예제 #1
0
파일: DrawEff_DS.C 프로젝트: XuQiao/HI
ReverseXAxis (TGraphAsymmErrors *g, double  size)
{
// Remove the current axis
   g->GetXaxis()->SetLabelOffset(999);
   g->GetXaxis()->SetTickLength(0);

//  Redraw the new axis 
   gPad->Update();

	g->GetYaxis()->SetTitle("Event Selection Efficiency");
   TGaxis *newaxis = new TGaxis(gPad->GetUxmax(),
                                gPad->GetUymin(),
                                gPad->GetUxmin(),
                                gPad->GetUymin(),
                                g->GetXaxis()->GetXmin(),
                                g->GetXaxis()->GetXmax(),
                                510,"-");
   newaxis->SetLabelOffset(-0.04);
   newaxis->SetTitle("Centrality");
   newaxis->SetTitleFont(42);
   newaxis->SetTitleSize(size);
   newaxis->SetLabelSize(size);
   newaxis->CenterTitle();
   newaxis->SetLabelFont(42);
   newaxis->Draw();


}
예제 #2
0
void ReverseXAxis (TH1 *h)
{
   h->GetXaxis()->SetLabelOffset(999);
   h->GetXaxis()->SetTickLength(0);

   gPad->Update();
   TGaxis *newaxis = new TGaxis(gPad->GetUxmax(),
                                gPad->GetUymin(),
                                gPad->GetUxmin(),
                                gPad->GetUymin(),
                                h->GetXaxis()->GetXmin(),
                                h->GetXaxis()->GetXmax(),
                                510,"-");
   newaxis->SetLabelOffset(-0.03);
   newaxis->SetTitle("X[cm]");
   newaxis->CenterTitle(1);
   newaxis->Draw();
}
void composeTrackAnalysisbyAssociator(string FileListName, int FileNumber) {

    if(debug) cout << FileListName << endl;
    string theFileName;
    ifstream composeFileList;
    composeFileList.open(FileListName.c_str());

    string OutputPlotNamepreFix = FileListName + "_";
    string OutputPlotNameFix = ".png";

    unsigned int EventNumber;
    unsigned int trackingParticleMatch;
    double recTrackPurity;
    double recTrackrefMomentum;
    double recTrackrefPhi;
    double recTrackrefEta;
    double recTrackinnerMomentum;
    double recTrackinnerPhi;
    double recTrackinnerEta;
    unsigned int recTrackinnerValid;
    double recTrackouterMomentum;
    double recTrackouterPhi;
    double recTrackouterEta;
    unsigned int recTrackouterValid;
    double simTrackinnerMomentum;
    double simTrackinnerPhi;
    double simTrackinnerEta;
    unsigned int simTrackinnerMatch;
    double simTrackouterMomentum;
    double simTrackouterPhi;
    double simTrackouterEta;
    unsigned int simTrackouterMatch;
    double recTrackinnerMomentumofTSOS;
    double recTrackinnerPhiofTSOS;
    double recTrackinnerEtaofTSOS;
    unsigned int recTrackinnerValidofTSOS;
    double recTrackouterMomentumofTSOS;
    double recTrackouterPhiofTSOS;
    double recTrackouterEtaofTSOS;
    unsigned int recTrackouterValidofTSOS;
    double recTrackimpactMomentumofTSOS;
    double recTrackimpactPhiofTSOS;
    double recTrackimpactEtaofTSOS;
    unsigned int recTrackimpactValidofTSOS;
    int recTrackCharge;
    double simTrackMomentumPt;
    double simTrackPhi;
    double simTrackEta;
    int simTrackCharge;

    TObjArray* myEfficiencyHist = new TObjArray();
    TObjArray* myParticleHist = new TObjArray();
    TObjArray* mySTAHist = new TObjArray();
    TObjArray* myChargeCheckHist = new TObjArray();
    TObjArray* myDeltaPtHist = new TObjArray();
    TObjArray* myDeltaPhiHist = new TObjArray();
    TObjArray* myDeltaEtaHist = new TObjArray();
    vector<string> TypeName;
    TypeName.clear();

    for(int Index = 0; Index < FileNumber; Index++) {
        getline(composeFileList, theFileName);
        TypeName.push_back(theFileName);
        string fullFileName = "data/"+ theFileName + ".root";
        if(debug) cout << theFileName << endl;
        TFile* RootFile = TFile::Open(fullFileName.c_str());

        TTree* T1 = (TTree*)RootFile->Get("ExTree");
        T1->SetBranchAddress("EventNumber", &EventNumber);
        T1->SetBranchAddress("trackingParticleMatch", &trackingParticleMatch);
        T1->SetBranchAddress("recTrackPurity", &recTrackPurity);
        T1->SetBranchAddress("recTrackrefMomentum", &recTrackrefMomentum);
        T1->SetBranchAddress("recTrackrefPhi", &recTrackrefPhi);
        T1->SetBranchAddress("recTrackrefEta", &recTrackrefEta);
        T1->SetBranchAddress("recTrackinnerMomentum", &recTrackinnerMomentum);
        T1->SetBranchAddress("recTrackinnerPhi", &recTrackinnerPhi);
        T1->SetBranchAddress("recTrackinnerEta", &recTrackinnerEta);
        T1->SetBranchAddress("recTrackinnerValid", &recTrackinnerValid);
        T1->SetBranchAddress("recTrackouterMomentum", &recTrackouterMomentum);
        T1->SetBranchAddress("recTrackouterPhi", &recTrackouterPhi);
        T1->SetBranchAddress("recTrackouterEta", &recTrackouterEta);
        T1->SetBranchAddress("recTrackouterValid", &recTrackouterValid);
        T1->SetBranchAddress("simTrackinnerMomentum", &simTrackinnerMomentum);
        T1->SetBranchAddress("simTrackinnerPhi", &simTrackinnerPhi);
        T1->SetBranchAddress("simTrackinnerEta", &simTrackinnerEta);
        T1->SetBranchAddress("simTrackinnerMatch", &simTrackinnerMatch);
        T1->SetBranchAddress("simTrackouterMomentum", &simTrackouterMomentum);
        T1->SetBranchAddress("simTrackouterPhi", &simTrackouterPhi);
        T1->SetBranchAddress("simTrackouterEta", &simTrackouterEta);
        T1->SetBranchAddress("simTrackouterMatch", &simTrackouterMatch);
        T1->SetBranchAddress("recTrackinnerMomentumofTSOS", &recTrackinnerMomentumofTSOS);
        T1->SetBranchAddress("recTrackinnerPhiofTSOS", &recTrackinnerPhiofTSOS);
        T1->SetBranchAddress("recTrackinnerEtaofTSOS", &recTrackinnerEtaofTSOS);
        T1->SetBranchAddress("recTrackinnerValidofTSOS", &recTrackinnerValidofTSOS);
        T1->SetBranchAddress("recTrackouterMomentumofTSOS", &recTrackouterMomentumofTSOS);
        T1->SetBranchAddress("recTrackouterPhiofTSOS", &recTrackouterPhiofTSOS);
        T1->SetBranchAddress("recTrackouterEtaofTSOS", &recTrackouterEtaofTSOS);
        T1->SetBranchAddress("recTrackouterValidofTSOS", &recTrackouterValidofTSOS);
        T1->SetBranchAddress("recTrackimpactMomentumofTSOS", &recTrackimpactMomentumofTSOS);
        T1->SetBranchAddress("recTrackimpactPhiofTSOS", &recTrackimpactPhiofTSOS);
        T1->SetBranchAddress("recTrackimpactEtaofTSOS", &recTrackimpactEtaofTSOS);
        T1->SetBranchAddress("recTrackimpactValidofTSOS", &recTrackimpactValidofTSOS);
        T1->SetBranchAddress("recTrackCharge", &recTrackCharge);
        T1->SetBranchAddress("simTrackMomentumPt", &simTrackMomentumPt);
        T1->SetBranchAddress("simTrackPhi", &simTrackPhi);
        T1->SetBranchAddress("simTrackEta", &simTrackEta);
        T1->SetBranchAddress("simTrackCharge", &simTrackCharge);

        string TempHistName;
        TempHistName = theFileName + "_Efficiency2simPt";
        TH1D* Efficiency2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_Particle2simPt";
        TH1D* Particle2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_STA2simPt";
        TH1D* STA2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_InverseChargeRato2simPt";
        TH1D* InverseChargeRato2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_DeltaPt2simPt";
        TH1D* DeltaPt2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_DeltaPhi2simPt";
        TH1D* DeltaPhi2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_DeltaEta2simPt";
        TH1D* DeltaEta2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale);
        TempHistName = theFileName + "_MaxPurity2simPt";
        TH2D* MaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 6, 0., 1.2);
        TempHistName = theFileName + "_Multiplicity2simPt";
        TH2D* Multiplicity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 10, 0., 10.);
        TempHistName = theFileName + "_ChargeCheck2simPt";
        TH2D* ChargeCheck2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 5, -2.5, 2.5);
        TempHistName = theFileName + "_simTrackMomentumPtmaxPurity2simPt";
        TH2D* simTrackMomentumPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale);
        TempHistName = theFileName + "_simTrackPhimaxPurity2simPt";
        TH2D* simTrackPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI);
        TempHistName = theFileName + "_simTrackEtamaxPurity2simPt";
        TH2D* simTrackEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0);
        TempHistName = theFileName + "_recTrackimpactMomentumofTSOSmaxPurity2simPt";
        TH2D* recTrackimpactMomentumofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale);
        TempHistName = theFileName + "_recTrackimpactPhiofTSOSmaxPurity2simPt";
        TH2D* recTrackimpactPhiofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI);
        TempHistName = theFileName + "_recTrackimpactEtaofTSOSmaxPurity2simPt";
        TH2D* recTrackimpactEtaofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 600, -3.0, 3.0);
        TempHistName = theFileName + "_recTrackimpactValidofTSOSmaxPurity2simPt";
        TH2D* recTrackimpactValidofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 2, 0., 2.);
        TempHistName = theFileName + "_DeltaPtmaxPurity2simPt";
        TH2D* DeltaPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(),  (int)(PtScale/2), 0, PtScale, (int)5*PtScale, -1.*PtScale, PtScale);
        TempHistName = theFileName + "_DeltaPhimaxPurity2simPt";
        TH2D* DeltaPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(),  (int)(PtScale/2), 0, PtScale, 314, -PI, PI);
        TempHistName = theFileName + "_DeltaEtamaxPurity2simPt";
        TH2D* DeltaEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(),  (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0);

        unsigned int trackingParticleMatch_temp;
        unsigned int efficiency_temp;
        double recTrackPurity_temp;
        double recTrackrefMomentum_temp;
        double recTrackrefPhi_temp;
        double recTrackrefEta_temp;
        double recTrackinnerMomentum_temp;
        double recTrackinnerPhi_temp;
        double recTrackinnerEta_temp;
        unsigned int recTrackinnerValid_temp;
        double recTrackouterMomentum_temp;
        double recTrackouterPhi_temp;
        double recTrackouterEta_temp;
        unsigned int recTrackouterValid_temp;
        double simTrackinnerMomentum_temp;
        double simTrackinnerPhi_temp;
        double simTrackinnerEta_temp;
        unsigned int simTrackinnerMatch_temp;
        double simTrackouterMomentum_temp;
        double simTrackouterPhi_temp;
        double simTrackouterEta_temp;
        unsigned int simTrackouterMatch_temp;
        double recTrackinnerMomentumofTSOS_temp;
        double recTrackinnerPhiofTSOS_temp;
        double recTrackinnerEtaofTSOS_temp;
        unsigned int recTrackinnerValidofTSOS_temp;
        double recTrackouterMomentumofTSOS_temp;
        double recTrackouterPhiofTSOS_temp;
        double recTrackouterEtaofTSOS_temp;
        unsigned int recTrackouterValidofTSOS_temp;
        double recTrackimpactMomentumofTSOS_temp;
        double recTrackimpactPhiofTSOS_temp;
        double recTrackimpactEtaofTSOS_temp;
        unsigned int recTrackimpactValidofTSOS_temp;
        int recTrackCharge_temp;
        double simTrackMomentumPt_temp;
        double simTrackPhi_temp;
        double simTrackEta_temp;
        int simTrackCharge_temp;

        int Nentries = T1->GetEntries(); 
        for(int i = 0; i < Nentries; i++) { 
            T1->GetEntry(i);
            if(trackingParticleMatch == 0) {
                MaxPurity2simPtHist->Fill(simTrackMomentumPt, 0);
                Multiplicity2simPtHist->Fill(simTrackMomentumPt, 0);
                int tempParticleBinNumber = Particle2simPtHist->FindBin(simTrackMomentumPt);
                double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber);
                tempParticleBinValue += 1.;
                Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue);
            }
            else {
                efficiency_temp = 1;
                trackingParticleMatch_temp = trackingParticleMatch;
                recTrackPurity_temp = recTrackPurity;
                recTrackrefMomentum_temp = recTrackrefMomentum;
                recTrackrefPhi_temp = recTrackrefPhi;
                recTrackrefEta_temp = recTrackrefEta;
                recTrackinnerMomentum_temp = recTrackinnerMomentum;
                recTrackinnerPhi_temp = recTrackinnerPhi;
                recTrackinnerEta_temp = recTrackinnerEta;
                recTrackinnerValid_temp = recTrackinnerValid;
                recTrackouterMomentum_temp = recTrackouterMomentum;
                recTrackouterPhi_temp = recTrackouterPhi;
                recTrackouterEta_temp = recTrackouterEta;
                recTrackouterValid_temp = recTrackouterValid;
                simTrackinnerMomentum_temp = simTrackinnerMomentum;
                simTrackinnerPhi_temp = simTrackinnerPhi;
                simTrackinnerEta_temp = simTrackinnerEta;
                simTrackinnerMatch_temp = simTrackinnerMatch;
                simTrackouterMomentum_temp = simTrackouterMomentum;
                simTrackouterPhi_temp = simTrackouterPhi;
                simTrackouterEta_temp = simTrackouterEta;
                simTrackouterMatch_temp = simTrackouterMatch;
                recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS;
                recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS;
                recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS;
                recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS;
                recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS;
                recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS;
                recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS;
                recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS;
                recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS;
                recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS;
                recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS;
                recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS;
                recTrackCharge_temp = recTrackCharge;
                simTrackMomentumPt_temp = simTrackMomentumPt;
                simTrackPhi_temp = simTrackPhi;
                simTrackEta_temp = simTrackEta;
                simTrackCharge_temp = simTrackCharge;

