예제 #1
0
/**
    \param config ConfigTree object which contains the input data
                  including <type>vanGenuchten</type>
                  and it has a tag of <capillary_pressure>
*/
static std::unique_ptr<CapillaryPressureSaturation> createVanGenuchten(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__type}
    config.checkConfigParameter("type", "vanGenuchten");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__vanGenuchten__pd}
    const double pd = config.getConfigParameter<double>("pd");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__vanGenuchten__sr}
    const double Sr = config.getConfigParameter<double>("sr");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__vanGenuchten__smax}
    const double Smax = config.getConfigParameter<double>("smax");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__vanGenuchten__m}
    const double m = config.getConfigParameter<double>("m");
    if (m > 1.0)  // m <= 1
    {
        OGS_FATAL(
            "The exponent parameter of van Genuchten capillary pressure "
            "saturation model, m, must be in an interval of [0, 1]");
    }
    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__vanGenuchten__pc_max}
    const double Pc_max = config.getConfigParameter<double>("pc_max");

    return std::unique_ptr<CapillaryPressureSaturation>(
        new VanGenuchtenCapillaryPressureSaturation(pd, Sr, Smax, m, Pc_max));
}
예제 #2
0
std::unique_ptr<ConvergenceCriterionPerComponentDeltaX>
createConvergenceCriterionPerComponentDeltaX(const BaseLib::ConfigTree& config)
{
    //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__type}
    config.checkConfigParameter("type", "PerComponentDeltaX");

    auto abstols =
        //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__PerComponentDeltaX__abstols}
        config.getConfigParameterOptional<std::vector<double>>("abstols");
    auto reltols =
        //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__PerComponentDeltaX__reltols}
        config.getConfigParameterOptional<std::vector<double>>("reltols");
    auto const norm_type_str =
        //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__PerComponentDeltaX__norm_type}
        config.getConfigParameter<std::string>("norm_type");

    if ((!abstols) && (!reltols))
        OGS_FATAL(
            "At least one of absolute or relative tolerance has to be "
            "specified.");
    if (!abstols) {
        abstols = std::vector<double>(reltols->size());
    } else if (!reltols) {
        reltols = std::vector<double>(abstols->size());
    }

    auto const norm_type = MathLib::convertStringToVecNormType(norm_type_str);

    if (norm_type == MathLib::VecNormType::INVALID)
        OGS_FATAL("Unknown vector norm type `%s'.", norm_type_str.c_str());

    return std::unique_ptr<ConvergenceCriterionPerComponentDeltaX>(
        new ConvergenceCriterionPerComponentDeltaX(
            std::move(*abstols), std::move(*reltols), norm_type));
}
std::unique_ptr<DirichletBoundaryCondition> createDirichletBoundaryCondition(
    BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh,
    NumLib::LocalToGlobalIndexMap const& dof_table_bulk, int const variable_id,
    int const component_id,
    const std::vector<std::unique_ptr<ProcessLib::ParameterBase>>& parameters)
{
    DBUG("Constructing DirichletBoundaryCondition from config.");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
    config.checkConfigParameter("type", "Dirichlet");

    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Dirichlet__parameter}
    auto const param_name = config.getConfigParameter<std::string>("parameter");
    DBUG("Using parameter %s", param_name.c_str());

    auto& param = findParameter<double>(param_name, parameters, 1);

    // In case of partitioned mesh the boundary could be empty, i.e. there is no
    // boundary condition.
#ifdef USE_PETSC
    // This can be extracted to createBoundaryCondition() but then the config
    // parameters are not read and will cause an error.
    // TODO (naumov): Add a function to ConfigTree for skipping the tags of the
    // subtree and move the code up in createBoundaryCondition().
    if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 &&
        bc_mesh.getNumberOfElements() == 0)
    {
        return nullptr;
    }
#endif  // USE_PETSC

    return std::make_unique<DirichletBoundaryCondition>(
        param, bc_mesh, dof_table_bulk, variable_id, component_id);
}
예제 #4
0
std::unique_ptr<RobinBoundaryCondition> createRobinBoundaryCondition(
    BaseLib::ConfigTree const& config,
    std::vector<MeshLib::Element*>&& elements,
    NumLib::LocalToGlobalIndexMap const& dof_table, int const variable_id,
    int const component_id, bool is_axially_symmetric,
    unsigned const integration_order, unsigned const global_dim,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters)
{
    DBUG("Constructing RobinBcConfig from config.");
    //! \ogs_file_param{boundary_condition__type}
    config.checkConfigParameter("type", "Robin");

