예제 #1
0
int tool_main(int argc, char** argv) {
    SetupCrashHandler();
    SkCommandLineFlags::Parse(argc, argv);
#if SK_ENABLE_INST_COUNT
    if (FLAGS_leaks) {
        gPrintInstCount = true;
    }
#endif
    SkAutoGraphics ag;

    // First, parse some flags.
    BenchLogger logger;
    if (FLAGS_logFile.count()) {
        logger.SetLogFile(FLAGS_logFile[0]);
    }

    LoggerResultsWriter logWriter(logger, FLAGS_timeFormat[0]);
    MultiResultsWriter writer;
    writer.add(&logWriter);

    SkAutoTDelete<JSONResultsWriter> jsonWriter;
    if (FLAGS_outResultsFile.count()) {
        jsonWriter.reset(SkNEW(JSONResultsWriter(FLAGS_outResultsFile[0])));
        writer.add(jsonWriter.get());
    }

    // Instantiate after all the writers have been added to writer so that we
    // call close() before their destructors are called on the way out.
    CallEnd<MultiResultsWriter> ender(writer);

    const uint8_t alpha = FLAGS_forceBlend ? 0x80 : 0xFF;
    SkTriState::State dither = SkTriState::kDefault;
    for (size_t i = 0; i < 3; i++) {
        if (strcmp(SkTriState::Name[i], FLAGS_forceDither[0]) == 0) {
            dither = static_cast<SkTriState::State>(i);
        }
    }

    BenchMode benchMode = kNormal_BenchMode;
    for (size_t i = 0; i < SK_ARRAY_COUNT(BenchMode_Name); i++) {
        if (strcmp(FLAGS_mode[0], BenchMode_Name[i]) == 0) {
            benchMode = static_cast<BenchMode>(i);
        }
    }

    SkTDArray<int> configs;
    bool runDefaultConfigs = false;
    // Try user-given configs first.
    for (int i = 0; i < FLAGS_config.count(); i++) {
        for (int j = 0; j < static_cast<int>(SK_ARRAY_COUNT(gConfigs)); ++j) {
            if (0 == strcmp(FLAGS_config[i], gConfigs[j].name)) {
                *configs.append() = j;
            } else if (0 == strcmp(FLAGS_config[i], kDefaultsConfigStr)) {
                runDefaultConfigs = true;
            }
        }
    }
    // If there weren't any, fill in with defaults.
    if (runDefaultConfigs) {
        for (int i = 0; i < static_cast<int>(SK_ARRAY_COUNT(gConfigs)); ++i) {
            if (gConfigs[i].runByDefault) {
                *configs.append() = i;
            }
        }
    }
    // Filter out things we can't run.
    if (kNormal_BenchMode != benchMode) {
        // Non-rendering configs only run in normal mode
        for (int i = 0; i < configs.count(); ++i) {
            const Config& config = gConfigs[configs[i]];
            if (Benchmark::kNonRendering_Backend == config.backend) {
                configs.remove(i, 1);
                --i;
            }
        }
    }

#if SK_SUPPORT_GPU
    for (int i = 0; i < configs.count(); ++i) {
        const Config& config = gConfigs[configs[i]];

        if (Benchmark::kGPU_Backend == config.backend) {
            GrContext* context = gContextFactory.get(config.contextType);
            if (NULL == context) {
                SkDebugf("GrContext could not be created for config %s. Config will be skipped.\n",
                    config.name);
                configs.remove(i);
                --i;
                continue;
            }
            if (config.sampleCount > context->getMaxSampleCount()){
                SkDebugf(
                    "Sample count (%d) for config %s is not supported. Config will be skipped.\n",
                    config.sampleCount, config.name);
                configs.remove(i);
                --i;
                continue;
            }
        }
    }
#endif

    // All flags should be parsed now.  Report our settings.
    if (FLAGS_runOnce) {
        logger.logError("bench was run with --runOnce, so we're going to hide the times."
                        " It's for your own good!\n");
    }
    writer.option("mode", FLAGS_mode[0]);
    writer.option("alpha", SkStringPrintf("0x%02X", alpha).c_str());
    writer.option("antialias", SkStringPrintf("%d", FLAGS_forceAA).c_str());
    writer.option("filter", SkStringPrintf("%d", FLAGS_forceFilter).c_str());
    writer.option("dither",  SkTriState::Name[dither]);

    writer.option("rotate", SkStringPrintf("%d", FLAGS_rotate).c_str());
    writer.option("scale", SkStringPrintf("%d", FLAGS_scale).c_str());
    writer.option("clip", SkStringPrintf("%d", FLAGS_clip).c_str());

