders by SubRegIndex. We want a topological order. SetVector<CodeGenRegister*> SR; Reg.addSubRegsPreOrder(SR); OS << " const unsigned " << Reg.getName() << "_SubRegsSet[] = { "; for (unsigned j = 0, je = SR.size(); j != je; ++j) OS << getQualifiedName(SR[j]->TheDef) << ", "; OS << "0 };\n"; } // Emit the empty super-registers list OS << " const unsigned Empty_SuperRegsSet[] = { 0 };\n"; // Loop over all of the registers which have super-registers, emitting the // super-registers list to memory. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs(); if (SR.empty()) continue; OS << " const unsigned " << Reg.getName() << "_SuperRegsSet[] = { "; for (unsigned j = 0, je = SR.size(); j != je; ++j) OS << getQualifiedName(SR[j]->TheDef) << ", "; OS << "0 };\n"; } OS << "}\n"; // End of anonymous namespace... OS << "\nextern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { \"NOREG\",\t0,\t0,\t0 },\n"; // Now that register alias and sub-registers sets have been emitted, emit the // register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; OS << " { \""; OS << Reg.getName() << "\",\t" << Reg.getName() << "_Overlaps,\t"; if (!Reg.getSubRegs().empty()) OS << Reg.getName() << "_SubRegsSet,\t"; else OS << "Empty_SubRegsSet,\t"; if (!Reg.getSuperRegs().empty()) OS << Reg.getName() << "_SuperRegsSet"; else OS << "Empty_SuperRegsSet"; OS << " },\n"; } OS << "};\n\n"; // End of register descriptors... ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " static const unsigned " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " static const unsigned char " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; OS << " MCRegisterClass(" << RC.getQualifiedName() + "RegClassID" << ", " << '\"' << RC.getName() << "\", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << ", " << RC.getName() << ", " << RC.getName() << " + " << RC.getOrder().size() << ", " << RC.getName() << "Bits, sizeof(" << RC.getName() << "Bits)" << "),\n"; } OS << "};\n\n"; // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n"; OS << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ");\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; }
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias /// constructor. It checks if an argument in an InstAlias pattern matches /// the corresponding operand of the instruction. It returns true on a /// successful match, with ResOp set to the result operand to be used. bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo, Record *InstOpRec, bool hasSubOps, ArrayRef<SMLoc> Loc, CodeGenTarget &T, ResultOperand &ResOp) { Init *Arg = Result->getArg(AliasOpNo); DefInit *ADI = dyn_cast<DefInit>(Arg); Record *ResultRecord = ADI ? ADI->getDef() : nullptr; if (ADI && ADI->getDef() == InstOpRec) { // If the operand is a record, it must have a name, and the record type // must match up with the instruction's argument type. if (Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must have a name!"); ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // For register operands, the source register class can be a subclass // of the instruction register class, not just an exact match. if (InstOpRec->isSubClassOf("RegisterOperand")) InstOpRec = InstOpRec->getValueAsDef("RegClass"); if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand")) ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit(); if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) { if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .hasSubClass(&T.getRegisterClass(ADI->getDef()))) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // Handle explicit registers. if (ADI && ADI->getDef()->isSubClassOf("Register")) { if (InstOpRec->isSubClassOf("OptionalDefOperand")) { DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo"); // The operand info should only have a single (register) entry. We // want the register class of it. InstOpRec = cast<DefInit>(DI->getArg(0))->getDef(); } if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .contains(T.getRegBank().getReg(ADI->getDef()))) PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() + " is not a member of the " + InstOpRec->getName() + " register class!"); if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result fixed register argument must " "not have a name!"); ResOp = ResultOperand(ResultRecord); return true; } // Handle "zero_reg" for optional def operands. if (ADI && ADI->getDef()->getName() == "zero_reg") { // Check if this is an optional def. // Tied operands where the source is a sub-operand of a complex operand // need to represent both operands in the alias destination instruction. // Allow zero_reg for the tied portion. This can and should go away once // the MC representation of things doesn't use tied operands at all. //if (!InstOpRec->isSubClassOf("OptionalDefOperand")) // throw TGError(Loc, "reg0 used for result that is not an " // "OptionalDefOperand!"); ResOp = ResultOperand(static_cast<Record*>(nullptr)); return true; } // Literal integers. if (IntInit *II = dyn_cast<IntInit>(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; // Integer arguments can't have names. if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must not have a name!"); ResOp = ResultOperand(II->getValue()); return true; } // If both are Operands with the same MVT, allow the conversion. It's // up to the user to make sure the values are appropriate, just like // for isel Pat's. if (InstOpRec->isSubClassOf("Operand") && ADI->getDef()->isSubClassOf("Operand")) { // FIXME: What other attributes should we check here? Identical // MIOperandInfo perhaps? if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type")) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef()); return true; } return false; }
// // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { EmitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps; RegBank.computeOverlaps(Overlaps); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters(); OS << "extern const uint16_t " << TargetName << "RegOverlaps[] = {\n"; // Emit an overlap list for all registers. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; const CodeGenRegister::Set &O = Overlaps[Reg]; // Move Reg to the front so TRI::getAliasSet can share the list. OS << " /* " << Reg->getName() << "_Overlaps */ " << getQualifiedName(Reg->TheDef) << ", "; for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end(); I != E; ++I) if (*I != Reg) OS << getQualifiedName((*I)->TheDef) << ", "; OS << "0,\n"; } OS << "};\n\n"; OS << "extern const uint16_t " << TargetName << "SubRegsSet[] = {\n"; // Emit the empty sub-registers list OS << " /* Empty_SubRegsSet */ 0,\n"; // Loop over all of the registers which have sub-registers, emitting the // sub-registers list to memory. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; if (Reg.getSubRegs().empty()) continue; // getSubRegs() orders by SubRegIndex. We want a topological order. SetVector<CodeGenRegister*> SR; Reg.addSubRegsPreOrder(SR, RegBank); OS << " /* " << Reg.getName() << "_SubRegsSet */ "; for (unsigned j = 0, je = SR.size(); j != je; ++j) OS << getQualifiedName(SR[j]->TheDef) << ", "; OS << "0,\n"; } OS << "};\n\n"; OS << "extern const uint16_t " << TargetName << "SuperRegsSet[] = {\n"; // Emit the empty super-registers list OS << " /* Empty_SuperRegsSet */ 0,\n"; // Loop over all of the registers which have super-registers, emitting the // super-registers list to memory. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs(); if (SR.empty()) continue; OS << " /* " << Reg.getName() << "_SuperRegsSet */ "; for (unsigned j = 0, je = SR.size(); j != je; ++j) OS << getQualifiedName(SR[j]->TheDef) << ", "; OS << "0,\n"; } OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { \"NOREG\", 0, 0, 0 },\n"; // Now that register alias and sub-registers sets have been emitted, emit the // register descriptors now. unsigned OverlapsIndex = 0; unsigned SubRegIndex = 1; // skip 1 for empty set unsigned SuperRegIndex = 1; // skip 1 for empty set for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; OS << " { \""; OS << Reg->getName() << "\", /* " << Reg->getName() << "_Overlaps */ " << OverlapsIndex << ", "; OverlapsIndex += Overlaps[Reg].size() + 1; if (!Reg->getSubRegs().empty()) { OS << "/* " << Reg->getName() << "_SubRegsSet */ " << SubRegIndex << ", "; // FIXME not very nice to recalculate this SetVector<CodeGenRegister*> SR; Reg->addSubRegsPreOrder(SR, RegBank); SubRegIndex += SR.size() + 1; } else OS << "/* Empty_SubRegsSet */ 0, "; if (!Reg->getSuperRegs().empty()) { OS << "/* " << Reg->getName() << "_SuperRegsSet */ " << SuperRegIndex; SuperRegIndex += Reg->getSuperRegs().size() + 1; } else OS << "/* Empty_SuperRegsSet */ 0"; OS << " },\n"; } OS << "};\n\n"; // End of register descriptors... ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const uint16_t " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << '\"' << RC.getName() << "\", " << RC.getName() << ", " << RC.getName() << "Bits, " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; // Emit the data table for getSubReg(). ArrayRef<CodeGenSubRegIndex*> SubRegIndices = RegBank.getSubRegIndices(); if (SubRegIndices.size()) { OS << "const uint16_t " << TargetName << "SubRegTable[][" << SubRegIndices.size() << "] = {\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs(); OS << " /* " << Regs[i]->TheDef->getName() << " */\n"; if (SRM.empty()) { OS << " {0},\n"; continue; } OS << " {"; for (unsigned j = 0, je = SubRegIndices.size(); j != je; ++j) { // FIXME: We really should keep this to 80 columns... CodeGenRegister::SubRegMap::const_iterator SubReg = SRM.find(SubRegIndices[j]); if (SubReg != SRM.end()) OS << getQualifiedName(SubReg->second->TheDef); else OS << "0"; if (j != je - 1) OS << ", "; } OS << "}" << (i != e ? "," : "") << "\n"; } OS << "};\n\n"; OS << "const uint16_t *get" << TargetName << "SubRegTable() {\n return (const uint16_t *)" << TargetName << "SubRegTable;\n}\n\n"; } // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n"; OS << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegOverlaps, " << TargetName << "SubRegsSet, " << TargetName << "SuperRegsSet, "; if (SubRegIndices.size() != 0) OS << "(uint16_t*)" << TargetName << "SubRegTable, " << SubRegIndices.size() << ");\n\n"; else OS << "NULL, 0);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; }
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias /// constructor. It checks if an argument in an InstAlias pattern matches /// the corresponding operand of the instruction. It returns true on a /// successful match, with ResOp set to the result operand to be used. bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo, Record *InstOpRec, bool hasSubOps, SMLoc Loc, CodeGenTarget &T, ResultOperand &ResOp) { Init *Arg = Result->getArg(AliasOpNo); DefInit *ADI = dynamic_cast<DefInit*>(Arg); if (ADI && ADI->getDef() == InstOpRec) { // If the operand is a record, it must have a name, and the record type // must match up with the instruction's argument type. if (Result->getArgName(AliasOpNo).empty()) throw TGError(Loc, "result argument #" + utostr(AliasOpNo) + " must have a name!"); ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef()); return true; } // Handle explicit registers. if (ADI && ADI->getDef()->isSubClassOf("Register")) { if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .contains(T.getRegBank().getReg(ADI->getDef()))) throw TGError(Loc, "fixed register " +ADI->getDef()->getName() + " is not a member of the " + InstOpRec->getName() + " register class!"); if (!Result->getArgName(AliasOpNo).empty()) throw TGError(Loc, "result fixed register argument must " "not have a name!"); ResOp = ResultOperand(ADI->getDef()); return true; } // Handle "zero_reg" for optional def operands. if (ADI && ADI->getDef()->getName() == "zero_reg") { // Check if this is an optional def. if (!InstOpRec->isSubClassOf("OptionalDefOperand")) throw TGError(Loc, "reg0 used for result that is not an " "OptionalDefOperand!"); ResOp = ResultOperand(static_cast<Record*>(0)); return true; } if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; // Integer arguments can't have names. if (!Result->getArgName(AliasOpNo).empty()) throw TGError(Loc, "result argument #" + utostr(AliasOpNo) + " must not have a name!"); ResOp = ResultOperand(II->getValue()); return true; } return false; }