    //! \ogs_file_param{boundary_condition__Robin__alpha}
    auto const alpha_name = config.getConfigParameter<std::string>("alpha");
    //! \ogs_file_param{boundary_condition__Robin__u_0}
    auto const u_0_name = config.getConfigParameter<std::string>("u_0");

    auto const& alpha = findParameter<double>(alpha_name, parameters, 1);
    auto const& u_0 = findParameter<double>(u_0_name, parameters, 1);

    return std::unique_ptr<RobinBoundaryCondition>(new RobinBoundaryCondition(
        is_axially_symmetric, integration_order, dof_table, variable_id,
        component_id, global_dim, std::move(elements),
        RobinBoundaryConditionData{alpha, u_0}));
}
/**
    \param config ConfigTree object which contains the input data
                  including `<type>NonWettingPhaseVanGenuchten</type>`
                  and it has a tag of `<relative_permeability>`
*/
std::unique_ptr<RelativePermeability> createNonWettingPhaseVanGenuchten(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__porous_medium__relative_permeability__type}
    config.checkConfigParameter("type", "NonWettingPhaseVanGenuchten");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseVanGenuchten__sr}
    const auto Sr = config.getConfigParameter<double>("sr");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseVanGenuchten__smax}
    const auto Smax = config.getConfigParameter<double>("smax");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseVanGenuchten__m}
    const auto m = config.getConfigParameter<double>("m");
    if (m < 0. || m > 1.0)
    {
        OGS_FATAL(
            "The exponent parameter of NonWettingPhaseVanGenuchten relative\n"
            " permeability model, m, must be in an interval of [0, 1]");
    }

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseVanGenuchten__krel_min}
    const auto krel_min = config.getConfigParameter<double>("krel_min");

    return std::make_unique<NonWettingPhaseVanGenuchten>(Sr, Smax, m, krel_min);
}
예제 #6
0
std::unique_ptr<Process> createHeatConductionProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "HEAT_CONDUCTION");

    DBUG("Create HeatConductionProcess.");

    // Process variable.
    auto process_variables = findProcessVariables(
        variables, config,
        {//! \ogs_file_param_special{process__HEAT_CONDUCTION__process_variables__process_variable}
         "process_variable"});

    // thermal conductivity parameter.
    auto& thermal_conductivity = findParameter<double>(
        config,
        //! \ogs_file_param_special{process__HEAT_CONDUCTION__thermal_conductivity}
        "thermal_conductivity", parameters, 1);

    DBUG("Use \'%s\' as thermal conductivity parameter.",
         thermal_conductivity.name.c_str());

    // heat capacity parameter.
    auto& heat_capacity = findParameter<double>(
        config,
        //! \ogs_file_param_special{process__HEAT_CONDUCTION__heat_capacity}
        "heat_capacity", parameters, 1);

    DBUG("Use \'%s\' as heat capacity parameter.", heat_capacity.name.c_str());

    // density parameter.
    auto& density = findParameter<double>(
        config,
        //! \ogs_file_param_special{process__HEAT_CONDUCTION__density}
        "density", parameters, 1);

    DBUG("Use \'%s\' as density parameter.", density.name.c_str());

    HeatConductionProcessData process_data{thermal_conductivity, heat_capacity,
                                           density};

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"HeatConduction_temperature"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    return std::unique_ptr<Process>{new HeatConductionProcess{
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller)}};
}
예제 #7
0
std::unique_ptr<ParameterBase> createCurveScaledParameter(
    std::string const& name,
    BaseLib::ConfigTree const& config,
    std::map<std::string,
             std::unique_ptr<MathLib::PiecewiseLinearInterpolation>> const&
        curves)
{
    //! \ogs_file_param{prj__parameters__parameter__type}
    config.checkConfigParameter("type", "CurveScaled");

    //! \ogs_file_param{prj__parameters__parameter__CurveScaled__curve}
    auto curve_name = config.getConfigParameter<std::string>("curve");
    DBUG("Using curve %s", curve_name.c_str());

    auto const curve_it = curves.find(curve_name);
    if (curve_it == curves.end())
        OGS_FATAL("Curve `%s' does not exists.", curve_name.c_str());

    auto referenced_parameter_name =
        //! \ogs_file_param{prj__parameters__parameter__CurveScaled__parameter}
        config.getConfigParameter<std::string>("parameter");
    DBUG("Using parameter %s", referenced_parameter_name.c_str());