#if defined(SK_BUILD_FOR_WIN32)
    writer.option("system", "WIN32");
#elif defined(SK_BUILD_FOR_MAC)
    writer.option("system", "MAC");
#elif defined(SK_BUILD_FOR_ANDROID)
    writer.option("system", "ANDROID");
#elif defined(SK_BUILD_FOR_UNIX)
    writer.option("system", "UNIX");
#else
    writer.option("system", "other");
#endif

#if defined(SK_DEBUG)
    writer.option("build", "DEBUG");
#else
    writer.option("build", "RELEASE");
#endif

    // Set texture cache limits if non-default.
    for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); ++i) {
#if SK_SUPPORT_GPU
        const Config& config = gConfigs[i];
        if (Benchmark::kGPU_Backend != config.backend) {
            continue;
        }
        GrContext* context = gContextFactory.get(config.contextType);
        if (NULL == context) {
            continue;
        }

        size_t bytes;
        int count;
        context->getResourceCacheLimits(&count, &bytes);
        if (-1 != FLAGS_gpuCacheBytes) {
            bytes = static_cast<size_t>(FLAGS_gpuCacheBytes);
        }
        if (-1 != FLAGS_gpuCacheCount) {
            count = FLAGS_gpuCacheCount;
        }
        context->setResourceCacheLimits(count, bytes);
#endif
    }

    // Run each bench in each configuration it supports and we asked for.
    Iter iter;
    Benchmark* bench;
    while ((bench = iter.next()) != NULL) {
        SkAutoTUnref<Benchmark> benchUnref(bench);
        if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getName())) {
            continue;
        }

        bench->setForceAlpha(alpha);
        bench->setForceAA(FLAGS_forceAA);
        bench->setForceFilter(FLAGS_forceFilter);
        bench->setDither(dither);
        bench->preDraw();

        bool loggedBenchName = false;
        for (int i = 0; i < configs.count(); ++i) {
            const int configIndex = configs[i];
            const Config& config = gConfigs[configIndex];

            if (!bench->isSuitableFor(config.backend)) {
                continue;
            }

            GrContext* context = NULL;
#if SK_SUPPORT_GPU
            SkGLContextHelper* glContext = NULL;
            if (Benchmark::kGPU_Backend == config.backend) {
                context = gContextFactory.get(config.contextType);
                if (NULL == context) {
                    continue;
                }
                glContext = gContextFactory.getGLContext(config.contextType);
            }
#endif

            SkAutoTUnref<SkCanvas> canvas;
            SkAutoTUnref<SkPicture> recordFrom;
            SkPictureRecorder recorderTo;
            const SkIPoint dim = bench->getSize();

            SkAutoTUnref<SkSurface> surface;
            if (Benchmark::kNonRendering_Backend != config.backend) {
                surface.reset(make_surface(config.fColorType,
                                           dim,
                                           config.backend,
                                           config.sampleCount,
                                           context));
                if (!surface.get()) {
                    logger.logError(SkStringPrintf(
                        "Device creation failure for config %s. Will skip.\n", config.name));
                    continue;
                }

                switch(benchMode) {
                    case kDeferredSilent_BenchMode:
                    case kDeferred_BenchMode:
                        canvas.reset(SkDeferredCanvas::Create(surface.get()));
                        break;
                    case kRecord_BenchMode:
                        canvas.reset(SkRef(recorderTo.beginRecording(dim.fX, dim.fY)));
                        break;
                    case kPictureRecord_BenchMode: {
                        SkPictureRecorder recorderFrom;
                        bench->draw(1, recorderFrom.beginRecording(dim.fX, dim.fY));
                        recordFrom.reset(recorderFrom.endRecording());
                        canvas.reset(SkRef(recorderTo.beginRecording(dim.fX, dim.fY)));
                        break;
                    }
                    case kNormal_BenchMode:
                        canvas.reset(SkRef(surface->getCanvas()));
                        break;
                    default:
                        SkASSERT(false);
                }
            }

            if (NULL != canvas) {
                canvas->clear(SK_ColorWHITE);
                if (FLAGS_clip)   {
                    perform_clip(canvas, dim.fX, dim.fY);
                }
                if (FLAGS_scale)  {
                    perform_scale(canvas, dim.fX, dim.fY);
                }
                if (FLAGS_rotate) {
                    perform_rotate(canvas, dim.fX, dim.fY);
                }
            }

            if (!loggedBenchName) {
                loggedBenchName = true;
                writer.bench(bench->getName(), dim.fX, dim.fY);
            }