                bool nextStep = true;
                while(nextStep) {
                    i++;
                    T1->GetEntry(i);
                    if(trackingParticleMatch <= trackingParticleMatch_temp)
                        nextStep = false;
                    else
                        trackingParticleMatch_temp = trackingParticleMatch;
                    if(nextStep == true && recTrackPurity_temp < recTrackPurity) {
                        if(debug) cout << "step another match, trackingParticleMatch_temp: " << trackingParticleMatch_temp << endl;
                        //trackingParticleMatch_temp = trackingParticleMatch;
                        recTrackPurity_temp = recTrackPurity;
                        recTrackrefMomentum_temp = recTrackrefMomentum;
                        recTrackrefPhi_temp = recTrackrefPhi;
                        recTrackrefEta_temp = recTrackrefEta;
                        recTrackinnerMomentum_temp = recTrackinnerMomentum;
                        recTrackinnerPhi_temp = recTrackinnerPhi;
                        recTrackinnerEta_temp = recTrackinnerEta;
                        recTrackinnerValid_temp = recTrackinnerValid;
                        recTrackouterMomentum_temp = recTrackouterMomentum;
                        recTrackouterPhi_temp = recTrackouterPhi;
                        recTrackouterEta_temp = recTrackouterEta;
                        recTrackouterValid_temp = recTrackouterValid;
                        simTrackinnerMomentum_temp = simTrackinnerMomentum;
                        simTrackinnerPhi_temp = simTrackinnerPhi;
                        simTrackinnerEta_temp = simTrackinnerEta;
                        simTrackinnerMatch_temp = simTrackinnerMatch;
                        simTrackouterMomentum_temp = simTrackouterMomentum;
                        simTrackouterPhi_temp = simTrackouterPhi;
                        simTrackouterEta_temp = simTrackouterEta;
                        simTrackouterMatch_temp = simTrackouterMatch;
                        recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS;
                        recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS;
                        recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS;
                        recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS;
                        recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS;
                        recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS;
                        recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS;
                        recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS;
                        recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS;
                        recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS;
                        recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS;
                        recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS;
                        recTrackCharge_temp = recTrackCharge;
                        simTrackMomentumPt_temp = simTrackMomentumPt;
                        simTrackPhi_temp = simTrackPhi;
                        simTrackEta_temp = simTrackEta;
                        simTrackCharge_temp = simTrackCharge;
                    }
                }
                i--;
                //if(debug) cout << "Filling Multiplicity " << trackingParticleMatch_temp << endl;
                MaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackPurity_temp);
                Multiplicity2simPtHist->Fill(simTrackMomentumPt_temp, trackingParticleMatch_temp);
                ChargeCheck2simPtHist->Fill(simTrackMomentumPt_temp, simTrackCharge_temp*recTrackCharge_temp);
                simTrackMomentumPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackMomentumPt_temp);
                simTrackPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackPhi_temp);
                simTrackEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackEta_temp);
                recTrackimpactMomentumofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactMomentumofTSOS_temp);
                recTrackimpactPhiofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp);
                recTrackimpactEtaofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp);
                recTrackimpactValidofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactValidofTSOS_temp);
                DeltaPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, (recTrackimpactMomentumofTSOS_temp-simTrackMomentumPt_temp)/simTrackMomentumPt_temp);
                DeltaPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp-simTrackPhi_temp);
                DeltaEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp-simTrackEta_temp);


                int tempParticleBinNumber = STA2simPtHist->FindBin(simTrackMomentumPt_temp);
                double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber);
                tempParticleBinValue += 1.;
                Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue);
                double tempSTABinValue = STA2simPtHist->GetBinContent(tempParticleBinNumber);
                tempSTABinValue += 1.;                        
                STA2simPtHist->SetBinContent(tempParticleBinNumber, tempSTABinValue);
            }
        }

        
        for(int PtIndex = 1; PtIndex <= (int)(PtScale/2); PtIndex++) {
            double ParticleBinValue = Particle2simPtHist->GetBinContent(PtIndex);
            double STABinValue = STA2simPtHist->GetBinContent(PtIndex);
            if(ParticleBinValue == 0.)
                ParticleBinValue += 1.;
            double EfficiencyBinValue = STABinValue / ParticleBinValue * 100.;
            double EfficiencyBinError = sqrt(EfficiencyBinValue * (100. - EfficiencyBinValue) / ParticleBinValue);
            cout << ParticleBinValue << ", " << STABinValue << ", " << EfficiencyBinValue << endl;
            Efficiency2simPtHist->SetBinContent(PtIndex, EfficiencyBinValue);
            Efficiency2simPtHist->SetBinError(PtIndex, EfficiencyBinError);

            TH1D* ChargeCheckHist = ChargeCheck2simPtHist->ProjectionY("ChargeCheck", PtIndex, PtIndex, "o");
            double ReverseChargeBinValue = ChargeCheckHist->GetBinContent(2);
            double CoverseChargeBinValue = ChargeCheckHist->GetBinContent(4);
            double TotalChargeBinValue = ReverseChargeBinValue + CoverseChargeBinValue;
            if(TotalChargeBinValue == 0.);
                TotalChargeBinValue += 1.;
            double ReverseChargeRato = ReverseChargeBinValue / TotalChargeBinValue;
            InverseChargeRato2simPtHist->SetBinContent(PtIndex, ReverseChargeRato);

            TH1D* DeltaPtHist = DeltaPtmaxPurity2simPtHist->ProjectionY("DeltaPt", PtIndex, PtIndex, "o");
            double DeltaPtMean = DeltaPtHist->GetMean();
            double DeltaPtRMS = DeltaPtHist->GetRMS();
            DeltaPt2simPtHist->SetBinContent(PtIndex, DeltaPtMean);
            DeltaPt2simPtHist->SetBinError(PtIndex, DeltaPtRMS);

            TH1D* DeltaPhiHist = DeltaPhimaxPurity2simPtHist->ProjectionY("DeltaPhi", PtIndex, PtIndex, "o");
            double DeltaPhiMean = DeltaPhiHist->GetMean();
            double DeltaPhiRMS = DeltaPhiHist->GetRMS();
            DeltaPhi2simPtHist->SetBinContent(PtIndex, DeltaPhiMean);
            DeltaPhi2simPtHist->SetBinError(PtIndex, DeltaPhiRMS);

            TH1D* DeltaEtaHist = DeltaEtamaxPurity2simPtHist->ProjectionY("DeltaEta", PtIndex, PtIndex, "o");
            double DeltaEtaMean = DeltaEtaHist->GetMean();
            double DeltaEtaRMS = DeltaEtaHist->GetRMS();
            DeltaEta2simPtHist->SetBinContent(PtIndex, DeltaEtaMean);
            DeltaEta2simPtHist->SetBinError(PtIndex, DeltaEtaRMS);
        }
        myEfficiencyHist->AddLast(Efficiency2simPtHist);
        myParticleHist->AddLast(Particle2simPtHist);
        mySTAHist->AddLast(STA2simPtHist);
        myChargeCheckHist->AddLast(InverseChargeRato2simPtHist);
        myDeltaPtHist->AddLast(DeltaPt2simPtHist);
    }
    double minX = 0;
    double minY = 0;
    double maxX = 110;
    double maxY = 40;

    TCanvas* myCanvas = new TCanvas("Canvas", "Canvas", 800, 600);
    myCanvas->cd();
    TPad* myPad = new TPad("Pad", "Pad", 0, 0, 1, 1);
    myPad->Draw();
    myPad->cd();

    ((TH1D*)(myParticleHist->At(0)))->SetStats(0);
    ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev");
    ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->CenterTitle(1);
    ((TH1D*)(myParticleHist->At(0)))->Draw();
    for(int Index = 0; Index < FileNumber; Index++) {
	((TH1D*)(mySTAHist->At(Index)))->SetStats(0);
        ((TH1D*)(mySTAHist->At(Index)))->SetLineColor(kRed+Index);
        ((TH1D*)(mySTAHist->At(Index)))->Draw("same");
    }
    TLegend *STALeg = new TLegend(0.6,0.1,0.9,0.3);
    STALeg->SetBorderSize(1);
    TString LegKey = "ParticleTrack";
    STALeg->AddEntry(myParticleHist->At(0), LegKey, "lpf");
    for(int Index = 0; Index < FileNumber; Index++) {
        LegKey = TypeName[Index];
        STALeg->AddEntry(mySTAHist->At(Index), LegKey, "lpf");
    }
    STALeg->Draw();
    string SaveName = OutputPlotNamepreFix + "_STA2simPt" + OutputPlotNameFix;
    myCanvas->SaveAs(SaveName.c_str());

    myPad->Clear();
    myPad->Update();
    double YScale = myPad->GetUymax() / 110.;
    ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev");
    ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->CenterTitle(1);
    ((TH1D*)(myEfficiencyHist->At(0)))->SetStats(0);
    ((TH1D*)(myEfficiencyHist->At(0)))->Scale(YScale);
    ((TH1D*)(myEfficiencyHist->At(0)))->SetLineColor(kRed);
    ((TH1D*)(myEfficiencyHist->At(0)))->Draw("same,ah");
    for(int Index = 1; Index < FileNumber; Index++) {
	((TH1D*)(myEfficiencyHist->At(Index)))->SetStats(0);
        ((TH1D*)(myEfficiencyHist->At(Index)))->Scale(YScale);
        ((TH1D*)(myEfficiencyHist->At(Index)))->SetLineColor(kRed+Index);
        ((TH1D*)(myEfficiencyHist->At(Index)))->Draw("same,ah");
    }
    myPad->Update();
    if(debug) cout << "Y: " << myPad->GetUymax() << endl;
    double YAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmin();
    double YAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmax();
    int YAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetNbins();
    TGaxis* YAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmin(), myPad->GetUymax(), 0, 110, 510, "-R");
    YAxis->SetLineColor(kGreen);
    YAxis->SetLabelColor(kGreen);
    YAxis->SetTitle("Efficiency of STA for simPts");
    YAxis->CenterTitle(1);
    YAxis->Draw();
    double XAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmin();
    double XAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmax();
    int XAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetNbins();
    TGaxis* XAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmax(), myPad->GetUymin(), XAxisMinValue, XAxisMaxValue, 510, "+L");
    XAxis->SetTitle("simPt/Gev");
    XAxis->CenterTitle(1);
    XAxis->Draw();
    TLegend *EffLeg = new TLegend(0.1,0.9,0.4,1.0);
    EffLeg->SetBorderSize(1);
    for(int Index = 0; Index < FileNumber; Index++) {
        TString LegKey = TypeName[Index];
        EffLeg->AddEntry(myEfficiencyHist->At(Index), LegKey, "lpf");
    }
    EffLeg->Draw();
    string SaveName = OutputPlotNamepreFix + "_Eff2simPt" + OutputPlotNameFix;
    myCanvas->SaveAs(SaveName.c_str());

    ((TH1D*)(myDeltaPtHist->At(0)))->SetStats(0);
    ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev");
    ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->CenterTitle(1);
    ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->SetTitle("deltPt/simPt");
    ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->CenterTitle(1);
    ((TH1D*)(myDeltaPtHist->At(0)))->SetLineColor(kRed);
    ((TH1D*)(myDeltaPtHist->At(0)))->Draw("");
    for(int Index = 1; Index < FileNumber; Index++) {
	    ((TH1D*)(myDeltaPtHist->At(Index)))->SetStats(0);
	    //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->SetTitle("simPt/Gev");
	    //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->CenterTitle(1);
	    //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->SetTitle("deltPt/simPt");
	    //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->CenterTitle(1);
        ((TH1D*)(myDeltaPtHist->At(Index)))->SetLineColor(kRed+Index);
        ((TH1D*)(myDeltaPtHist->At(Index)))->Draw("same");
        //SaveName = OutputPlotNamepreFix + TypeName[Index] + "DeltaPt" + OutputPlotNameFix;
        //myCanvas->SaveAs(SaveName.c_str());
    }
    TLegend *PtLeg = new TLegend(0.6,0.8,0.9,0.9);
    PtLeg->SetBorderSize(1);
    for(int Index = 0; Index < FileNumber; Index++) {
        TString LegKey = TypeName[Index];
        PtLeg->AddEntry(myDeltaPtHist->At(Index), LegKey, "lpf");
    }
    PtLeg->Draw();
    SaveName = OutputPlotNamepreFix + "_DeltaPt" + OutputPlotNameFix;
    myCanvas->SaveAs(SaveName.c_str());
}
예제 #4
0
void PlotPotential2D( const TString &sim, Int_t time, Int_t zoom=2, Int_t Nbins=2, const TString &options="") {

#ifdef __CINT__
    gSystem->Load("libplasma.so");
#endif

    PlasmaGlob::Initialize();

