// Writes the path data key into the passed pointer. static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) { uint32_t* key = origKey; // The check below should take care of negative values casted positive. const int verbCnt = path.countVerbs(); const int pointCnt = path.countPoints(); const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt); SkASSERT(pointCnt && verbCnt); *key++ = path.getFillType(); *key++ = verbCnt; memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t)); int verbKeySize = SkAlign4(verbCnt); // pad out to uint32_t alignment using value that will stand out when debugging. uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt; memset(pad, 0xDE, verbKeySize - verbCnt); key += verbKeySize >> 2; memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt); GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); key += 2 * pointCnt; sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt); GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); SkDEBUGCODE(key += conicWeightCnt); SkASSERT(key - origKey == path_key_from_data_size(path)); }
GrGLPath::GrGLPath(GrGpuGL* gpu, const SkPath& path) : INHERITED(gpu, kIsWrapped) { #ifndef SK_SCALAR_IS_FLOAT GrCrash("Assumes scalar is float."); #endif SkASSERT(!path.isEmpty()); GL_CALL_RET(fPathID, GenPaths(1)); SkSTArray<16, GrGLubyte, true> pathCommands; SkSTArray<16, SkPoint, true> pathPoints; int verbCnt = path.countVerbs(); int pointCnt = path.countPoints(); pathCommands.resize_back(verbCnt); pathPoints.resize_back(pointCnt); // TODO: Direct access to path points since we could pass them on directly. path.getPoints(&pathPoints[0], pointCnt); path.getVerbs(&pathCommands[0], verbCnt); GR_DEBUGCODE(int numPts = 0); for (int i = 0; i < verbCnt; ++i) { SkPath::Verb v = static_cast<SkPath::Verb>(pathCommands[i]); pathCommands[i] = verb_to_gl_path_cmd(v); GR_DEBUGCODE(numPts += num_pts(v)); } GrAssert(pathPoints.count() == numPts); GL_CALL(PathCommands(fPathID, verbCnt, &pathCommands[0], 2 * pointCnt, GR_GL_FLOAT, &pathPoints[0])); fBounds = path.getBounds(); }
static bool one_contour(const SkPath& path) { SkChunkAlloc allocator(256); int verbCount = path.countVerbs(); uint8_t* verbs = (uint8_t*) allocator.alloc(sizeof(uint8_t) * verbCount, SkChunkAlloc::kThrow_AllocFailType); (void) path.getVerbs(verbs, verbCount); for (int index = 1; index < verbCount; ++index) { if (verbs[index] == SkPath::kMove_Verb) { return false; } } return true; }
// If the path is small enough to be keyed from its data this returns key length, otherwise -1. static int path_key_from_data_size(const SkPath& path) { const int verbCnt = path.countVerbs(); if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) { return -1; } const int pointCnt = path.countPoints(); const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); // 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to // a uint32_t length. return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt; }
static bool contains_only_moveTo(const SkPath& path) { int verbCount = path.countVerbs(); if (verbCount == 0) { return true; } SkTDArray<uint8_t> verbs; verbs.setCount(verbCount); SkDEBUGCODE(int getVerbResult = ) path.getVerbs(verbs.begin(), verbCount); SkASSERT(getVerbResult == verbCount); for (int index = 0; index < verbCount; ++index) { if (verbs[index] != SkPath::kMove_Verb) { return false; } } return true; }