#if SK_SUPPORT_GPU
            SkGLContextHelper* contextHelper = NULL;
            if (Benchmark::kGPU_Backend == config.backend) {
                contextHelper = gContextFactory.getGLContext(config.contextType);
            }
            BenchTimer timer(contextHelper);
#else
            BenchTimer timer;
#endif

            double previous = std::numeric_limits<double>::infinity();
            bool converged = false;

            // variables used to compute loopsPerFrame
            double frameIntervalTime = 0.0f;
            int frameIntervalTotalLoops = 0;

            bool frameIntervalComputed = false;
            int loopsPerFrame = 0;
            int loopsPerIter = 0;
            if (FLAGS_verbose) { SkDebugf("%s %s: ", bench->getName(), config.name); }
            if (!FLAGS_dryRun) {
                do {
                    // Ramp up 1 -> 2 -> 4 -> 8 -> 16 -> ... -> ~1 billion.
                    loopsPerIter = (loopsPerIter == 0) ? 1 : loopsPerIter * 2;
                    if (loopsPerIter >= (1<<30) || timer.fWall > FLAGS_maxMs) {
                        // If you find it takes more than a billion loops to get up to 20ms of runtime,
                        // you've got a computer clocked at several THz or have a broken benchmark.  ;)
                        //     "1B ought to be enough for anybody."
                        logger.logError(SkStringPrintf(
                            "\nCan't get %s %s to converge in %dms (%d loops)",
                             bench->getName(), config.name, FLAGS_maxMs, loopsPerIter));
                        break;
                    }

                    if ((benchMode == kRecord_BenchMode || benchMode == kPictureRecord_BenchMode)) {
                        // Clear the recorded commands so that they do not accumulate.
                        canvas.reset(SkRef(recorderTo.beginRecording(dim.fX, dim.fY)));
                    }

                    timer.start();
                    // Inner loop that allows us to break the run into smaller
                    // chunks (e.g. frames). This is especially useful for the GPU
                    // as we can flush and/or swap buffers to keep the GPU from
                    // queuing up too much work.
                    for (int loopCount = loopsPerIter; loopCount > 0; ) {
                        // Save and restore around each call to draw() to guarantee a pristine canvas.
                        SkAutoCanvasRestore saveRestore(canvas, true/*also save*/);

                        int loops;
                        if (frameIntervalComputed && loopCount > loopsPerFrame) {
                            loops = loopsPerFrame;
                            loopCount -= loopsPerFrame;
                        } else {
                            loops = loopCount;
                            loopCount = 0;
                        }

                        if (benchMode == kPictureRecord_BenchMode) {
                            recordFrom->draw(canvas);
                        } else {
                            bench->draw(loops, canvas);
                        }

                        if (kDeferredSilent_BenchMode == benchMode) {
                            static_cast<SkDeferredCanvas*>(canvas.get())->silentFlush();
                        } else if (NULL != canvas) {
                            canvas->flush();
                        }

    #if SK_SUPPORT_GPU
                        // swap drawing buffers on each frame to prevent the GPU
                        // from queuing up too much work
                        if (NULL != glContext) {
                            glContext->swapBuffers();
                        }
    #endif
                    }



                    // Stop truncated timers before GL calls complete, and stop the full timers after.
                    timer.truncatedEnd();
    #if SK_SUPPORT_GPU
                    if (NULL != glContext) {
                        context->flush();
                        SK_GL(*glContext, Finish());
                    }
    #endif
                    timer.end();

                    // setup the frame interval for subsequent iterations
                    if (!frameIntervalComputed) {
                        frameIntervalTime += timer.fWall;
                        frameIntervalTotalLoops += loopsPerIter;
                        if (frameIntervalTime >= FLAGS_minMs) {
                            frameIntervalComputed = true;
                            loopsPerFrame =
                              (int)(((double)frameIntervalTotalLoops / frameIntervalTime) * FLAGS_minMs);
                            if (loopsPerFrame < 1) {
                                loopsPerFrame = 1;
                            }
    //                        SkDebugf("  %s has %d loops in %f ms (normalized to %d)\n",
    //                                 bench->getName(), frameIntervalTotalLoops,
    //                                 timer.fWall, loopsPerFrame);
                        }
                    }