    // Palettes!
    gROOT->Macro("PlasmaPalettes.C");

    // Init Units table
    PUnits::UnitsTable::Get();

    // Load PData
    PData *pData = PData::Get(sim.Data());
    pData->LoadFileNames(time);
    if(!pData->IsInit()) return;

    TString opt = options;

    // More makeup
    gStyle->SetPadGridY(0);
    if(opt.Contains("gridx")) {
        gStyle->SetPadGridX(1);
    }
    if(opt.Contains("gridy")) {
        gStyle->SetPadGridY(1);
    }


    // Some plasma constants
    Double_t n0 = pData->GetPlasmaDensity();
    Double_t omegap = pData->GetPlasmaFrequency();
    Double_t timedepth = 1.;
    if(omegap!=0.0) timedepth = 1/omegap;
    Double_t kp = pData->GetPlasmaK();
    Double_t skindepth = 1.;
    if(kp!=0.0) skindepth = 1/kp;
    Double_t E0 = pData->GetPlasmaE0();

    // Some beam properties:
    Double_t Ebeam = pData->GetBeamEnergy();
    Double_t gamma = pData->GetBeamGamma();
    Double_t vbeam = pData->GetBeamVelocity();

    cout << Form(" - Bunch gamma      = %8.4f", gamma ) << endl;
    cout << Form(" - Bunch velocity   = %8.4f c", vbeam ) << endl;

    // Other parameters
    Float_t trapPotential = 1.0 - (1.0/gamma);
    cout << Form(" - Trap. potential  = %8.4f mc2/e",trapPotential) << endl;
    cout << endl;

    // Time in OU
    Float_t Time = pData->GetRealTime();
    // z start of the plasma in normalized units.
    Float_t zStartPlasma = pData->GetPlasmaStart()*kp;
    // z start of the beam in normalized units.
    Float_t zStartBeam = pData->GetBeamStart()*kp;
    // z start of the neutral in normalized units.
    Float_t zStartNeutral = pData->GetNeutralStart()*kp;
    // z end of the neutral in normalized units.
    Float_t zEndNeutral = pData->GetNeutralEnd()*kp;

    if(opt.Contains("center")) {
        Time -= zStartPlasma;
        if(opt.Contains("comov"))      // Centers on the head of the beam.
            Time += zStartBeam;
    }
    Float_t shiftz = pData->Shift(opt);
    //  cout << "Shift = " << shiftz << endl;


    // Calculate the "axis range" in number of bins. If Nbins==0 a RMS width is taken.
    Double_t rms0 = pData->GetBeamRmsY() * kp;
    if(pData->IsCyl())  rms0  = pData->GetBeamRmsR() * kp;

    Int_t FirstyBin = 0;
    Int_t LastyBin = 0;
    if(Nbins==0) {
        if(rms0>0.0)
            Nbins =  TMath::Nint(rms0 / pData->GetDX(1));
        else
            Nbins = 1;
    }

    // Slice width limits.
    if(!pData->IsCyl()) {
        FirstyBin = pData->GetNX(1)/2 + 1 - Nbins;
        LastyBin =  pData->GetNX(1)/2 + Nbins;
    } else {
        FirstyBin = 1;
        LastyBin  = Nbins;
    }
    // ----------------------------------------------------------------------------------


    // Get charge density histos
    Int_t Nspecies = pData->NSpecies();
    TH2F **hDen2D = new TH2F*[Nspecies];
    // Get charge density on-axis
    TH1F **hDen1D = new TH1F*[Nspecies];
    // And electric current (integrated)
    TH1F **hCur1D = new TH1F*[Nspecies];
    for(Int_t i=0; i<Nspecies; i++) {

        hDen2D[i] = NULL;

        if(!pData->GetChargeFileName(i))
            continue;

        cout << Form(" Getting charge density of specie: ") << i << endl;


        char hName[24];
        sprintf(hName,"hDen2D_%i",i);
        hDen2D[i] = (TH2F*) gROOT->FindObject(hName);
        if(hDen2D[i]) delete hDen2D[i];

        if(!pData->Is3D())
            hDen2D[i] = pData->GetCharge(i,opt);
        else
            hDen2D[i] = pData->GetCharge2DSliceZY(i,-1,Nbins,opt+"avg");

        hDen2D[i]->SetName(hName);
        hDen2D[i]->GetXaxis()->CenterTitle();
        hDen2D[i]->GetYaxis()->CenterTitle();
        hDen2D[i]->GetZaxis()->CenterTitle();

        if(opt.Contains("comov"))
            hDen2D[i]->GetXaxis()->SetTitle("k_{p} #zeta");
        else
            hDen2D[i]->GetXaxis()->SetTitle("k_{p} z");

        if(pData->IsCyl())
            hDen2D[i]->GetYaxis()->SetTitle("k_{p} r");
        else
            hDen2D[i]->GetYaxis()->SetTitle("k_{p} y");

        hDen2D[i]->GetZaxis()->SetTitle("n [n_{0}]");


        hDen1D[i] = NULL;
        hCur1D[i] = NULL;

        if(!pData->GetEfieldFileName(i))
            continue;

        sprintf(hName,"hDen1D_%i",i);
        hDen1D[i] = (TH1F*) gROOT->FindObject(hName);
        if(hDen1D[i]) delete hDen1D[i];

        // 1D histograms
        if(pData->Is3D()) {
            hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins,opt+"avg");
        } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0).
            hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opt+"avg");
        } else { // 2D cartesian
            hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opt+"avg");
        }
        hDen1D[i]->SetName(hName);

        // if(hDen1D[i]) delete hDen1D[i];
        // hDen1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin);
        // hDen1D[i]->Scale(1.0/(LastyBin-FirstyBin+1));

        if(opt.Contains("comov"))
            hDen1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]");
        else
            hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");

        if(i==0)
            hDen1D[i]->GetYaxis()->SetTitle("n/n_{0}");
        else if(i==1)
            hDen1D[i]->GetYaxis()->SetTitle("n_{b}/n_{0}");
        else
            hDen1D[i]->GetYaxis()->SetTitle("n_{i}/n_{0}");

        // Get the current:
        if(i==0) continue;

        sprintf(hName,"hCur1D_%i",i);
        hCur1D[i] = (TH1F*) gROOT->FindObject(hName);
        if(hCur1D[i]) delete hCur1D[i];

        if(opt.Contains("curr")) {
            // To get the current is needed to read in a wider transverse range which includes all the charge.
            Int_t NbinsT = 100;
            if(pData->Is3D()) {
                hCur1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,-1,NbinsT,opt+"int");
            } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0).
                hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,NbinsT,opt+"int");
            } else { // 2D cartesian
                hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,opt+"int");
            }
            hCur1D[i]->SetName(hName);

            if(opt.Contains("comov")) {
                hCur1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]");
                hCur1D[i]->GetYaxis()->SetTitle("dn/d#zeta [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]");
            } else {
                hCur1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");
                hCur1D[i]->GetYaxis()->SetTitle("dn/dz [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]");
            }

            Int_t NB = hCur1D[i]->GetNbinsX();
            Float_t dx = (hCur1D[i]->GetBinLowEdge(1)-hCur1D[i]->GetBinLowEdge(NB+1))/NB;

            // hCur1D[i]->Scale(dx);
            Float_t Charge = hCur1D[i]->Integral() * dx;

            cout << Form(" Integrated charge of specie %3i = %8.4f n0 * kp^-3",i,Charge) << endl;
        }
    }


    // Get electric fields 2D
    const Int_t Nfields = 3;
    TH2F **hE2D = new TH2F*[Nfields];
    TH1F **hE1D = new TH1F*[Nfields];
    TH2F *hV2D = NULL;
    TH1F *hV1D = NULL;
    for(Int_t i=0; i<Nfields; i++) {
        hE2D[i] = NULL;
        hE1D[i] = NULL;

        if(!pData->GetEfieldFileName(i))
            continue;

        cout << Form(" Getting electric field number ") << i+1 << endl;

        char hName[24];
        sprintf(hName,"hE2D_%i",i);
        hE2D[i] = (TH2F*) gROOT->FindObject(hName);
        if(hE2D[i]) delete hE2D[i];

        if(!pData->Is3D())
            hE2D[i] = pData->GetEField(i,opt);
        else
            hE2D[i] = pData->GetEField2DSliceZY(i,-1,Nbins,opt+"avg");

        hE2D[i]->SetName(hName);
        hE2D[i]->GetXaxis()->CenterTitle();
        hE2D[i]->GetYaxis()->CenterTitle();
        hE2D[i]->GetZaxis()->CenterTitle();
        if(opt.Contains("comov"))
            hE2D[i]->GetXaxis()->SetTitle("k_{p} #zeta");
        else
            hE2D[i]->GetXaxis()->SetTitle("k_{p} z");

        if(pData->IsCyl())
            hE2D[i]->GetYaxis()->SetTitle("k_{p} r");
        else
            hE2D[i]->GetYaxis()->SetTitle("k_{p} y");

        if(i==0)
            hE2D[i]->GetZaxis()->SetTitle("E_{z}/E_{0}");
        else if(i==1)
            hE2D[i]->GetZaxis()->SetTitle("E_{y}/E_{0}");
        else if(i==2)
            hE2D[i]->GetZaxis()->SetTitle("E_{x}/E_{0}");

        sprintf(hName,"hE1D_%i",i);
        hE1D[i] = (TH1F*) gROOT->FindObject(hName);
        if(hE1D[i]) delete hE1D[i];

        // 1D histograms
        char nam[3];
        sprintf(nam,"e%i",i+1);
        if(pData->Is3D()) {

            if(i==0)
                hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opt+"avg");
            else
                hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opt+"avg");

        } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0).

            hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opt+"avg");

        } else { // 2D cartesian

            if(i==0)
                hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opt+"avg");
            else
                hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opt+"avg");
        }

        hE1D[i]->SetName(hName);
        if(opt.Contains("comov"))
            hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]");
        else
            hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");

        if(i==0)
            hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]");
        else if(i==1)
            hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}]");
        else if(i==2)
            hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}]");

        // Alternative
        // if(hE1D[i]) delete hE1D[i];
        // hE1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin);
        // hE1D[i]->Scale(1.0/(LastyBin-FirstyBin+1));

        if(i==0) {
            Int_t   NbinsX = hE2D[i]->GetNbinsX();
            Int_t   NbinsY = hE2D[i]->GetNbinsY();

            Float_t dx = pData->GetDX(0);

            sprintf(hName,"hV2D");
            hV2D = (TH2F*) hE2D[i]->Clone(hName);
            hV2D->Reset();

            sprintf(hName,"hV1D");
            hV1D = (TH1F*) hE1D[i]->Clone(hName);
            hV1D->Reset();

            for(Int_t j=NbinsY; j>0; j--) {
                Double_t integral = 0.0;
                for(Int_t k=NbinsX; k>0; k--) {
                    integral += hE2D[i]->GetBinContent(k,j) * dx;
                    hV2D->SetBinContent(k,j,integral);
                }
            }

            Double_t integral = 0.0;
            for(Int_t k=NbinsX; k>0; k--) {
                integral += hE1D[i]->GetBinContent(k) * dx;
                hV1D->SetBinContent(k,integral);
            }

        }

    }

    // Now, combine the electric field components into the total |E|
    // and calculate ionization probability for He:
    // Outter Helium electron
    Double_t Eion0 = 24.59 * PUnits::eV;
    Double_t Z     = 1;

    TH2F *hETotal2D = (TH2F*) hE2D[0]->Clone("hETotal2D");
    hETotal2D->Reset();
    TH2F *hIonProb2D = (TH2F*) hE2D[0]->Clone("hIonProb2D");
    hIonProb2D->Reset();
    TH1F *hETotal1D = (TH1F*) hE1D[0]->Clone("hETotal1D");
    hETotal1D->Reset();
    TH1F *hIonProb1D = (TH1F*) hE1D[0]->Clone("hIonProb1D");
    hIonProb1D->Reset();
    {
        Int_t NbinsX = hE2D[0]->GetNbinsX();
        Int_t NbinsY = hE2D[0]->GetNbinsY();
        for(Int_t j=0; j<NbinsX; j++) {
            for(Int_t k=0; k<NbinsY; k++) {
                Double_t E1 = hE2D[0]->GetBinContent(j,k);
                Double_t E2 = hE2D[1]->GetBinContent(j,k);
                Double_t E3 = hE2D[2]->GetBinContent(j,k);
                Double_t E  = TMath::Sqrt(E1*E1+E2*E2+E3*E3);

                hETotal2D->SetBinContent(j,k,E);

                E *= E0;

                // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond;
                Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond;
                // if(IonProb>1) IonProb = 1.0;
                // cout << "Ion prob = " << IonProb << endl;
                hIonProb2D->SetBinContent(j,k,IonProb);
            }
            Double_t E1 = hE1D[0]->GetBinContent(j);
            Double_t E2 = hE1D[1]->GetBinContent(j);
            Double_t E3 = hE1D[2]->GetBinContent(j);
            Double_t E  = TMath::Sqrt(E1*E1+E2*E2+E3*E3);

            hETotal1D->SetBinContent(j,E);

            E *= E0;

            // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond;
            Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond;
            // cout << "Ion prob = " << IonProb << endl;

            hIonProb1D->SetBinContent(j,IonProb);


        }
    }
    hETotal2D->GetZaxis()->SetTitle("E [E_{0}]");
    hIonProb2D->GetZaxis()->SetTitle("W_{ADK} [fs^{-1}]");
    hETotal1D->GetYaxis()->SetTitle("E [E_{0}]");
    hIonProb1D->GetYaxis()->SetTitle("W_{ADK} [fs^{-1}]");



