void createMesh()
{
	Vector3r points[width*height*depth];
	for (unsigned int i = 0; i < width; i++)
	{
		for (unsigned int j = 0; j < height; j++)
		{
			for (unsigned int k = 0; k < depth; k++)
			{
				points[i*height*depth + j*depth + k] = 0.3*Vector3r((Real)i, (Real)j, (Real)k);
			}
		}
	}

	vector<unsigned int> indices;
	for (unsigned int i = 0; i < width - 1; i++)
	{
		for (unsigned int j = 0; j < height - 1; j++)
		{
			for (unsigned int k = 0; k < depth - 1; k++)
			{
				// For each block, the 8 corners are numerated as:
				//     4*-----*7
				//     /|    /|
				//    / |   / |
				//  5*-----*6 |
				//   | 0*--|--*3
				//   | /   | /
				//   |/    |/
				//  1*-----*2
				unsigned int p0 = i*height*depth + j*depth + k;
				unsigned int p1 = p0 + 1;
				unsigned int p3 = (i + 1)*height*depth + j*depth + k;
				unsigned int p2 = p3 + 1;
				unsigned int p7 = (i + 1)*height*depth + (j + 1)*depth + k;
				unsigned int p6 = p7 + 1;
				unsigned int p4 = i*height*depth + (j + 1)*depth + k;
				unsigned int p5 = p4 + 1;

				// Ensure that neighboring tetras are sharing faces
				if ((i + j + k) % 2 == 1)
				{
					indices.push_back(p2); indices.push_back(p1); indices.push_back(p6); indices.push_back(p3);
					indices.push_back(p6); indices.push_back(p3); indices.push_back(p4); indices.push_back(p7);
					indices.push_back(p4); indices.push_back(p1); indices.push_back(p6); indices.push_back(p5);
					indices.push_back(p3); indices.push_back(p1); indices.push_back(p4); indices.push_back(p0);
					indices.push_back(p6); indices.push_back(p1); indices.push_back(p4); indices.push_back(p3);
				}
				else
				{
					indices.push_back(p0); indices.push_back(p2); indices.push_back(p5); indices.push_back(p1);
					indices.push_back(p7); indices.push_back(p2); indices.push_back(p0); indices.push_back(p3);
					indices.push_back(p5); indices.push_back(p2); indices.push_back(p7); indices.push_back(p6);
					indices.push_back(p7); indices.push_back(p0); indices.push_back(p5); indices.push_back(p4);
					indices.push_back(p0); indices.push_back(p2); indices.push_back(p7); indices.push_back(p5);
				}
			}
		}
	}
	SimulationModel *model = Simulation::getCurrent()->getModel();
	model->addTetModel(width*height*depth, (unsigned int)indices.size() / 4u, points, indices.data());

	ParticleData &pd = model->getParticles();
	for (unsigned int i = 0; i < pd.getNumberOfParticles(); i++)
	{
		pd.setMass(i, 1.0);
	}
	for (unsigned int i = 0; i < 1; i++)
	{
		for (unsigned int j = 0; j < height; j++)
		{
			for (unsigned int k = 0; k < depth; k++)
				pd.setMass(i*height*depth + j*depth + k, 0.0);
		}
	}

	// init constraints
	for (unsigned int cm = 0; cm < model->getTetModels().size(); cm++)
	{
		const unsigned int nTets = model->getTetModels()[cm]->getParticleMesh().numTets();
		const unsigned int *tets = model->getTetModels()[cm]->getParticleMesh().getTets().data();
		const IndexedTetMesh::VertexTets *vTets = model->getTetModels()[cm]->getParticleMesh().getVertexTets().data();
		if (simulationMethod == 1)
		{
			const unsigned int offset = model->getTetModels()[cm]->getIndexOffset();
			const unsigned int nEdges = model->getTetModels()[cm]->getParticleMesh().numEdges();
			const IndexedTetMesh::Edge *edges = model->getTetModels()[cm]->getParticleMesh().getEdges().data();
			for (unsigned int i = 0; i < nEdges; i++)
			{
				const unsigned int v1 = edges[i].m_vert[0] + offset;
				const unsigned int v2 = edges[i].m_vert[1] + offset;

				model->addDistanceConstraint(v1, v2);
			}
			
			for (unsigned int i = 0; i < nTets; i++)
			{
				const unsigned int v1 = tets[4 * i];
				const unsigned int v2 = tets[4 * i + 1];
				const unsigned int v3 = tets[4 * i + 2];
				const unsigned int v4 = tets[4 * i + 3];

				model->addVolumeConstraint(v1, v2, v3, v4);
			}
		}
		else if (simulationMethod == 2)
		{
			TetModel::ParticleMesh &mesh = model->getTetModels()[cm]->getParticleMesh();
			for (unsigned int i = 0; i < nTets; i++)
			{
				const unsigned int v1 = tets[4 * i];
				const unsigned int v2 = tets[4 * i + 1];
				const unsigned int v3 = tets[4 * i + 2];
				const unsigned int v4 = tets[4 * i + 3];

				model->addFEMTetConstraint(v1, v2, v3, v4);
			}
		}
		else if (simulationMethod == 3)
		{
			TetModel::ParticleMesh &mesh = model->getTetModels()[cm]->getParticleMesh();
			for (unsigned int i = 0; i < nTets; i++)
			{
				const unsigned int v1 = tets[4 * i];
				const unsigned int v2 = tets[4 * i + 1];
				const unsigned int v3 = tets[4 * i + 2];
				const unsigned int v4 = tets[4 * i + 3];

				model->addStrainTetConstraint(v1, v2, v3, v4);
			}
		}
		else if (simulationMethod == 4)
		{
			TetModel::ParticleMesh &mesh = model->getTetModels()[cm]->getParticleMesh();
			for (unsigned int i = 0; i < nTets; i++)
			{
				const unsigned int v[4] = { tets[4 * i], tets[4 * i + 1], tets[4 * i + 2], tets[4 * i + 3] };
				// Important: Divide position correction by the number of clusters 
				// which contain the vertex.
				const unsigned int nc[4] = { vTets[v[0]].m_numTets, vTets[v[1]].m_numTets, vTets[v[2]].m_numTets, vTets[v[3]].m_numTets };
				model->addShapeMatchingConstraint(4, v, nc);
			}
		}
		model->getTetModels()[cm]->updateMeshNormals(pd);
	}

	LOG_INFO << "Number of tets: " << indices.size() / 4;
	LOG_INFO << "Number of vertices: " << width*height*depth;

}