                    const double current = timer.fWall / loopsPerIter;
                    if (FLAGS_verbose && current > previous) { SkDebugf("↑"); }
                    if (FLAGS_verbose) { SkDebugf("%.3g ", current); }
                    converged = HasConverged(previous, current, timer.fWall);
                    previous = current;
                } while (!FLAGS_runOnce && !converged);
            }
            if (FLAGS_verbose) { SkDebugf("\n"); }

            if (!FLAGS_dryRun && FLAGS_outDir.count() && Benchmark::kNonRendering_Backend != config.backend) {
                SkAutoTUnref<SkImage> image(surface->newImageSnapshot());
                if (image.get()) {
                    saveFile(bench->getName(), config.name, FLAGS_outDir[0],
                             image);
                }
            }

            if (FLAGS_runOnce) {
                // Let's not mislead ourselves by looking at Debug build or single iteration bench times!
                continue;
            }

            // Normalize to ms per 1000 iterations.
            const double normalize = 1000.0 / loopsPerIter;
            const struct { char shortName; const char* longName; double ms; } times[] = {
                {'w', "msecs",  normalize * timer.fWall},
                {'W', "Wmsecs", normalize * timer.fTruncatedWall},
                {'c', "cmsecs", normalize * timer.fCpu},
                {'C', "Cmsecs", normalize * timer.fTruncatedCpu},
                {'g', "gmsecs", normalize * timer.fGpu},
            };

            writer.config(config.name);
            for (size_t i = 0; i < SK_ARRAY_COUNT(times); i++) {
                if (strchr(FLAGS_timers[0], times[i].shortName) && times[i].ms > 0) {
                    writer.timer(times[i].longName, times[i].ms);
                }
            }
        }
    }
#if SK_SUPPORT_GPU
    gContextFactory.destroyContexts();
#endif
    return 0;
}
예제 #2
0
SkCanvas* PictureRenderer::setupCanvas(int width, int height) {
    SkAutoTUnref<SkCanvas> canvas;

    switch(fDeviceType) {
        case kBitmap_DeviceType: {
            SkBitmap bitmap;
            sk_tools::setup_bitmap(&bitmap, width, height);
            canvas.reset(SkNEW_ARGS(SkCanvas, (bitmap)));
        }
        break;
#if SK_SUPPORT_GPU
#if SK_ANGLE
        case kAngle_DeviceType:
            // fall through
#endif
#if SK_MESA
        case kMesa_DeviceType:
            // fall through
#endif
        case kGPU_DeviceType:
        case kNVPR_DeviceType: {
            SkAutoTUnref<GrSurface> target;
            if (fGrContext) {
                // create a render target to back the device
                GrSurfaceDesc desc;
                desc.fConfig = kSkia8888_GrPixelConfig;
                desc.fFlags = kRenderTarget_GrSurfaceFlag;
                desc.fWidth = width;
                desc.fHeight = height;
                desc.fSampleCnt = fSampleCount;
                target.reset(fGrContext->textureProvider()->createTexture(desc, false, NULL, 0));
            }

            uint32_t flags = fUseDFText ? SkSurfaceProps::kUseDistanceFieldFonts_Flag : 0;
            SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
            SkAutoTUnref<SkGpuDevice> device(
                SkGpuDevice::Create(target->asRenderTarget(), &props,
                                    SkGpuDevice::kUninit_InitContents));
            if (!device) {
                return NULL;
            }
            canvas.reset(SkNEW_ARGS(SkCanvas, (device)));
            break;
        }
#endif
        default:
            SkASSERT(0);
            return NULL;
    }

    if (fHasDrawFilters) {
        if (fDrawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) {
            canvas->setAllowSoftClip(false);
        }

        canvas.reset(SkNEW_ARGS(FlagsFilterCanvas, (canvas.get(), fDrawFilters)));
    }

    this->scaleToScaleFactor(canvas);

    // Pictures often lie about their extent (i.e., claim to be 100x100 but
    // only ever draw to 90x100). Clear here so the undrawn portion will have
    // a consistent color
    canvas->clear(SK_ColorTRANSPARENT);
    return canvas.detach();
}
예제 #3
0
GrTexture* GaussianBlur(GrContext* context,
                        GrTexture* srcTexture,
                        bool canClobberSrc,
                        const SkRect& dstBounds,
                        const SkRect* srcBounds,
                        float sigmaX,
                        float sigmaY,
                        GrTextureProvider::SizeConstraint constraint) {
    SkASSERT(context);
    SkIRect clearRect;
    int scaleFactorX, radiusX;
    int scaleFactorY, radiusY;
    int maxTextureSize = context->caps()->maxTextureSize();
    sigmaX = adjust_sigma(sigmaX, maxTextureSize, &scaleFactorX, &radiusX);
    sigmaY = adjust_sigma(sigmaY, maxTextureSize, &scaleFactorY, &radiusY);