    // Tunning the Histograms
    // ---------------------

    // Chaning to user units:
    // --------------------------

    if(opt.Contains("units") && n0) {

        for(Int_t i=0; i<Nspecies; i++) {

            if(!hDen2D[i]) continue;

            Int_t NbinsX = hDen2D[i]->GetNbinsX();
            Float_t xMin = skindepth * hDen2D[i]->GetXaxis()->GetXmin() / PUnits::um;
            Float_t xMax = skindepth * hDen2D[i]->GetXaxis()->GetXmax() / PUnits::um;
            Int_t NbinsY = hDen2D[i]->GetNbinsY();
            Float_t ymin = skindepth * hDen2D[i]->GetYaxis()->GetXmin() / PUnits::um;
            Float_t ymax = skindepth * hDen2D[i]->GetYaxis()->GetXmax() / PUnits::um;
            hDen2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax);
            // for(Int_t j=0;j<hDen2D[i]->GetNbinsX();j++) {
            // 	for(Int_t k=0;k<hDen2D[i]->GetNbinsY();k++) {
            // 	  hDen2D[i]->SetBinContent(j,k, hDen2D[i]->GetBinContent(j,k) * n0 / (1e17/PUnits::cm3) );
            // 	}
            // }

            if(pData->IsCyl())
                hDen2D[i]->GetYaxis()->SetTitle("r [#mum]");
            else
                hDen2D[i]->GetYaxis()->SetTitle("y [#mum]");

            if(opt.Contains("comov"))
                hDen2D[i]->GetXaxis()->SetTitle("#zeta [#mum]");
            else
                hDen2D[i]->GetXaxis()->SetTitle("z [#mum]");

            // if(i==0)
            // 	hDen2D[i]->GetZaxis()->SetTitle("n_{e} [10^{17}/cm^{3}]");
            // else if(i==1)
            // 	hDen2D[i]->GetZaxis()->SetTitle("n_{b} [10^{17}/cm^{3}]");
            // else
            // 	hDen2D[i]->GetZaxis()->SetTitle("n_{i} [10^{17}/cm^{3}]");

            hDen1D[i]->SetBins(NbinsX,xMin,xMax);
            // for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) {
            // 	hDen1D[i]->SetBinContent(j, hDen1D[i]->GetBinContent(j) * n0 / (1e17/PUnits::cm3) );
            // }


            if(opt.Contains("comov"))
                hDen1D[i]->GetXaxis()->SetTitle("#zeta [#mum]");
            else
                hDen1D[i]->GetXaxis()->SetTitle("z [#mum]");

            if(hCur1D[i]) {

                hCur1D[i]->SetBins(NbinsX,xMin,xMax);
                Double_t binSize = (xMax - xMin)/NbinsX;  // bin size in um.

                Double_t dV = skindepth * skindepth * skindepth;
                Double_t lightspeed =  PConst::c_light / (PUnits::um/PUnits::femtosecond);

                hCur1D[i]->Scale(TMath::Abs(n0 * dV * (PConst::ElectronCharge/PUnits::picocoulomb) * (kp * PConst::c_light * PUnits::femtosecond)));

                hCur1D[i]->GetYaxis()->SetTitle("I[kA]");
                hCur1D[i]->GetYaxis()->SetTitle("");
                if(opt.Contains("comov"))
                    hCur1D[i]->GetXaxis()->SetTitle("#zeta [#mum]");
                else
                    hCur1D[i]->GetXaxis()->SetTitle("z [#mum]");


                Float_t Charge = hCur1D[i]->Integral() * (binSize / lightspeed);
                cout << Form(" Integrated charge of specie %3i = %8f pC",i,Charge) << endl;
            }
        }


        for(Int_t i=0; i<Nfields; i++) {
            Int_t NbinsX = hE2D[i]->GetNbinsX();
            Float_t xMin = skindepth * hE2D[i]->GetXaxis()->GetXmin() / PUnits::um;
            Float_t xMax = skindepth * hE2D[i]->GetXaxis()->GetXmax() / PUnits::um;
            Int_t NbinsY = hE2D[i]->GetNbinsY();
            Float_t ymin = skindepth * hE2D[i]->GetYaxis()->GetXmin() / PUnits::um;
            Float_t ymax = skindepth * hE2D[i]->GetYaxis()->GetXmax() / PUnits::um;
            hE2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax);
            hE1D[i]->SetBins(NbinsX,xMin,xMax);

            for(Int_t j=0; j<hE2D[i]->GetNbinsX(); j++) {
                for(Int_t k=0; k<hE2D[i]->GetNbinsY(); k++) {
                    hE2D[i]->SetBinContent(j,k, hE2D[i]->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) );
                }
                hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) );
            }

            if(pData->IsCyl())
                hE2D[i]->GetYaxis()->SetTitle("r [#mum]");
            else
                hE2D[i]->GetYaxis()->SetTitle("y [#mum]");

            if(opt.Contains("comov"))
                hE2D[i]->GetXaxis()->SetTitle("#zeta [#mum]");
            else
                hE2D[i]->GetXaxis()->SetTitle("z [#mum]");

            if(i==0)
                hE2D[i]->GetZaxis()->SetTitle("E_{z} [GV/m]");
            else if(i==1)
                hE2D[i]->GetZaxis()->SetTitle("E_{y} [GV/m]");
            else if(i==2)
                hE2D[i]->GetZaxis()->SetTitle("E_{x} [GV/m]");


            if(opt.Contains("comov"))
                hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]");
            else
                hE1D[i]->GetXaxis()->SetTitle("z [mm]");

            if(i==0)
                hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]");
            else if(i==1)
                hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]");
            else if(i==2)
                hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]");


            if(i==0) {
                hV2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax);
                hETotal2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax);
                hIonProb2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax);
                hV1D->SetBins(NbinsX,xMin,xMax);
                hETotal1D->SetBins(NbinsX,xMin,xMax);
                hIonProb1D->SetBins(NbinsX,xMin,xMax);
                for(Int_t j=0; j<NbinsX; j++) {
                    for(Int_t k=0; k<NbinsY; k++) {
                        hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) * E0 * skindepth / (PUnits::MV));
                        hETotal2D->SetBinContent(j,k, hETotal2D->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) );
                    }
                    hV1D->SetBinContent(j, hV1D->GetBinContent(j) * ( E0 * skindepth / (PUnits::MV) ) );
                    hETotal1D->SetBinContent(j, hETotal1D->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) );
                }

                if(pData->IsCyl()) {
                    hV2D->GetYaxis()->SetTitle("r [#mum]");
                    hETotal2D->GetYaxis()->SetTitle("r [#mum]");
                } else {
                    hV2D->GetYaxis()->SetTitle("y [#mum]");
                    hETotal2D->GetYaxis()->SetTitle("y [#mum]");

                }

                if(opt.Contains("comov")) {
                    hV2D->GetXaxis()->SetTitle("#zeta [#mum]");
                    hV1D->GetXaxis()->SetTitle("#zeta [#mum]");
                    hETotal2D->GetXaxis()->SetTitle("#zeta [#mum]");
                    hETotal1D->GetXaxis()->SetTitle("#zeta [#mum]");
                } else {
                    hV2D->GetXaxis()->SetTitle("z [#mum]");
                    hV2D->GetXaxis()->SetTitle("z [#mum]");
                    hETotal2D->GetXaxis()->SetTitle("z [#mum]");
                    hETotal1D->GetXaxis()->SetTitle("z [#mum]");
                }

                hV2D->GetZaxis()->SetTitle("#Psi-#Psi_{t} [MV]");
                hV1D->GetYaxis()->SetTitle("#Psi-#Psi_{t} [MV]");
                hETotal2D->GetZaxis()->SetTitle("E [GV/m]");
                hETotal1D->GetYaxis()->SetTitle("E [GV/m]");
            }
        }
    }


    // --------------------------------------------------- Vertical Zoom ------------

    Float_t yRange    = (hDen2D[0]->GetYaxis()->GetXmax() - hDen2D[0]->GetYaxis()->GetXmin())/zoom;
    Float_t midPoint = (hDen2D[0]->GetYaxis()->GetXmax() + hDen2D[0]->GetYaxis()->GetXmin())/2.;
    Float_t yMin = midPoint-yRange/2;
    Float_t yMax = midPoint+yRange/2;
    if(pData->IsCyl()) {
        yMin = pData->GetXMin(1);
        yMax = yRange;
    }

    for(Int_t i=0; i<Nspecies; i++) {
        if(!hDen2D[i]) continue;
        hDen2D[i]->GetYaxis()->SetRangeUser(yMin,yMax);
    }

    for(Int_t i=0; i<Nfields; i++) {
        if(!hE2D[i]) continue;
        hE2D[i]->GetYaxis()->SetRangeUser(yMin,yMax);
    }

    hETotal2D->GetYaxis()->SetRangeUser(yMin,yMax);

    Float_t xMin = hDen2D[0]->GetXaxis()->GetXmin();
    Float_t xMax = hDen2D[0]->GetXaxis()->GetXmax();
    Float_t xRange = xMax - xMin;

    // ------------- z Zoom --------------------------------- Plasma palette -----------
    // Set the range of the plasma charge density histogram for maximum constrast
    // using a dynamic palette wich adjust the nominal value to a certain color.


    Float_t density = 1;
    Float_t Base  = density;

    Float_t *Max = new Float_t[Nspecies];
    Float_t *Min = new Float_t[Nspecies];

    for(Int_t i=0; i<Nspecies; i++) {
        if(!hDen2D[i]) continue;

        Max[i] = hDen2D[i]->GetMaximum();
        Min[i] = 1.01E-1 * Base;
        if(i==1) Min[i] = 1.01E-1 * Base;
        if(i==2) Min[i] = 1.01E-4 * Base;
        hDen2D[i]->GetZaxis()->SetRangeUser(Min[i],Max[i]);
    }

    // Dynamic plasma palette
    const Int_t plasmaDNRGBs = 3;
    const Int_t plasmaDNCont = 64;
    Float_t basePos = 0.5;
    if(Max[0]!=Min[0]) {
        if(opt.Contains("logz")) {
            Float_t a = 1.0/(TMath::Log10(Max[0])-TMath::Log10(Min[0]));
            Float_t b = TMath::Log10(Min[0]);
            basePos = a*(TMath::Log10(Base) - b);

        } else {
            basePos = (1.0/(Max[0]-Min[0]))*(Base - Min[0]);
        }
    }

    Double_t plasmaDStops[plasmaDNRGBs] = { 0.00, basePos, 1.00 };
    Double_t plasmaDRed[plasmaDNRGBs]   = { 0.99, 0.90, 0.00 };
    Double_t plasmaDGreen[plasmaDNRGBs] = { 0.99, 0.90, 0.00 };
    Double_t plasmaDBlue[plasmaDNRGBs]  = { 0.99, 0.90, 0.00 };

    PPalette * plasmaPalette = (PPalette*) gROOT->FindObject("plasma");
    plasmaPalette->CreateGradientColorTable(plasmaDNRGBs, plasmaDStops,
                                            plasmaDRed, plasmaDGreen, plasmaDBlue, plasmaDNCont);
    // Change the range of z axis for the fields to be symmetric.
    Float_t *Emax = new Float_t[Nfields];
    Float_t *Emin = new Float_t[Nfields];
    for(Int_t i=0; i<Nfields; i++) {
        Emax[i] = hE2D[i]->GetMaximum();
        Emin[i] = hE2D[i]->GetMinimum();
        if(Emax[i] > TMath::Abs(Emin[i]))
            Emin[i] = -Emax[i];
        else
            Emax[i] = -Emin[i];
        hE2D[i]->GetZaxis()->SetRangeUser(Emin[i],Emax[i]);
    }


    // Potential
    if(opt.Contains("units")) {
        trapPotential *=  ( E0 * skindepth / (PUnits::MV) );
    }

    Float_t Vmin = hV1D->GetMinimum();
    {   // Shift potential
        Int_t   NbinsX = hV2D->GetNbinsX();
        Int_t   NbinsY = hV2D->GetNbinsY();
        for(Int_t j=0; j<NbinsX; j++) {
            for(Int_t k=0; k<NbinsY; k++) {
                hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) - Vmin -trapPotential);
            }
            hV1D->SetBinContent(j, hV1D->GetBinContent(j) - Vmin -trapPotential);
        }
    }

    Vmin = hV1D->GetMinimum();
    Float_t Vmax = hV1D->GetMaximum();

    // Dynamic potential palette
    const Int_t potPNRGBs = 5;
    const Int_t potPNCont = 64;
    Float_t zeroPos = -Vmin/(Vmax-Vmin);

    Double_t potPStops[potPNRGBs] = { 0.00, zeroPos-3.0/potPNCont,zeroPos, zeroPos+3.0/potPNCont, 1.00 };
    Double_t potPRed[potPNRGBs]   = { 0.518, 0.965, 0.90, 0.498, 0.106 };
    Double_t potPGreen[potPNRGBs] = { 0.078, 0.925, 0.90, 0.718, 0.078 };
    Double_t potPBlue[potPNRGBs]  = { 0.106, 0.353, 0.90, 0.780, 0.518 };

    PPalette * potentialPalette = (PPalette*) gROOT->FindObject("rbow2inv");
    potentialPalette->CreateGradientColorTable(potPNRGBs, potPStops,
            potPRed, potPGreen, potPBlue, potPNCont);

    // Extract contours
    TCanvas* c = new TCanvas("c","Contour List",0,0,600,600);
    c->cd();