    // TODO other data types than only double
    return std::make_unique<CurveScaledParameter<double>>(
        name, *curve_it->second, referenced_parameter_name);
}
예제 #8
0
std::unique_ptr<ParameterBase> createMeshElementParameter(
    BaseLib::ConfigTree const& config, MeshLib::Mesh const& mesh)
{
    //! \ogs_file_param{parameter__type}
    config.checkConfigParameter("type", "MeshElement");
    //! \ogs_file_param{parameter__MeshElement__field_name}
    auto const field_name = config.getConfigParameter<std::string>("field_name");
    DBUG("Using field_name %s", field_name.c_str());

    if (!mesh.getProperties().hasPropertyVector(field_name)) {
        OGS_FATAL("The required property %s does not exists in the mesh.",
                  field_name.c_str());
    }

    // TODO other data types than only double
    auto const& property =
        mesh.getProperties().getPropertyVector<double>(field_name);
    if (!property) {
        OGS_FATAL("The mesh property `%s' is not of the requested type.",
                  field_name.c_str());
    }

    if (property->getMeshItemType() != MeshLib::MeshItemType::Cell) {
        OGS_FATAL("The mesh property `%s' is not an element property.",
                  field_name.c_str());
    }

    return std::unique_ptr<ParameterBase>(
        new MeshElementParameter<double>(*property));
}
예제 #9
0
std::unique_ptr<PythonBoundaryCondition> createPythonBoundaryCondition(
    BaseLib::ConfigTree const& config, MeshLib::Mesh const& boundary_mesh,
    NumLib::LocalToGlobalIndexMap const& dof_table, std::size_t bulk_mesh_id,
    int const variable_id, int const component_id,
    unsigned const integration_order, unsigned const shapefunction_order,
    unsigned const global_dim)
{
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
    config.checkConfigParameter("type", "Python");

    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__bc_object}
    auto const bc_object = config.getConfigParameter<std::string>("bc_object");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__flush_stdout}
    auto const flush_stdout = config.getConfigParameter("flush_stdout", false);

    // Evaluate Python code in scope of main module
    pybind11::object scope =
        pybind11::module::import("__main__").attr("__dict__");

    if (!scope.contains(bc_object))
        OGS_FATAL(
            "Function `%s' is not defined in the python script file, or there "
            "was no python script file specified.",
            bc_object.c_str());

    auto* bc = scope[bc_object.c_str()]
                   .cast<PythonBoundaryConditionPythonSideInterface*>();

    if (variable_id >= static_cast<int>(dof_table.getNumberOfVariables()) ||
        component_id >= dof_table.getNumberOfVariableComponents(variable_id))
    {
        OGS_FATAL(
            "Variable id or component id too high. Actual values: (%d, %d), "
            "maximum values: (%d, %d).",
            variable_id, component_id, dof_table.getNumberOfVariables(),
            dof_table.getNumberOfVariableComponents(variable_id));
    }

    // In case of partitioned mesh the boundary could be empty, i.e. there is no
    // boundary condition.
#ifdef USE_PETSC
    // This can be extracted to createBoundaryCondition() but then the config
    // parameters are not read and will cause an error.
    // TODO (naumov): Add a function to ConfigTree for skipping the tags of the
    // subtree and move the code up in createBoundaryCondition().
    if (boundary_mesh.getDimension() == 0 &&
        boundary_mesh.getNumberOfNodes() == 0 &&
        boundary_mesh.getNumberOfElements() == 0)
    {
        return nullptr;
    }
#endif  // USE_PETSC

    return std::make_unique<PythonBoundaryCondition>(
        PythonBoundaryConditionData{
            bc, dof_table, bulk_mesh_id,
            dof_table.getGlobalComponent(variable_id, component_id),
            boundary_mesh},
        integration_order, shapefunction_order, global_dim, flush_stdout);
}
예제 #10
0
/**
    \param config ConfigTree object which contains the input data
                  including <type>BrookCorey</type>
                  and it has a tag of <capillary_pressure>
*/
static std::unique_ptr<CapillaryPressureSaturation> createBrookCorey(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__type}
    config.checkConfigParameter("type", "BrookCorey");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__BrookCorey__pd}
    const double pd = config.getConfigParameter<double>("pd");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__BrookCorey__sr}
    const double Sr = config.getConfigParameter<double>("sr");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__BrookCorey__smax}
    const double Smax = config.getConfigParameter<double>("smax");