    SkPoint srcOffset = SkPoint::Make(-dstBounds.x(), -dstBounds.y());
    SkRect localDstBounds = SkRect::MakeWH(dstBounds.width(), dstBounds.height());
    SkRect localSrcBounds;
    SkRect srcRect;
    if (srcBounds) {
        srcRect = localSrcBounds = *srcBounds;
        srcRect.offset(srcOffset);
        srcBounds = &localSrcBounds;
    } else {
        srcRect = localDstBounds;
    }

    scale_rect(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
    srcRect.roundOut(&srcRect);
    scale_rect(&srcRect, static_cast<float>(scaleFactorX),
                         static_cast<float>(scaleFactorY));

    // setup new clip
    GrClip clip(localDstBounds);

    SkASSERT(kBGRA_8888_GrPixelConfig == srcTexture->config() ||
             kRGBA_8888_GrPixelConfig == srcTexture->config() ||
             kAlpha_8_GrPixelConfig == srcTexture->config());

    GrSurfaceDesc desc;
    desc.fFlags = kRenderTarget_GrSurfaceFlag;
    desc.fWidth = SkScalarFloorToInt(dstBounds.width());
    desc.fHeight = SkScalarFloorToInt(dstBounds.height());
    desc.fConfig = srcTexture->config();

    GrTexture* dstTexture;
    GrTexture* tempTexture;
    SkAutoTUnref<GrTexture> temp1, temp2;

    temp1.reset(context->textureProvider()->createTexture(desc, constraint));
    dstTexture = temp1.get();
    if (canClobberSrc) {
        tempTexture = srcTexture;
    } else {
        temp2.reset(context->textureProvider()->createTexture(desc, constraint));
        tempTexture = temp2.get();
    }

    if (nullptr == dstTexture || nullptr == tempTexture) {
        return nullptr;
    }

    SkAutoTUnref<GrDrawContext> srcDrawContext;

    for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) {
        GrPaint paint;
        SkMatrix matrix;
        matrix.setIDiv(srcTexture->width(), srcTexture->height());
        SkRect dstRect(srcRect);
        if (srcBounds && i == 1) {
            SkRect domain;
            matrix.mapRect(&domain, *srcBounds);
            domain.inset((i < scaleFactorX) ? SK_ScalarHalf / srcTexture->width() : 0.0f,
                         (i < scaleFactorY) ? SK_ScalarHalf / srcTexture->height() : 0.0f);
            SkAutoTUnref<const GrFragmentProcessor> fp(GrTextureDomainEffect::Create(
                srcTexture,
                matrix,
                domain,
                GrTextureDomain::kDecal_Mode,
                GrTextureParams::kBilerp_FilterMode));
            paint.addColorFragmentProcessor(fp);
            srcRect.offset(-srcOffset);
            srcOffset.set(0, 0);
        } else {
            GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
            paint.addColorTextureProcessor(srcTexture, matrix, params);
        }
        paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
        scale_rect(&dstRect, i < scaleFactorX ? 0.5f : 1.0f,
                             i < scaleFactorY ? 0.5f : 1.0f);

        SkAutoTUnref<GrDrawContext> dstDrawContext(
                                             context->drawContext(dstTexture->asRenderTarget()));
        if (!dstDrawContext) {
            return nullptr;
        }
        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(), dstRect, srcRect);

        srcDrawContext.swap(dstDrawContext);
        srcRect = dstRect;
        srcTexture = dstTexture;
        SkTSwap(dstTexture, tempTexture);
        localSrcBounds = srcRect;
    }

    // For really small blurs (certainly no wider than 5x5 on desktop gpus) it is faster to just
    // launch a single non separable kernel vs two launches
    srcRect = localDstBounds;
    if (sigmaX > 0.0f && sigmaY > 0.0f &&
            (2 * radiusX + 1) * (2 * radiusY + 1) <= MAX_KERNEL_SIZE) {
        // We shouldn't be scaling because this is a small size blur
        SkASSERT((1 == scaleFactorX) && (1 == scaleFactorY));