    // Potential
    TH2F *hV2Dc = (TH2F*) hV2D->Clone("hV2Dc");
    const Int_t Ncontours = 25;
    Double_t contours[Ncontours];
    for(Int_t i=0; i<Ncontours; i++) {
        contours[i] = i*(trapPotential/5.0) - trapPotential;
    }
    hV2Dc->SetContour(Ncontours, contours);
    hV2Dc->Draw("cont list");

    c->Update();
    TObjArray *contsV2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours");
    TClonesArray graphsV2D("TGraph",Ncontours);
    {
        Int_t ncontours = contsV2D->GetSize();
        TList* clist = NULL;
        Int_t nGraphs = 0;
        TGraph *gr = NULL;
        for(Int_t i = 0; i < ncontours; i++) {
            if(i==0) continue;

            clist = (TList*) contsV2D->At(i);

            for(Int_t j = 0 ; j < clist->GetSize(); j++) {
                gr = (TGraph*) clist->At(j);
                if(!gr) continue;

                gr->SetLineWidth(1);
                gr->SetLineColor(kGray+1);

                if( !((i)%5) ) {
                    gr->SetLineWidth(2);
                    gr->SetLineColor(kGray+2);
                }
                new(graphsV2D[nGraphs]) TGraph(*gr) ;
                nGraphs++;
            }
        }
    }

    // Ion probability
    hIonProb2D->GetZaxis()->SetRangeUser(0.00501,80);

    TH2F *hIonProb2Dc = (TH2F*) hIonProb2D->Clone("hIonProb2Dc");
    const Int_t NcontI = 4;
    Double_t contI[NcontI] = {0.01,0.1,1.0,10.0};
    hIonProb2Dc->SetContour(NcontI, contI);
    hIonProb2Dc->Draw("cont list");

    c->Update();
    TObjArray *contsI2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours");
    TClonesArray graphsI2D("TGraph",NcontI);
    {
        Int_t ncontours = contsI2D->GetSize();
        TList* clist = NULL;
        Int_t nGraphs = 0;
        TGraph *gr = NULL;
        for(Int_t i = 0; i < ncontours; i++) {
            clist = (TList*) contsI2D->At(i);

            for(Int_t j = 0 ; j < clist->GetSize(); j++) {
                gr = (TGraph*) clist->At(j);
                if(!gr) continue;

                if( !(i%2) ) {
                    gr->SetLineWidth(1);
                    gr->SetLineStyle(2);
                    gr->SetLineColor(kOrange-3);
                } else {
                    gr->SetLineWidth(1);
                    gr->SetLineStyle(1);
                    gr->SetLineColor(kOrange-3);
                }

                new(graphsI2D[nGraphs]) TGraph(*gr) ;
                nGraphs++;
            }
        }
    }




    // "Axis range" in Osiris units:
    Double_t ylow  = hDen2D[0]->GetYaxis()->GetBinLowEdge(FirstyBin);
    Double_t yup = hDen2D[0]->GetYaxis()->GetBinUpEdge(LastyBin);
    Double_t xmin = hDen2D[0]->GetXaxis()->GetXmin();
    Double_t xmax = hDen2D[0]->GetXaxis()->GetXmax();

    TLine *lineYzero = new TLine(xmin,0.0,xmax,0.0);
    lineYzero->SetLineColor(kGray+2);
    lineYzero->SetLineStyle(2);

    TLine *lineYup = new TLine(xmin,yup,xmax,yup);
    lineYup->SetLineColor(kGray+1);
    lineYup->SetLineStyle(2);

    TLine *lineYdown = new TLine(xmin,ylow,xmax,ylow);
    lineYdown->SetLineColor(kGray+1);
    lineYdown->SetLineStyle(2);

    zStartPlasma -= shiftz;
    zStartNeutral -= shiftz;
    zEndNeutral -= shiftz;

    if(opt.Contains("units")) {
        zStartPlasma *= skindepth / PUnits::um;
        zStartNeutral *= skindepth / PUnits::um;
        zEndNeutral *= skindepth / PUnits::um;
    }

    //  cout << "Start plasma = " << zStartPlasma << endl;
    TLine *lineStartPlasma = new TLine(zStartPlasma,yMin,zStartPlasma,yMax);
    lineStartPlasma->SetLineColor(kGray+2);
    lineStartPlasma->SetLineStyle(2);
    lineStartPlasma->SetLineWidth(3);

    //  cout << "Start plasma = " << zStartNeutral << endl;
    TLine *lineStartNeutral = new TLine(zStartNeutral,yMin,zStartNeutral,yMax);
    lineStartNeutral->SetLineColor(kGray+1);
    lineStartNeutral->SetLineStyle(2);
    lineStartNeutral->SetLineWidth(3);

    //  cout << "End plasma = " << zEndNeutral << endl;
    TLine *lineEndNeutral = new TLine(zEndNeutral,yMin,zEndNeutral,yMax);
    lineEndNeutral->SetLineColor(kGray+1);
    lineEndNeutral->SetLineStyle(2);
    lineEndNeutral->SetLineWidth(3);


    // Plotting
    // -----------------------------------------------

    // Canvas setup
    TCanvas *C = new TCanvas("C","2D Charge density and Electric field",750,666);

    // Palettes setup
    TExec *exPlasma = new TExec("exPlasma","plasmaPalette->cd();");
    TExec *exElec   = new TExec("exElec","redelectronPalette->cd();");
    TExec *exHot    = new TExec("exHot","hotPalette->cd();");
    TExec *exField  = new TExec("exField","rbow2Palette->cd();");
    TExec *exFieldT = new TExec("exFieldT","redPalette->cd();");
    TExec *exIonP   = new TExec("exIonP","redPalette->cd();");
    TExec *exPot    = new TExec("exPot","rbow2invPalette->cd();");

    // Actual Plotting!
    // ------------------------------------------------------------

    // Output file
    TString fOutName = Form("./%s/Plots/Potential2D/Potential2D",pData->GetPath().c_str());
    fOutName += Form("-%s_%i",pData->GetName(),time);

    // Setup Pad layout:
    Float_t lMargin = 0.15;
    Float_t rMargin = 0.18;
    Float_t bMargin = 0.15;
    Float_t tMargin = 0.04;
    Float_t factor = 1.0;
    PlasmaGlob::CanvasAsymPartition(C,2,lMargin,rMargin,bMargin,tMargin,factor);

    TPad *pad[2];
    TString sLabels[] = {"(a)","(b)"};
    // Text objects
    TPaveText **textLabel = new TPaveText*[2];

    C->cd(0);
    char pname[16];
    sprintf(pname,"pad_%i",1);
    pad[0] = (TPad*) gROOT->FindObject(pname);
    pad[0]->Draw();
    pad[0]->cd(); // <---------------------------------------------- Top Plot ---------
    if(opt.Contains("logz")) {
        pad[0]->SetLogz(1);
    } else {
        pad[0]->SetLogz(0);
    }
    pad[0]->SetFrameLineWidth(3);
    pad[0]->SetTickx(1);

    // Re-range:
    for(Int_t i=0; i<Nspecies; i++) {
        if(!hDen2D[i]) continue;
        hDen2D[i]->GetYaxis()->SetRangeUser(yMin -(factor-1)*yRange, yMax);
    }


    TH2F *hFrame = (TH2F*) gROOT->FindObject("hFrame1");
    if(hFrame) delete hFrame;
    hFrame = (TH2F*) hDen2D[0]->Clone("hFrame1");
    hFrame->Reset();

    hFrame->SetLabelFont(42,"xyz");
    hFrame->SetTitleFont(42,"xyz");

    hFrame->GetYaxis()->SetNdivisions(505);
    hFrame->GetYaxis()->SetLabelSize(0.085);
    hFrame->GetYaxis()->SetTitleSize(0.09);
    hFrame->GetYaxis()->SetTitleOffset(0.7);
    hFrame->GetYaxis()->SetTickLength(0.02);

    hFrame->GetXaxis()->SetLabelOffset(999.);
    hFrame->GetXaxis()->SetTitleOffset(999.);
    hFrame->GetXaxis()->SetTickLength(0.04);

    // Frame asymmetry:
    hFrame->Draw("col");

    // hDen2D[0]->GetZaxis()->SetNdivisions(505);

    // Injected electrons if any
    if(Nspecies>=3) {
        if(hDen2D[2]) {
            exHot->Draw();
            hDen2D[2]->Draw("colz same");
        }
    }

    // Plasma
    hDen2D[0]->GetZaxis()->SetTitleFont(42);
    exPlasma->Draw();
    hDen2D[0]->Draw("colz same");

    // Beam driver.
    if(hDen2D[1]) {
        //    hDen2D[1]->GetZaxis()->SetNdivisions(505);
        exElec->Draw();
        hDen2D[1]->Draw("colz same");
    }

    {
        TGraph *gr = (TGraph*) graphsV2D.At(4);
        gr->Draw("C");
    }

    {
        TGraph *gr = (TGraph*) graphsI2D.At(1);
        gr->Draw("C");
    }


    if(opt.Contains("1dline")) {
        lineYzero->Draw();
        lineYdown->Draw();
        lineYup->Draw();
    }

    if(opt.Contains("sline")) {
        if(zStartPlasma>xmin && zStartPlasma<xmax)
            lineStartPlasma->Draw();
        if(zStartNeutral>xmin && zStartNeutral<xmax)
            lineStartNeutral->Draw();
        if(zEndNeutral>xmin && zEndNeutral<xmax)
            lineEndNeutral->Draw();
    }

    // lineYdown->Draw();
    // lineYup->Draw();

    // Palettes re-arrangement
    pad[0]->Update();
    Float_t y1 = pad[0]->GetBottomMargin();
    Float_t y2 = 1 - pad[0]->GetTopMargin();
    Float_t x1 = pad[0]->GetLeftMargin();
    Float_t x2 = 1 - pad[0]->GetRightMargin();

    TPaletteAxis *palette = NULL;
    if(Nspecies>=3) {
        if(hDen2D[2]) {
            palette = (TPaletteAxis*)hDen2D[2]->GetListOfFunctions()->FindObject("palette");
        }
    }
    if(palette) {
        palette->SetY2NDC(y2 - 0.00);
        palette->SetY1NDC(0.66*(y1+y2) + 0.00);
        palette->SetX1NDC(x2 + 0.005);
        palette->SetX2NDC(x2 + 0.03);
        //  palette->SetTitleFont(42);
        //  palette->SetTitleOffset(0.85);
        palette->SetTitleOffset(999.9);
        palette->SetTitleSize(0.075);
        palette->SetLabelFont(42);
        palette->SetLabelSize(0.075);
        palette->SetLabelOffset(0.001);
        palette->SetBorderSize(2);
        palette->SetLineColor(1);
    }

    palette = (TPaletteAxis*)hDen2D[0]->GetListOfFunctions()->FindObject("palette");
    if(palette) {
        palette->SetY2NDC(0.66*(y1+y2) - 0.00);
        palette->SetY1NDC(0.33*(y1+y2) + 0.00);
        palette->SetX1NDC(x2 + 0.005);
        palette->SetX2NDC(x2 + 0.03);
        // palette->SetTitleFont(42);
        palette->SetTitleOffset(0.80);
        palette->SetTitleSize(0.075);
        palette->SetLabelFont(42);
        palette->SetLabelSize(0.075);
        palette->SetLabelOffset(0.001);
        palette->SetBorderSize(2);
        palette->SetLineColor(1);
    }

    palette = (TPaletteAxis*)hDen2D[1]->GetListOfFunctions()->FindObject("palette");
    if(palette) {
        palette->SetY2NDC(0.33*(y1+y2) - 0.00);
        palette->SetY1NDC(y1 + 0.00);
        palette->SetX1NDC(x2 + 0.005);
        palette->SetX2NDC(x2 + 0.03);
        //palette->SetTitleFont(42);
        //palette->SetTitleOffset(0.85);
        palette->SetTitleOffset(999.9);
        palette->SetTitleSize(0.075);
        palette->SetLabelFont(42);
        palette->SetLabelSize(0.075);
        palette->SetLabelOffset(0.001);
        palette->SetBorderSize(2);
        palette->SetLineColor(1);
    }


    // 1D charge density plots:
    Float_t yaxismin  =  pad[0]->GetUymin();
    Float_t yaxismax  =  pad[0]->GetUymin() + 0.33*(pad[0]->GetUymax() - pad[0]->GetUymin()) - 0.00;
    Float_t denmin = Min[1];
    Float_t denmax = Max[1];
    if(opt.Contains("logz")) {
        denmin = TMath::Log10(denmin);
        denmax = TMath::Log10(denmax);
    }

    Float_t curmin = 0.0;
    Float_t curmax = 0.0;
    if(opt.Contains("curr")) {
        curmin = 0.0;
        curmax = hCur1D[1]->GetMaximum();

        cout << Form(" Maximum driver  current = %6.2f kA ", curmax) << endl ;
        if(Nspecies>=3)
            if(hCur1D[2])
                cout << Form(" Maximum witness current = %6.2f kA ", hCur1D[2]->GetMaximum()) << endl ;

        // Round for better plotting
        curmax = 0.1*TMath::Nint(curmax*10);
    }

    for(Int_t i=0; i<Nspecies; i++) {
        if(!hDen1D[i]) continue;

        Float_t slope = (yaxismax - yaxismin)/(denmax - denmin);

        for(Int_t j=0; j<hDen1D[i]->GetNbinsX(); j++) {
            Float_t content = hDen1D[i]->GetBinContent(j+1);
            if(opt.Contains("logz")) content = TMath::Log10(content);

            if(content<denmin)
                hDen1D[i]->SetBinContent(j+1,yaxismin);
            else
                hDen1D[i]->SetBinContent(j+1,(content - denmin) * slope + yaxismin);


