SkCanvas* PictureRenderer::setupCanvas(int width, int height) { SkAutoTUnref<SkCanvas> canvas; switch(fDeviceType) { case kBitmap_DeviceType: { SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, width, height); canvas.reset(SkNEW_ARGS(SkCanvas, (bitmap))); } break; #if SK_SUPPORT_GPU #if SK_ANGLE case kAngle_DeviceType: // fall through #endif #if SK_MESA case kMesa_DeviceType: // fall through #endif case kGPU_DeviceType: case kNVPR_DeviceType: { SkAutoTUnref<GrSurface> target; if (fGrContext) { // create a render target to back the device GrSurfaceDesc desc; desc.fConfig = kSkia8888_GrPixelConfig; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = width; desc.fHeight = height; desc.fSampleCnt = fSampleCount; target.reset(fGrContext->textureProvider()->createTexture(desc, false, NULL, 0)); } uint32_t flags = fUseDFText ? SkSurfaceProps::kUseDistanceFieldFonts_Flag : 0; SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); SkAutoTUnref<SkGpuDevice> device( SkGpuDevice::Create(target->asRenderTarget(), &props, SkGpuDevice::kUninit_InitContents)); if (!device) { return NULL; } canvas.reset(SkNEW_ARGS(SkCanvas, (device))); break; } #endif default: SkASSERT(0); return NULL; } if (fHasDrawFilters) { if (fDrawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) { canvas->setAllowSoftClip(false); } canvas.reset(SkNEW_ARGS(FlagsFilterCanvas, (canvas.get(), fDrawFilters))); } this->scaleToScaleFactor(canvas); // Pictures often lie about their extent (i.e., claim to be 100x100 but // only ever draw to 90x100). Clear here so the undrawn portion will have // a consistent color canvas->clear(SK_ColorTRANSPARENT); return canvas.detach(); }
bool GrTextureToYUVPlanes(GrTexture* texture, const SkISize sizes[3], void* const planes[3], const size_t rowBytes[3], SkYUVColorSpace colorSpace) { if (GrContext* context = texture->getContext()) { // Depending on the relative sizes of the y, u, and v planes we may do 1 to 3 draws/ // readbacks. SkAutoTUnref<GrTexture> yuvTex; SkAutoTUnref<GrTexture> yTex; SkAutoTUnref<GrTexture> uvTex; SkAutoTUnref<GrTexture> uTex; SkAutoTUnref<GrTexture> vTex; GrPixelConfig singleChannelPixelConfig; if (context->caps()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { singleChannelPixelConfig = kAlpha_8_GrPixelConfig; } else { singleChannelPixelConfig = kRGBA_8888_GrPixelConfig; } // We issue draw(s) to convert from RGBA to Y, U, and V. All three planes may have different // sizes however we optimize for two other cases - all planes are the same (1 draw to YUV), // and U and V are the same but Y differs (2 draws, one for Y, one for UV). if (sizes[0] == sizes[1] && sizes[1] == sizes[2]) { GrSurfaceDesc yuvDesc; yuvDesc.fConfig = kRGBA_8888_GrPixelConfig; yuvDesc.fFlags = kRenderTarget_GrSurfaceFlag; yuvDesc.fWidth = sizes[0].fWidth; yuvDesc.fHeight = sizes[0].fHeight; yuvTex.reset(context->textureProvider()->createApproxTexture(yuvDesc)); if (!yuvTex) { return false; } } else { GrSurfaceDesc yDesc; yDesc.fConfig = singleChannelPixelConfig; yDesc.fFlags = kRenderTarget_GrSurfaceFlag; yDesc.fWidth = sizes[0].fWidth; yDesc.fHeight = sizes[0].fHeight; yTex.reset(context->textureProvider()->createApproxTexture(yDesc)); if (!yTex) { return false; } if (sizes[1] == sizes[2]) { GrSurfaceDesc uvDesc; // TODO: Add support for GL_RG when available. uvDesc.fConfig = kRGBA_8888_GrPixelConfig; uvDesc.fFlags = kRenderTarget_GrSurfaceFlag; uvDesc.fWidth = sizes[1].fWidth; uvDesc.fHeight = sizes[1].fHeight; uvTex.reset(context->textureProvider()->createApproxTexture(uvDesc)); if (!uvTex) { return false; } } else { GrSurfaceDesc uvDesc; uvDesc.fConfig = singleChannelPixelConfig; uvDesc.fFlags = kRenderTarget_GrSurfaceFlag; uvDesc.fWidth = sizes[1].fWidth; uvDesc.fHeight = sizes[1].fHeight; uTex.reset(context->textureProvider()->createApproxTexture(uvDesc)); uvDesc.fWidth = sizes[2].fWidth; uvDesc.fHeight = sizes[2].fHeight; vTex.reset(context->textureProvider()->createApproxTexture(uvDesc)); if (!uTex || !vTex) { return false; } } } // Do all the draws before any readback. if (yuvTex) { SkAutoTUnref<GrDrawContext> dc(context->drawContext(yuvTex->asRenderTarget())); if (!dc) { return false; } if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace, GrYUVEffect::CreateRGBToYUV)) { return false; } } else { SkASSERT(yTex); SkAutoTUnref<GrDrawContext> dc(context->drawContext(yTex->asRenderTarget())); if (!dc) { return false; } if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace, GrYUVEffect::CreateRGBToY)) { return false; } if (uvTex) { dc.reset(context->drawContext(uvTex->asRenderTarget())); if (!dc) { return false; } if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight, colorSpace, GrYUVEffect::CreateRGBToUV)) { return false; } } else { SkASSERT(uTex && vTex); dc.reset(context->drawContext(uTex->asRenderTarget())); if (!dc) { return false; } if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight, colorSpace, GrYUVEffect::CreateRGBToU)) { return false; } dc.reset(context->drawContext(vTex->asRenderTarget())); if (!dc) { return false; } if (!convert_texture(texture, dc, sizes[2].fWidth, sizes[2].fHeight, colorSpace, GrYUVEffect::CreateRGBToV)) { return false; } } } if (yuvTex) { SkASSERT(sizes[0] == sizes[1] && sizes[1] == sizes[2]); SkISize yuvSize = sizes[0]; // We have no kRGB_888 pixel format, so readback rgba and then copy three channels. SkAutoSTMalloc<128 * 128, uint32_t> tempYUV(yuvSize.fWidth * yuvSize.fHeight); if (!yuvTex->readPixels(0, 0, yuvSize.fWidth, yuvSize.fHeight, kRGBA_8888_GrPixelConfig, tempYUV.get(), 0)) { return false; } size_t yRowBytes = rowBytes[0] ? rowBytes[0] : yuvSize.fWidth; size_t uRowBytes = rowBytes[1] ? rowBytes[1] : yuvSize.fWidth; size_t vRowBytes = rowBytes[2] ? rowBytes[2] : yuvSize.fWidth; if (yRowBytes < (size_t)yuvSize.fWidth || uRowBytes < (size_t)yuvSize.fWidth || vRowBytes < (size_t)yuvSize.fWidth) { return false; } for (int j = 0; j < yuvSize.fHeight; ++j) { for (int i = 0; i < yuvSize.fWidth; ++i) { // These writes could surely be made more efficient. uint32_t y = GrColorUnpackR(tempYUV.get()[j * yuvSize.fWidth + i]); uint32_t u = GrColorUnpackG(tempYUV.get()[j * yuvSize.fWidth + i]); uint32_t v = GrColorUnpackB(tempYUV.get()[j * yuvSize.fWidth + i]); uint8_t* yLoc = ((uint8_t*)planes[0]) + j * yRowBytes + i; uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i; uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i; *yLoc = y; *uLoc = u; *vLoc = v; } } return true; } else { SkASSERT(yTex); if (!yTex->readPixels(0, 0, sizes[0].fWidth, sizes[0].fHeight, kAlpha_8_GrPixelConfig, planes[0], rowBytes[0])) { return false; } if (uvTex) { SkASSERT(sizes[1].fWidth == sizes[2].fWidth); SkISize uvSize = sizes[1]; // We have no kRG_88 pixel format, so readback rgba and then copy two channels. SkAutoSTMalloc<128 * 128, uint32_t> tempUV(uvSize.fWidth * uvSize.fHeight); if (!uvTex->readPixels(0, 0, uvSize.fWidth, uvSize.fHeight, kRGBA_8888_GrPixelConfig, tempUV.get(), 0)) { return false; } size_t uRowBytes = rowBytes[1] ? rowBytes[1] : uvSize.fWidth; size_t vRowBytes = rowBytes[2] ? rowBytes[2] : uvSize.fWidth; if (uRowBytes < (size_t)uvSize.fWidth || vRowBytes < (size_t)uvSize.fWidth) { return false; } for (int j = 0; j < uvSize.fHeight; ++j) { for (int i = 0; i < uvSize.fWidth; ++i) { // These writes could surely be made more efficient. uint32_t u = GrColorUnpackR(tempUV.get()[j * uvSize.fWidth + i]); uint32_t v = GrColorUnpackG(tempUV.get()[j * uvSize.fWidth + i]); uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i; uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i; *uLoc = u; *vLoc = v; } } return true; } else { SkASSERT(uTex && vTex); if (!uTex->readPixels(0, 0, sizes[1].fWidth, sizes[1].fHeight, kAlpha_8_GrPixelConfig, planes[1], rowBytes[1])) { return false; } if (!vTex->readPixels(0, 0, sizes[2].fWidth, sizes[2].fHeight, kAlpha_8_GrPixelConfig, planes[2], rowBytes[2])) { return false; } return true; } } } return false; }