        SkAutoTUnref<GrDrawContext> dstDrawContext(
                                             context->drawContext(dstTexture->asRenderTarget()));
        if (!dstDrawContext) {
            return nullptr;
        }
        convolve_gaussian_2d(dstDrawContext, clip, srcRect, srcOffset,
                             srcTexture, radiusX, radiusY, sigmaX, sigmaY, srcBounds);

        srcDrawContext.swap(dstDrawContext);
        srcRect.offsetTo(0, 0);
        srcTexture = dstTexture;
        SkTSwap(dstTexture, tempTexture);

    } else {
        scale_rect(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
        srcRect.roundOut(&srcRect);
        const SkIRect srcIRect = srcRect.roundOut();
        if (sigmaX > 0.0f) {
            if (scaleFactorX > 1) {
                // TODO: if we pass in the source draw context we don't need this here
                if (!srcDrawContext) {
                    srcDrawContext.reset(context->drawContext(srcTexture->asRenderTarget()));
                    if (!srcDrawContext) {
                        return nullptr;
                    }        
                }

                // Clear out a radius to the right of the srcRect to prevent the
                // X convolution from reading garbage.
                clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop,
                                              radiusX, srcIRect.height());
                srcDrawContext->clear(&clearRect, 0x0, false);
            }

            SkAutoTUnref<GrDrawContext> dstDrawContext(
                                             context->drawContext(dstTexture->asRenderTarget()));
            if (!dstDrawContext) {
                return nullptr;
            }
            convolve_gaussian(dstDrawContext, clip, srcRect,
                              srcTexture, Gr1DKernelEffect::kX_Direction, radiusX, sigmaX,
                              srcBounds, srcOffset);
            srcDrawContext.swap(dstDrawContext);
            srcTexture = dstTexture;
            srcRect.offsetTo(0, 0);
            SkTSwap(dstTexture, tempTexture);
            localSrcBounds = srcRect;
            srcOffset.set(0, 0);
        }

        if (sigmaY > 0.0f) {
            if (scaleFactorY > 1 || sigmaX > 0.0f) {
                // TODO: if we pass in the source draw context we don't need this here
                if (!srcDrawContext) {
                    srcDrawContext.reset(context->drawContext(srcTexture->asRenderTarget()));
                    if (!srcDrawContext) {
                        return nullptr;
                    }        
                }

                // Clear out a radius below the srcRect to prevent the Y
                // convolution from reading garbage.
                clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom,
                                              srcIRect.width(), radiusY);
                srcDrawContext->clear(&clearRect, 0x0, false);
            }

            SkAutoTUnref<GrDrawContext> dstDrawContext(
                                               context->drawContext(dstTexture->asRenderTarget()));
            if (!dstDrawContext) {
                return nullptr;
            }
            convolve_gaussian(dstDrawContext, clip, srcRect,
                              srcTexture, Gr1DKernelEffect::kY_Direction, radiusY, sigmaY,
                              srcBounds, srcOffset);

            srcDrawContext.swap(dstDrawContext);
            srcTexture = dstTexture;
            srcRect.offsetTo(0, 0);
            SkTSwap(dstTexture, tempTexture);
        }
    }
    const SkIRect srcIRect = srcRect.roundOut();

    if (scaleFactorX > 1 || scaleFactorY > 1) {
        SkASSERT(srcDrawContext);

        // Clear one pixel to the right and below, to accommodate bilinear
        // upsampling.
        clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom,
                                      srcIRect.width() + 1, 1);
        srcDrawContext->clear(&clearRect, 0x0, false);
        clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop,
                                      1, srcIRect.height());
        srcDrawContext->clear(&clearRect, 0x0, false);
        SkMatrix matrix;
        matrix.setIDiv(srcTexture->width(), srcTexture->height());

        GrPaint paint;
        // FIXME:  this should be mitchell, not bilinear.
        GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
        paint.addColorTextureProcessor(srcTexture, matrix, params);
        paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);

        SkRect dstRect(srcRect);
        scale_rect(&dstRect, (float) scaleFactorX, (float) scaleFactorY);

        SkAutoTUnref<GrDrawContext> dstDrawContext(
                                context->drawContext(dstTexture->asRenderTarget()));
        if (!dstDrawContext) {
            return nullptr;
        }
        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(), dstRect, srcRect);

        srcDrawContext.swap(dstDrawContext);
        srcRect = dstRect;
        srcTexture = dstTexture;
        SkTSwap(dstTexture, tempTexture);
    }

    return SkRef(srcTexture);
}