        }

        if(hCur1D[i]) {
            slope = (yaxismax - yaxismin)/(curmax - curmin);

            for(Int_t j=0; j<hCur1D[i]->GetNbinsX(); j++) {
                Float_t content = hCur1D[i]->GetBinContent(j+1);

                if(content<curmin)
                    hCur1D[i]->SetBinContent(j+1,yaxismin);
                else
                    hCur1D[i]->SetBinContent(j+1,(content - curmin) * slope + yaxismin);
            }

        }

    }

    // Plasma on-axis density:
    // hDen1D[0]->SetLineWidth(2);
    // hDen1D[0]->SetLineColor(kGray+1);
    // // // PlasmaGlob::SetH1Style(hDen1D[0],1);
    // hDen1D[0]->Draw("same C");


    if(opt.Contains("curr")) {
        hCur1D[1]->SetLineWidth(2);
        hCur1D[1]->SetLineColor(PlasmaGlob::elecLine);
        hCur1D[1]->Draw("same C");
    } else {
        hDen1D[1]->SetLineWidth(2);
        hDen1D[1]->SetLineColor(PlasmaGlob::elecLine);
        //    hDen1D[1]->Draw("same C");
    }

    if(Nspecies>=3) {
        if(hDen1D[2]) {
            if(opt.Contains("curr")) {
                hCur1D[2]->SetLineWidth(2);
                hCur1D[2]->SetLineColor(kOrange+8);
                hCur1D[2]->Draw("same C");
            } else {
                hDen1D[2]->SetLineWidth(2);
                hDen1D[2]->SetLineColor(kOrange+8);
                //   hDen1D[2]->Draw("same C");
            }
        }
    }

    // Current axis
    TGaxis *axis = NULL;
    if(opt.Contains("curr")) {
        axis = new TGaxis(xMax-xRange/6.0,yMin - (factor-1)*yRange,
                          xMax-xRange/6.0,yaxismax,
                          0.001,curmax,503,"+LS");

        axis->SetLineWidth(1);
        axis->SetLineColor(kGray+3);//PlasmaGlob::elecLine);
        axis->SetLabelColor(kGray+3);//PlasmaGlob::elecLine);
        axis->SetLabelSize(0.06);
        axis->SetLabelOffset(0.01);
        axis->SetLabelFont(42);
        axis->SetTitleColor(kGray+3);//PlasmaGlob::elecLine);
        axis->SetTitleSize(0.06);
        axis->SetTitleOffset(0.6);
        axis->SetTitleFont(42);
        axis->SetTickSize(0.03);
        axis->SetTitle("I [kA]");
        axis->CenterTitle();
        axis->SetNdivisions(505);

        axis->Draw();
    }


    TPaveText *textTime = new TPaveText(xMax - 0.3*xRange, yMax-0.15*yRange, xMax-0.1, yMax-0.05*yRange);
    //x2-0.17,y2-0.12,x2-0.02,y2-0.02,"NDC");
    PlasmaGlob::SetPaveTextStyle(textTime,32);
    char ctext[128];
    if(opt.Contains("units") && n0)
        sprintf(ctext,"z = %5.1f #mum", Time * skindepth / PUnits::um);
    else
        sprintf(ctext,"t = %5.1f #omega_{p}^{-1}",Time);
    textTime->SetTextFont(42);
    textTime->AddText(ctext);

    textTime->Draw();
    // textDen->Draw();
    // if(opt.Contains("units"))
    //   textWav->Draw();

    textLabel[0] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange);
    PlasmaGlob::SetPaveTextStyle(textLabel[0],12);
    textLabel[0]->SetTextFont(42);
    textLabel[0]->AddText(sLabels[0]);
    textLabel[0]->Draw();


    pad[0]->RedrawAxis();

    C->cd(0);
    sprintf(pname,"pad_%i",0);
    pad[1] = (TPad*) gROOT->FindObject(pname);
    pad[1]->Draw();
    pad[1]->cd(); // <--------------------------------------------------------- Bottom Plot
    pad[1]->SetFrameLineWidth(3);
    pad[1]->SetTickx(1);

    hFrame = (TH2F*) gROOT->FindObject("hFrame2");
    if(hFrame) delete hFrame;
    hFrame = (TH2F*) hDen2D[0]->Clone("hFrame2");
    hFrame->Reset();

    Float_t yFactor = pad[0]->GetAbsHNDC()/pad[1]->GetAbsHNDC();


    hFrame->GetYaxis()->SetLabelSize(yFactor*0.085);
    hFrame->GetYaxis()->SetTitleSize(yFactor*0.09);
    hFrame->GetYaxis()->SetTitleOffset(0.7/yFactor);
    hFrame->GetYaxis()->SetTickLength(0.02/yFactor);

    hFrame->GetXaxis()->SetTitleSize(0.10);
    hFrame->GetXaxis()->SetLabelSize(0.08);
    hFrame->GetXaxis()->SetLabelOffset(0.02);
    hFrame->GetXaxis()->SetTitleOffset(1.0);
    hFrame->GetXaxis()->SetTickLength(0.04*yFactor);

    hFrame->SetLabelFont(42,"xyz");
    hFrame->SetTitleFont(42,"xyz");

    hFrame->Draw("col");

    //  hE2D[0]->GetZaxis()->SetNdivisions(505);
    hV2D->GetZaxis()->SetTitleFont(42);
    hV2D->GetZaxis()->SetTickLength(0.02/yFactor);


    exPot->Draw();

    hV2D->Draw("col z same");

    for(Int_t i=0; i<graphsV2D.GetEntriesFast(); i++) {
        TGraph *gr = (TGraph*) graphsV2D.At(i);
        if(!gr) continue;
        gr->Draw("C");
    }

    for(Int_t i=0; i<graphsI2D.GetEntriesFast(); i++) {
        //if(i!=2) continue;
        TGraph *gr = (TGraph*) graphsI2D.At(i);
        if(!gr) continue;
        gr->Draw("C");
    }


    if(opt.Contains("1dline")) {
        lineYzero->Draw();
        lineYdown->Draw();
        lineYup->Draw();
    }

    if(opt.Contains("sline")) {
        if(zStartPlasma>xmin && zStartPlasma<xmax)
            lineStartPlasma->Draw();
        if(zStartNeutral>xmin && zStartNeutral<xmax)
            lineStartNeutral->Draw();
        if(zEndNeutral>xmin && zEndNeutral<xmax)
            lineEndNeutral->Draw();
    }


    pad[1]->Update();

    y1 = pad[1]->GetBottomMargin();
    y2 = 1 - pad[1]->GetTopMargin();
    x1 = pad[1]->GetLeftMargin();
    x2 = 1 - pad[1]->GetRightMargin();

    palette = (TPaletteAxis*)hV2D->GetListOfFunctions()->FindObject("palette");
    if(palette) {
        palette->SetY2NDC(y2 - 0.00);
        palette->SetY1NDC(y1 + 0.00);
        palette->SetX1NDC(x2 + 0.005);
        palette->SetX2NDC(x2 + 0.03);
        // palette->SetTitleFont(42);
        palette->SetTitleSize(yFactor*0.075);
        palette->SetTitleOffset(0.80/yFactor);
        palette->SetLabelSize(yFactor*0.075);
        palette->SetLabelFont(42);
        palette->SetLabelOffset(0.01/yFactor);
        palette->SetBorderSize(2);
        palette->SetLineColor(1);
    }



    pad[1]->RedrawAxis();

    textLabel[1] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange);
    PlasmaGlob::SetPaveTextStyle(textLabel[1],12);
    textLabel[1]->SetTextFont(42);
    textLabel[1]->AddText(sLabels[1]);
    textLabel[1]->Draw();

    C->cd();

    // Print to a file
    PlasmaGlob::imgconv(C,fOutName,opt);
    // ---------------------------------------------------------

    PlasmaGlob::DestroyCanvases();
}
예제 #5
0
void PlotDensity1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") {
  
#ifdef __CINT__  
  gSystem->Load("libplasma.so");
#endif

  PlasmaGlob::Initialize();
  
  // Init Units table
  PUnits::UnitsTable::Get();

  // Load PData
  PData *pData = PData::Get(sim.Data());
  pData->LoadFileNames(time);
  if(!pData->IsInit()) return; 

  TString opt = options;
 
  gStyle->SetPadRightMargin(0.20); // Margin right axis 
  if(opt.Contains("grid")) {
    gStyle->SetPadGridX(1);
    gStyle->SetPadGridY(1);
  }

  Bool_t CYL = kFALSE;
  if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } 
  
  Bool_t ThreeD = kFALSE;
  if(sim.Contains("3D")) ThreeD = kTRUE; 

  Bool_t INT = kTRUE; // Integrate instead of averaging.
  
  // Some plasma constants
  Float_t n0 = pData->GetPlasmaDensity(); 
  Float_t kp = pData->GetPlasmaK();       
  Float_t skindepth = (1/kp);               
  Float_t E0 = pData->GetPlasmaE0();

  // Some beam properties:
  Double_t Ebeam = pData->GetBeamEnergy();
  Double_t gamma = pData->GetBeamGamma();
  Double_t vbeam = pData->GetBeamVelocity();
  Double_t kbeta = PFunc::BeamBetatronWavenumber(gamma,n0);
  Double_t rms0  = pData->GetBeamRmsY() * kp;
  if(CYL)  rms0  = pData->GetBeamRmsR() * kp;
  
  cout << Form(" - Bunch gamma      = %8.4f", gamma ) << endl;
  cout << Form(" - Bunch velocity   = %8.4f c", vbeam ) << endl;
  cout << Form(" - Bunch betatron k = %8.4f mm-1", kbeta * PUnits::mm) << endl;
  cout << Form(" - Bunch RMS_0      = %8.4f um", rms0 * skindepth / PUnits::um) << endl;
  cout << endl;

  // Time in OU
  Float_t Time = pData->GetRealTime();
  // z start of the plasma in normalized units.
  Float_t zStartPlasma = pData->GetPlasmaStart()*kp;
  // z start of the beam in normalized units.
  Float_t zStartBeam = pData->GetBeamStart()*kp;
  
  if(opt.Contains("center")) {
    Time -= zStartPlasma;
    if(opt.Contains("comov"))      // Centers on the head of the beam.
      Time += zStartBeam;
  }
  
  // Get charge density histos
  Int_t Nspecies = pData->NSpecies();
  TH1F **hDen1D = new TH1F*[Nspecies];
  TH2F *hDen2D = NULL;
  for(Int_t i=0;i<Nspecies;i++) {
    hDen1D[i] = NULL;
    
    if(!pData->GetChargeFileName(i)) 
      continue;
    
    if(i==0) {
      if(ThreeD)
	hDen2D = pData->GetCharge2DSliceZY(i,-1,Nbins);
      else
	hDen2D = pData->GetCharge(i,opt);
      
      char hName[24];
      sprintf(hName,"hDen_%i",i);
      hDen2D->SetName(hName);
      hDen2D->GetXaxis()->CenterTitle();
      hDen2D->GetYaxis()->CenterTitle();
      hDen2D->GetZaxis()->CenterTitle();
      hDen2D->GetXaxis()->SetTitle("z [c/#omega_{p}]");
      hDen2D->GetYaxis()->SetTitle("y [c/#omega_{p}]");
      if(i==0)
	hDen2D->GetZaxis()->SetTitle("#LTn_{e}#GT [n_{0}]");
      else
	hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [n_{0}]");
    }
    
    if(Nbins==0) {
      Nbins = TMath::Nint(rms0 / hDen2D->GetYaxis()->GetBinWidth(1)) ;
      // cout << Form(" Rms0 = %6.2f  Dx = %6.2f  Nbins = %4i .", 
      // 	   rms0, hDen2D[i]->GetYaxis()->GetBinWidth(1), Nbins) << endl;
    }
    
    // 1D histograms
    TString opth1 = opt;
    opth1 += "avg";
    if(CYL) opth1 += "cyl";
    
    if(ThreeD) {
      hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins);
    } else if(CYL) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0).
      hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opth1.Data());
    } else {         // 2D cartesian
      hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opth1.Data());
    }
    
    char hName[24];
    sprintf(hName,"hDen_%i",i);
    hDen1D[i]->SetName(hName);
    hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");
    hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [n_{0}]");
    
  }
  
  // Get electric fields
  const Int_t Nfields = 2;
  TH1F **hE1D = new TH1F*[Nfields];
  for(Int_t i=0;i<Nfields;i++) {
    hE1D[i] = NULL;
    
    if(!pData->GetEfieldFileName(i)) 
      continue;

    // 1D histograms
    TString opth1 = opt;
    opth1 += "avg";
    if(CYL) opth1 += "cyl";
    
    char nam[3]; sprintf(nam,"e%i",i+1);
    if(ThreeD) {
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins);
      else  
	hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins);
    } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0).
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data());
      else
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data());
    } else {         // 2D cartesian
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data());
      else 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data());
    }
    
    
    char hName[24];
    sprintf(hName,"hE_%i",i);
    hE1D[i]->SetName(hName);
    hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");
    hE1D[i]->GetYaxis()->SetTitle("E [E_{e}]");
  }
  
  // Y range:
  Int_t NbinsY  = (Int_t) hDen2D->GetNbinsY();
  Int_t midyBin = NbinsY/2;
  if(!CYL && (Nbins >  midyBin) ) Nbins = midyBin;
  if(CYL  && (Nbins >= NbinsY ) ) Nbins = NbinsY-1;
  