void GrGLPath::InitPathObjectPathData(GrGLGpu* gpu, GrGLuint pathID, const SkPath& skPath) { SkASSERT(!skPath.isEmpty()); #ifdef SK_SCALAR_IS_FLOAT // This branch does type punning, converting SkPoint* to GrGLfloat*. if ((skPath.getSegmentMasks() & SkPath::kConic_SegmentMask) == 0) { int verbCnt = skPath.countVerbs(); int pointCnt = skPath.countPoints(); int coordCnt = pointCnt * 2; SkSTArray<16, GrGLubyte, true> pathCommands(verbCnt); SkSTArray<16, GrGLfloat, true> pathCoords(coordCnt); static_assert(sizeof(SkPoint) == sizeof(GrGLfloat) * 2, "sk_point_not_two_floats"); pathCommands.resize_back(verbCnt); pathCoords.resize_back(coordCnt); skPath.getPoints(reinterpret_cast<SkPoint*>(&pathCoords[0]), pointCnt); skPath.getVerbs(&pathCommands[0], verbCnt); SkDEBUGCODE(int verbCoordCnt = 0); for (int i = 0; i < verbCnt; ++i) { SkPath::Verb v = static_cast<SkPath::Verb>(pathCommands[i]); pathCommands[i] = verb_to_gl_path_cmd(v); SkDEBUGCODE(verbCoordCnt += num_coords(v)); } SkASSERT(verbCnt == pathCommands.count()); SkASSERT(verbCoordCnt == pathCoords.count()); SkDEBUGCODE(verify_floats(&pathCoords[0], pathCoords.count())); GR_GL_CALL(gpu->glInterface(), PathCommands(pathID, pathCommands.count(), &pathCommands[0], pathCoords.count(), GR_GL_FLOAT, &pathCoords[0])); return; } #endif SkAssertResult(init_path_object_for_general_path<false>(gpu, pathID, skPath)); }
void GrGLPath::InitPathObject(GrGLGpu* gpu, GrGLuint pathID, const SkPath& skPath, const GrStrokeInfo& stroke) { SkASSERT(!stroke.isDashed()); if (!skPath.isEmpty()) { int verbCnt = skPath.countVerbs(); int pointCnt = skPath.countPoints(); int minCoordCnt = pointCnt * 2; SkSTArray<16, GrGLubyte, true> pathCommands(verbCnt); SkSTArray<16, GrGLfloat, true> pathCoords(minCoordCnt); SkDEBUGCODE(int numCoords = 0); if ((skPath.getSegmentMasks() & SkPath::kConic_SegmentMask) == 0) { // This branch does type punning, converting SkPoint* to GrGLfloat*. SK_COMPILE_ASSERT(sizeof(SkPoint) == sizeof(GrGLfloat) * 2, sk_point_not_two_floats); // This branch does not convert with SkScalarToFloat. #ifndef SK_SCALAR_IS_FLOAT #error Need SK_SCALAR_IS_FLOAT. #endif pathCommands.resize_back(verbCnt); pathCoords.resize_back(minCoordCnt); skPath.getPoints(reinterpret_cast<SkPoint*>(&pathCoords[0]), pointCnt); skPath.getVerbs(&pathCommands[0], verbCnt); for (int i = 0; i < verbCnt; ++i) { SkPath::Verb v = static_cast<SkPath::Verb>(pathCommands[i]); pathCommands[i] = verb_to_gl_path_cmd(v); SkDEBUGCODE(numCoords += num_coords(v)); } } else { SkPoint points[4]; SkPath::RawIter iter(skPath); SkPath::Verb verb; while ((verb = iter.next(points)) != SkPath::kDone_Verb) { pathCommands.push_back(verb_to_gl_path_cmd(verb)); GrGLfloat coords[6]; int coordsForVerb; switch (verb) { case SkPath::kMove_Verb: points_to_coords(points, 0, 1, coords); coordsForVerb = 2; break; case SkPath::kLine_Verb: points_to_coords(points, 1, 1, coords); coordsForVerb = 2; break; case SkPath::kConic_Verb: points_to_coords(points, 1, 2, coords); coords[4] = SkScalarToFloat(iter.conicWeight()); coordsForVerb = 5; break; case SkPath::kQuad_Verb: points_to_coords(points, 1, 2, coords); coordsForVerb = 4; break; case SkPath::kCubic_Verb: points_to_coords(points, 1, 3, coords); coordsForVerb = 6; break; case SkPath::kClose_Verb: continue; default: SkASSERT(false); // Not reached. continue; } SkDEBUGCODE(numCoords += num_coords(verb)); pathCoords.push_back_n(coordsForVerb, coords); } } SkASSERT(verbCnt == pathCommands.count()); SkASSERT(numCoords == pathCoords.count()); GR_GL_CALL(gpu->glInterface(), PathCommands(pathID, pathCommands.count(), &pathCommands[0], pathCoords.count(), GR_GL_FLOAT, &pathCoords[0])); } else { GR_GL_CALL(gpu->glInterface(), PathCommands(pathID, 0, NULL, 0, GR_GL_FLOAT, NULL)); } if (stroke.needToApply()) { SkASSERT(!stroke.isHairlineStyle()); GR_GL_CALL(gpu->glInterface(), PathParameterf(pathID, GR_GL_PATH_STROKE_WIDTH, SkScalarToFloat(stroke.getWidth()))); GR_GL_CALL(gpu->glInterface(), PathParameterf(pathID, GR_GL_PATH_MITER_LIMIT, SkScalarToFloat(stroke.getMiter()))); GrGLenum join = join_to_gl_join(stroke.getJoin()); GR_GL_CALL(gpu->glInterface(), PathParameteri(pathID, GR_GL_PATH_JOIN_STYLE, join)); GrGLenum cap = cap_to_gl_cap(stroke.getCap()); GR_GL_CALL(gpu->glInterface(), PathParameteri(pathID, GR_GL_PATH_END_CAPS, cap)); GR_GL_CALL(gpu->glInterface(), PathParameterf(pathID, GR_GL_PATH_STROKE_BOUND, 0.02f)); } }