  Int_t FirstyBin = midyBin + 1 - Nbins;
  Int_t LastyBin  = midyBin + Nbins;
  if(CYL) {
    FirstyBin = 1; 
    LastyBin  = Nbins;
  }
  
  if(LastyBin>=NbinsY) LastyBin = NbinsY - 1;
  Float_t ymin = hDen2D->GetYaxis()->GetBinLowEdge(FirstyBin);
  Float_t ymax = hDen2D->GetYaxis()->GetBinLowEdge(LastyBin+1);

  cout << Form(" Nbins = %i. Firstbin = %i Lastbin = %i  ->  ymin = %7.2f , ymax = %7.2f",Nbins,FirstyBin,LastyBin,ymin,ymax) << endl;
  // ----

  // Tunning the Histograms
  // ---------------------

  // Chaning to user units: 

  // cout << Form(" n0 = %10e ", n0 * PUnits::cm3) << endl;
  
  if(opt.Contains("units") && n0) {
    
    Int_t NbinsX = hDen2D->GetNbinsX();
    Float_t xMin = skindepth * hDen2D->GetXaxis()->GetXmin() / PUnits::mm;
    Float_t xMax = skindepth * hDen2D->GetXaxis()->GetXmax() / PUnits::mm;
    Int_t NbinsY = hDen2D->GetNbinsY();
    Float_t yMin = skindepth * hDen2D->GetYaxis()->GetXmin() / PUnits::mm;
    Float_t yMax = skindepth * hDen2D->GetYaxis()->GetXmax() / PUnits::mm;
    hDen2D->SetBins(NbinsX,xMin,xMax,NbinsY,yMin,yMax);
    for(Int_t j=0;j<hDen2D->GetNbinsX();j++) {
      for(Int_t k=0;k<hDen2D->GetNbinsY();k++) {
	hDen2D->SetBinContent(j,k, hDen2D->GetBinContent(j,k) * n0 / (1e15/PUnits::cm3) );
      }
    }
    
    hDen2D->GetYaxis()->SetTitle("y [mm]");      
    if(opt.Contains("comov"))
      hDen2D->GetXaxis()->SetTitle("#zeta [mm]");
    else
      hDen2D->GetXaxis()->SetTitle("z [mm]");
    
    hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]"); 
  
    
    for(Int_t i=0;i<Nspecies;i++) {
    
      Int_t NbinsX = hDen1D[i]->GetNbinsX();
      Float_t xMin = skindepth * hDen1D[i]->GetXaxis()->GetXmin() / PUnits::mm;
      Float_t xMax = skindepth * hDen1D[i]->GetXaxis()->GetXmax() / PUnits::mm;
      hDen1D[i]->SetBins(NbinsX,xMin,xMax);
      for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) {
	Float_t bincontent = (hDen1D[i]->GetBinContent(j) * n0 / (1e15/PUnits::cm3));
	hDen1D[i]->SetBinContent(j,bincontent);
      }
      
      hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [10^{15}/cm^{3}]");
      
      if(opt.Contains("comov"))
	hDen1D[i]->GetXaxis()->SetTitle("#zeta [mm]");
      else
	hDen1D[i]->GetXaxis()->SetTitle("z [mm]");
    
    }


    for(Int_t i=0;i<Nfields;i++) {
      Int_t NbinsX = hE1D[i]->GetNbinsX();
      Float_t xMin = skindepth * hE1D[i]->GetXaxis()->GetXmin() / PUnits::mm;
      Float_t xMax = skindepth * hE1D[i]->GetXaxis()->GetXmax() / PUnits::mm;
      hE1D[i]->SetBins(NbinsX,xMin,xMax);
      
      for(Int_t j=0;j<hE1D[i]->GetNbinsX();j++) {
	hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) );
      }
      
      hE1D[i]->GetYaxis()->SetTitle("E [GV/m]");
      
      if(opt.Contains("comov"))
	hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]");
      else
	hE1D[i]->GetXaxis()->SetTitle("z [mm]");
    }
  }
  
  // Set the range of the histogram for maximum constrast
  Float_t density = 1;
  if(opt.Contains("units") && n0)
    density = 1e-15 * 1e-6 * n0;
  
  Float_t Max  = 1.1*hDen1D[0]->GetMaximum();
  Float_t Min  = 0;
  // Float_t Base = density;
  // Float_t Min  = 2.* Base - Max;
  // if(Max >= 2. * Base) {
  //   Max = 2. * Base;
  //   Min = 2. * Base  - Max;
  // } else if(Max<1.0 * Base) {
  //   Max = 1.1 * Base;
  //   Min = 0.;
  // }
 
  hDen1D[0]->GetYaxis()->SetRangeUser(0.,Max);  
  
  // Plotting
  // -----------------------------------------------

  // Canvas setup
  TCanvas *C = new TCanvas("C","Charge density and Electric field on axis",850,500);

  TPaveText *textTime = new TPaveText(0.63,0.87,0.78,0.92,"NDC");
  PlasmaGlob::SetPaveTextStyle(textTime); 
  textTime->SetTextColor(kGray+2);
  char ctext[128];

  if(opt.Contains("units") && n0) 
    sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time);
  else
    sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time);
  textTime->AddText(ctext);

  
  TPaveText *textRange = new TPaveText(0.13,0.87,0.38,0.92,"NDC");
  PlasmaGlob::SetPaveTextStyle(textRange,12); 
  textRange->SetTextColor(kGray+2);
  if(opt.Contains("units") && n0)
    sprintf(ctext,"%5.3f < y < %5.3f mm",ymin,ymax);
  else
    sprintf(ctext,"%5.3f < y < %5.3f c/#omega_{p}",ymin,ymax);
  textRange->AddText(ctext);

  // Actual Plotting!
  // ------------------------------------------------------------

  // Output file
  TString fOutName = Form("./%s/Plots/Density1D/Density1D",sim.Data());
  fOutName += Form("-%s_%i",sim.Data(),time);

  // Colors
  Int_t plasmaC = kGray+1;
  Int_t beamC   = kAzure-5;
  Int_t fieldC  = kOrange+10;
  Int_t fieldCb = kGray+1;

  C->cd(0);
  gPad->SetFrameLineWidth(2);  

  hDen1D[0]->SetLineColor(plasmaC);
  hDen1D[0]->SetLineWidth(1);
  hDen1D[0]->Draw("C");
  hDen1D[0]->GetYaxis()->CenterTitle();
  hDen1D[0]->GetXaxis()->CenterTitle();
  
  C->Update();

  TLine *line0 = new TLine(hDen1D[0]->GetXaxis()->GetXmin(),
			  (gPad->GetUymin()+gPad->GetUymax())/2.,
			  hDen1D[0]->GetXaxis()->GetXmax(),
			  (gPad->GetUymin()+gPad->GetUymax())/2.);
  line0->SetLineColor(kGray+1);
  line0->SetLineStyle(2);
  line0->Draw();

  Float_t rightmax = 2.5 * hDen1D[1]->GetMaximum();
  Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/rightmax;

  for(Int_t i=0;i<hDen1D[1]->GetNbinsX();i++) {
    hDen1D[1]->SetBinContent(i+1,hDen1D[1]->GetBinContent(i+1)*slope + Min);
  }

  hDen1D[1]->SetLineWidth(2);
  hDen1D[1]->SetLineColor(beamC);
  hDen1D[1]->Draw("same C");
  // hTest->Draw("same");
 
  //draw an axis on the right side
  TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(),
			    gPad->GetUymax(),0,rightmax,505,"+L");
  
  axis->SetLineWidth(1);
  axis->SetLineColor(beamC);
  axis->SetLabelColor(beamC);
  if(opt.Contains("units") && n0) 
    axis->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]");
  else
    axis->SetTitle("#LTn_{b}#GT [n_{0}]");
  axis->CenterTitle();
  axis->SetTitleColor(beamC);
  axis->SetTitleOffset(1.2);
  
  axis->Draw();

  // Longitudinal Electric field
  Float_t factor = 1.5;
  Float_t rightmin = factor * hE1D[0]->GetMinimum();
  rightmax = factor * hE1D[0]->GetMaximum();
  if(hE1D[1]) {
    if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum())
      rightmax = factor * hE1D[1]->GetMaximum();
  }
  
  if(rightmax > TMath::Abs(rightmin)) rightmin = -rightmax;
  else rightmax = - rightmin;
  slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin);
  
  for(Int_t i=0;i<hE1D[0]->GetNbinsX();i++) {
    hE1D[0]->SetBinContent(i+1,(hE1D[0]->GetBinContent(i+1)-rightmin)*slope + Min);
  }
  
  hE1D[0]->SetLineStyle(1);
  hE1D[0]->SetLineWidth(2);
  hE1D[0]->SetLineColor(fieldC);
  hE1D[0]->Draw("same C");

  // Transverse field
  for(Int_t i=0;i<hE1D[1]->GetNbinsX();i++) {
    hE1D[1]->SetBinContent(i+1,(hE1D[1]->GetBinContent(i+1)-rightmin)*slope + Min);
  }
  
  hE1D[1]->SetLineStyle(2);
  hE1D[1]->SetLineWidth(1);
  hE1D[1]->SetLineColor(fieldC);
  hE1D[1]->Draw("same C");

  //draw an axis on the right side
  Float_t rightmargin = 0.08;
  Float_t ux = gPad->PixeltoX(gPad->UtoPixel(1-rightmargin));
  TGaxis *axisE = new TGaxis(ux,gPad->GetUymin(),ux,
			     gPad->GetUymax(),rightmin,rightmax,505,"+L");
  
  axisE->SetLineWidth(1);
  axisE->SetLineColor(fieldC);
  axisE->SetLabelColor(fieldC);
  axisE->SetTitleColor(fieldC);
  if(opt.Contains("units") && n0) 
    axisE->SetTitle("E [GV/m]");
  else
    axisE->SetTitle("E [E_{0}]");
  axisE->CenterTitle();
  axisE->SetTitleOffset(0.8);

  axisE->Draw();
  
  textTime->Draw();

  textRange->Draw();

  C->cd();

  // Print to a file
  PlasmaGlob::imgconv(C,fOutName,opt);
  // ---------------------------------------------------------
}
예제 #6
0
void PlotField1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") { 
  
#ifdef __CINT__  
  gSystem->Load("libplasma.so");
#endif

  PlasmaGlob::Initialize();
    
  TString opt = options;

  gStyle->SetPadLeftMargin(0.10);  // Margin left axis  
  gStyle->SetPadRightMargin(0.12); // Margin right axis 
  if(opt.Contains("grid")) {
    gStyle->SetPadGridX(1);
    gStyle->SetPadGridY(1);
  }

  // Load PData
  PData *pData = PData::Get(sim.Data());
  pData->LoadFileNames(time);
  if(!pData->IsInit()) return;

  Bool_t CYL = kFALSE;
  if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } 
    
  Bool_t ThreeD = kFALSE;
  if(sim.Contains("3D")) ThreeD = kTRUE; 

  // Some plasma constants
  Double_t n0 = pData->GetPlasmaDensity();
  Double_t kp = pData->GetPlasmaK();
  Double_t skindepth = 1/kp;
  Double_t E0 = pData->GetPlasmaE0();

  // Some beam properties:
  Float_t Ebeam = pData->GetBeamEnergy() * PUnits::MeV;
  Float_t gamma = Ebeam / PConst::ElectronMassE;
  Float_t vbeam = TMath::Sqrt(1 - 1/(gamma*gamma));
  // cout << Form(" - Bunch gamma      = %8.4f", gamma ) << endl;
  // cout << Form(" - Bunch velocity   = %8.4f c", vbeam ) << endl;

  Float_t Time = pData->GetRealTime();
  // z start of the plasma in normalized units.
  Float_t zStartPlasma = pData->GetPlasmaStart()*kp;
  // z start of the beam in normalized units.
  Float_t zStartBeam = pData->GetBeamStart()*kp;
  Time -= zStartPlasma - zStartBeam;

  // 1D histograms
  TString opth1 = opt;
  opth1 += "avg";
  // Get electric fields
  const Int_t Nfields = 1;
  TH1F **hE1D = new TH1F*[Nfields];
  for(Int_t i=0;i<Nfields;i++) {
    hE1D[i] = NULL;
    if(!pData->GetEfieldFileName(i))
      continue;
    
    char nam[3]; sprintf(nam,"e%i",i+1);
    if(ThreeD) {
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opth1.Data());
      else  
	hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opth1.Data());
    } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0).
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data());
      else
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data());
    } else { // 2D cartesian
      if(i==0) 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data());
      else 
	hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data());
    }
    
    char hName[24];
    sprintf(hName,"hE_%i",i);
    hE1D[i]->SetName(hName);
    if(opt.Contains("comov"))
      hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]");
    else
      hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]");
   
    if(i==0)
      hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]");
    else if(i==1)
      hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}}]");
    else if(i==2)
      hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}}]");
    
    
  }  
  
  // Chaning to user units: 
  if(opt.Contains("units") && n0) {
    for(Int_t i=0;i<Nfields;i++) {
      Int_t NbinsX = hE1D[i]->GetNbinsX();
      Float_t xMin = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmin();
      Float_t xMax = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmax();
      
      hE1D[i]->SetBins(NbinsX,xMin,xMax);
      
      for(Int_t j=0;j<NbinsX;j++) {
	hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) );
      }
      
      if(opt.Contains("comov"))
	hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]");
      else
	hE1D[i]->GetXaxis()->SetTitle("z [mm]");
      
      if(i==0)
	hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]");
      else if(i==1)
	hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]");
      else if(i==2)
	hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]");
    }
  }
  
  // Calculate wave positions:
  // ----------------------------------------------------------------
  
  // Retrieve the previous time TGraph if any;
  // Open TGraph
  TString filename = Form("./%s/Plots/Field1D/Field1D-%s.root",sim.Data(),sim.Data());
  TFile * ifile = (TFile*) gROOT->GetListOfFiles()->FindObject(filename);
  // if doesn't exist the directory should be created
  if (!ifile) {
    TString f = filename;
    TString dir2 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) );
    TString dir1 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) );
    gSystem->mkdir( dir1 );
    gSystem->mkdir( dir2 );
    ifile = new TFile(filename,"UPDATE");
  }  
  
  
  
  Float_t *EMaxPos = new Float_t[Nfields];
  Float_t *EMaxValue = new Float_t[Nfields];
  
  // Get the Graph with the x1 positions of the maximum E_1
  TGraph **graph = new TGraph*[Nfields];
  char gName[24];
  for(Int_t i=0;i<Nfields;i++) {
    if(!hE1D[i]) continue;
    
    EMaxPos[i] = EMaxValue[i] = -999;
    
    // Initial time search window:
    Float_t xCenter = (hE1D[i]->GetXaxis()->GetXmin()+hE1D[i]->GetXaxis()->GetXmax())/2.; 
    Float_t xs1min = 0.5*(hE1D[i]->GetXaxis()->GetXmin()+xCenter);
    Float_t xs1max = xCenter;

    // For focusing fields i==1,2 we use a narrower window based on the previosly found 
    // minimum for the accelerating fields i==0.
    if(i>0) {
      xCenter = EMaxPos[0];
      if(opt.Contains("units") && n0) {
	xs1min = xCenter - (0.25*TMath::Pi() * 1e3 * skindepth);
	xs1max = xCenter + (0.25*TMath::Pi() * 1e3 * skindepth);
      } else {
	xs1min = xCenter - 0.25*TMath::Pi();
	xs1max = xCenter + 0.25*TMath::Pi();
      }
    }

    sprintf(gName,"gEMaxPos_%i",i);
    graph[i] =  (TGraph*) ifile->Get(gName);
    if(graph[i]) {
      Double_t *y = graph[i]->GetY();
      
      // Setup the searching windows to +/- pi/2 respect the last found minimum.
      if(opt.Contains("units") && n0) {
	xs1min = y[graph[i]->GetN()-1] - (0.5*TMath::Pi() * 1e3 * skindepth);
	xs1max = y[graph[i]->GetN()-1] + (0.5*TMath::Pi() * 1e3 * skindepth);
      } else {
	xs1min = y[graph[i]->GetN()-1] - 0.5*TMath::Pi();
	xs1max = y[graph[i]->GetN()-1] + 0.5*TMath::Pi();
      }
      
      delete graph[i];
    }
    
    TH1F *htemp = (TH1F*) hE1D[i]->Clone("htemp");
    htemp->GetXaxis()->SetRangeUser(xs1min,xs1max);
    
    //htemp->Smooth(1,"R");
    Int_t binMax = htemp->GetMinimumBin();
    EMaxPos[i] = (Float_t) htemp->GetBinCenter(binMax);
    EMaxValue[i] = (Float_t) htemp->GetBinContent(binMax);
    delete htemp;
    
  }
  
  
  // Tunning the Histograms
  // ---------------------
  
  
  // Plotting
  // -----------------------------------------------
  
  // Output file
  TString fOutName = Form("./%s/Plots/Field1D/Field1D",sim.Data());
  fOutName += Form("-%s_%i",sim.Data(),time);
  
  // Canvas setup
  TCanvas *C = new TCanvas("C","Electric wakefield on axis",850,1000);
  C->Divide(1,2);

  // Draw objects
  TPaveText *textTime = new TPaveText(0.70,0.87,0.85,0.92,"NDC");
  PlasmaGlob::SetPaveTextStyle(textTime); 
  char ctext[128];
  if(opt.Contains("units") && n0) 
    sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time);
  else
    sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time);
  textTime->AddText(ctext);
  
  // Colors
  Int_t fieldC  = PlasmaGlob::fieldLine;
  Int_t phaseC  = kGray+1;
 
  // Actual Plotting!
  // ------------------------------------------------------------

  // More makeup
  C->cd(1);
  gPad->SetGridy(0);
  gPad->SetGridx(0);
  gPad->SetFrameLineWidth(2);  

  hE1D[0]->SetLineWidth(1);
  hE1D[0]->GetYaxis()->CenterTitle();
  hE1D[0]->GetXaxis()->CenterTitle();
  hE1D[0]->SetLineStyle(1);
  hE1D[0]->SetLineWidth(3);
  hE1D[0]->SetLineColor(fieldC);
  hE1D[0]->SetMarkerStyle(20);

  if(Nfields>1) {
    hE1D[1]->GetYaxis()->CenterTitle();
    hE1D[1]->GetXaxis()->CenterTitle();
    hE1D[1]->SetLineStyle(1);
    hE1D[1]->SetLineWidth(1);  
    hE1D[1]->SetLineColor(fieldC);
    hE1D[1]->SetMarkerStyle(24);
  }

  Float_t factor = 1.5;
  Float_t minimum = factor * hE1D[0]->GetMinimum();
  Float_t maximum = factor * hE1D[0]->GetMaximum();
    
  if(Nfields>1) {
    if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum()) {
      maximum = factor * hE1D[1]->GetMaximum();
    } 
    
    if(hE1D[1]->GetMinimum() < hE1D[0]->GetMinimum()) {
    minimum = factor * hE1D[1]->GetMinimum();
    } 
  }
  
  if( maximum >= TMath::Abs(minimum)) minimum = -maximum;
  else maximum = - minimum;
  
  hE1D[0]->GetYaxis()->SetRangeUser(minimum,maximum);
  hE1D[0]->Draw("C");
  
  if(Nfields>1)
    hE1D[1]->Draw("C same");
  
  C->Update();
  
  TLine *line0 = new TLine(hE1D[0]->GetXaxis()->GetXmin(),
			   (gPad->GetUymin()+gPad->GetUymax())/2.,
			   hE1D[0]->GetXaxis()->GetXmax(),
			   (gPad->GetUymin()+gPad->GetUymax())/2.);
  line0->SetLineColor(kGray+1);
  line0->SetLineStyle(2);
  line0->Draw();
  
  TMarker *markEMax0 = new TMarker(EMaxPos[0],EMaxValue[0], 24);
  markEMax0->SetMarkerColor(fieldC);
  markEMax0->SetMarkerSize(1.6);
  markEMax0->Draw();

  if(Nfields>1) {
    TMarker *markEMax1 = new TMarker(EMaxPos[1],EMaxValue[1], 24);
    markEMax1->SetMarkerColor(fieldC);
    markEMax1->SetMarkerSize(1.4);
    markEMax1->Draw();
  }
  
  textTime->Draw();

  // ----
  
  // Define the TGraphs
  Int_t nPoints = 0;  
  TGraph **gEMaxPos = new TGraph*[Nfields];
  TGraph **gEMaxValue = new TGraph*[Nfields];
  for(Int_t i=0;i<Nfields;i++) {
    if(!hE1D[i]) continue;

    sprintf(gName,"gEMaxPos_%i",i);
    gEMaxPos[i] = (TGraph*) ifile->Get(gName);
    if(gEMaxPos[i]==NULL) {
      gEMaxPos[i] = new TGraph();
      gEMaxPos[i]->SetName(gName);
    } else {
      nPoints = gEMaxPos[i]->GetN(); 
    }  
    gEMaxPos[i]->Set(nPoints+1);
    if(opt.Contains("units") && n0) 
      gEMaxPos[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxPos[i]);
    else
      gEMaxPos[i]->SetPoint(nPoints,Time,EMaxPos[i]);
    
    if(opt.Contains("units") && n0) {
      gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [mm]");
      gEMaxPos[i]->GetXaxis()->SetTitle("Z [mm]");
    } else {
      gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [c/#omega_{p}]");
      gEMaxPos[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]");
    }

    gEMaxPos[i]->Write(gEMaxPos[i]->GetName(),TObject::kOverwrite);

    sprintf(gName,"gEMaxValue_%i",i);
    gEMaxValue[i] = (TGraph*) ifile->Get(gName);
    if(gEMaxValue[i]==NULL) {
      gEMaxValue[i] = new TGraph();  
      gEMaxValue[i]->SetName(gName);
    } else {
      nPoints = gEMaxValue[i]->GetN(); 
    }  
    gEMaxValue[i]->Set(nPoints+1);
    if(opt.Contains("units") && n0) 
      gEMaxValue[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxValue[i]);
    else
      gEMaxValue[i]->SetPoint(nPoints,Time,EMaxValue[i]);
    
    if(opt.Contains("units") && n0) {
      gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [GV/m]");
      gEMaxValue[i]->GetXaxis()->SetTitle("Z [mm]");
    } else {
      gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [E_{0}]");
      gEMaxValue[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]");
    }
    
    gEMaxValue[i]->Write(gEMaxValue[i]->GetName(),TObject::kOverwrite);    
  }


  C->cd(2);
  gPad->SetGridy(1);
  gPad->SetGridx(0);
  gPad->SetFrameLineWidth(2);  

  Float_t minPhase = 99.;
  Float_t maxPhase = -99.;
  Float_t minField = 99.;
  Float_t maxField = -99.;

  Double_t *yEMaxPos[Nfields];
  Double_t *yEMaxValue[Nfields];

  for(Int_t i=0;i<Nfields;i++) {
    yEMaxPos[i]   = gEMaxPos[i]->GetY();
    yEMaxValue[i] = gEMaxValue[i]->GetY();
    
    for(Int_t j=0;j<gEMaxPos[0]->GetN();j++) {
      if(yEMaxPos[i][j]>maxPhase)
	maxPhase = yEMaxPos[i][j];
      if(yEMaxPos[i][j]<minPhase)
	minPhase = yEMaxPos[i][j];
 
      if(yEMaxValue[i][j]>maxField)
	maxField = yEMaxValue[i][j];
      if(yEMaxValue[i][j]<minField)
	minField = yEMaxValue[i][j];
    }
  }

  Float_t margin = (maxPhase - minPhase)/10;
  gEMaxPos[0]->GetYaxis()->SetRangeUser(minPhase-margin,maxPhase+margin);
  gEMaxPos[0]->GetYaxis()->CenterTitle();
  gEMaxPos[0]->GetXaxis()->CenterTitle();
  gEMaxPos[0]->SetLineColor(phaseC);
  gEMaxPos[0]->SetMarkerColor(phaseC);
  gEMaxPos[0]->SetLineWidth(3);
  gEMaxPos[0]->SetMarkerStyle(20);
  gEMaxPos[0]->SetMarkerSize(1.4);
  gEMaxPos[0]->Draw("APC");

  if(Nfields>1) {
    gEMaxPos[1]->SetLineStyle(1);
    gEMaxPos[1]->SetLineColor(phaseC);
    gEMaxPos[1]->SetMarkerColor(phaseC);
    gEMaxPos[1]->SetLineWidth(1);
    gEMaxPos[1]->SetMarkerStyle(24);
    gEMaxPos[1]->SetMarkerSize(1.4);
    gEMaxPos[1]->Draw("PC");
  }

  // Emax value
  // New axis first:
  C->Update();  // Needed for the axis!

  margin = (maxField - minField)/10;
  if (margin==0) margin = 1; 
  Float_t rightmin = minField-margin;
  Float_t rightmax = maxField+margin;
  Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin);
  TGaxis *axisEmax = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(),
				gPad->GetUymax(),rightmin,rightmax,505,"+L");
  axisEmax->SetLineWidth(1);
  axisEmax->SetLineColor(fieldC);
  axisEmax->SetLabelColor(fieldC);
  axisEmax->SetTitleColor(fieldC);
  if(opt.Contains("units") && n0) 
    axisEmax->SetTitle("E_{min} [GV/m]");
  else
    axisEmax->SetTitle("E_{min} [E_{0}]");
  axisEmax->CenterTitle();
  axisEmax->SetTitleSize(0.05);
  axisEmax->SetTitleOffset(1.2);
  axisEmax->SetLabelSize(0.05);
  axisEmax->SetLabelOffset(0.006);
  
  axisEmax->Draw();
  
  // Adjust the TGraph
  Double_t *x = gEMaxValue[0]->GetX();
  Double_t *y = gEMaxValue[0]->GetY();
  for(Int_t i=0;i<gEMaxValue[0]->GetN();i++) {
    gEMaxValue[0]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin());
  }  
  gEMaxValue[0]->SetLineColor(fieldC);
  gEMaxValue[0]->SetMarkerColor(fieldC);
  gEMaxValue[0]->SetLineWidth(3);
  gEMaxValue[0]->SetMarkerStyle(20);
  gEMaxValue[0]->SetMarkerSize(1.4);
  gEMaxValue[0]->Draw("PC");

   if(Nfields>1) {
    x = gEMaxValue[1]->GetX();
    y = gEMaxValue[1]->GetY();
    for(Int_t i=0;i<gEMaxValue[1]->GetN();i++) {
      gEMaxValue[1]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin());
    }  
    gEMaxValue[1]->SetLineColor(fieldC);
    gEMaxValue[1]->SetMarkerColor(fieldC);
    gEMaxValue[1]->SetLineWidth(1);
    gEMaxValue[1]->SetMarkerStyle(24);
    gEMaxValue[1]->SetMarkerSize(1.4);
    gEMaxValue[1]->Draw("PC");
  }

  // Emax value
  // New axis first:
  C->Update();  // Needed for the axis!

  C->cd();

  ifile->Close();
  
  // Print to a file
  PlasmaGlob::imgconv(C,fOutName,opt);
  // ---------------------------------------------------------
  
  }