    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__BrookCorey__m}
    const double m = config.getConfigParameter<double>("m");
    if (m < 1.0)  // m >= 1
    {
        OGS_FATAL(
            "The exponent parameter of BrookCorey capillary pressure "
            "saturation model, m, must not be smaller than 1");
    }
    //! \ogs_file_param{material_property__porous_medium__porous_medium__capillary_pressure__BrookCorey__pc_max}
    const double Pc_max = config.getConfigParameter<double>("pc_max");

    return std::unique_ptr<CapillaryPressureSaturation>(
        new BrookCoreyCapillaryPressureSaturation(pd, Sr, Smax, m, Pc_max));
}
/**
    \param config ConfigTree object which contains the input data
                  including `<type>NonWettingPhaseBrooksCoreyOilGas</type>`
                  and it has a tag of `<relative_permeability>`
*/
std::unique_ptr<RelativePermeability> createNonWettingPhaseBrooksCoreyOilGas(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__porous_medium__relative_permeability__type}
    config.checkConfigParameter("type", "NonWettingPhaseBrooksCoreyOilGas");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseBrooksCoreyOilGas__sr}
    const auto Sr = config.getConfigParameter<double>("sr");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseBrooksCoreyOilGas__smax}
    const auto Smax = config.getConfigParameter<double>("smax");

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseBrooksCoreyOilGas__m}
    const auto m = config.getConfigParameter<double>("m");
    if (m < 1.0)  // m >= 1
    {
        OGS_FATAL(
            "The exponent parameter of NonWettingPhaseBrooksCoreyOilGas\n"
            "relative permeability model, m, must not be smaller than 1");
    }

    //! \ogs_file_param{material__porous_medium__relative_permeability__NonWettingPhaseBrooksCoreyOilGas__krel_min}
    const auto krel_min = config.getConfigParameter<double>("krel_min");

    return std::make_unique<NonWettingPhaseBrooksCoreyOilGas>(
        Sr, Smax, m, krel_min);
}
예제 #12
0
std::unique_ptr<Process> createGroundwaterFlowProcess(
    MeshLib::Mesh& mesh,
    Process::NonlinearSolver& nonlinear_solver,
    std::unique_ptr<Process::TimeDiscretization>&& time_discretization,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "GROUNDWATER_FLOW");

    DBUG("Create GroundwaterFlowProcess.");

    // Process variable.
    auto process_variables = findProcessVariables(
        variables, config,
        {//! \ogs_file_param_special{process__GROUNDWATER_FLOW__process_variables__process_variable}
         "process_variable"});

    // Hydraulic conductivity parameter.
    auto& hydraulic_conductivity = findParameter<double,
                                                 MeshLib::Element const&>(
        config,
        //! \ogs_file_param_special{process__GROUNDWATER_FLOW__hydraulic_conductivity}
        "hydraulic_conductivity",
        parameters);

    DBUG("Use \'%s\' as hydraulic conductivity parameter.",
         hydraulic_conductivity.name.c_str());

    GroundwaterFlowProcessData process_data{hydraulic_conductivity};

    SecondaryVariableCollection secondary_variables{
        //! \ogs_file_param{process__secondary_variables}
        config.getConfigSubtreeOptional("secondary_variables"),
        {//! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_x}
         "darcy_velocity_x",
         //! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_y}
         "darcy_velocity_y",
         //! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_z}
         "darcy_velocity_z"}};

    ProcessOutput
        //! \ogs_file_param{process__output}
        process_output{config.getConfigSubtree("output"), process_variables,
                       secondary_variables};

    return std::unique_ptr<Process>{new GroundwaterFlowProcess{
        mesh, nonlinear_solver, std::move(time_discretization),
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(process_output)}};
}
std::unique_ptr<PhaseFieldIrreversibleDamageOracleBoundaryCondition>
createPhaseFieldIrreversibleDamageOracleBoundaryCondition(
    BaseLib::ConfigTree const& config,
    NumLib::LocalToGlobalIndexMap const& dof_table, MeshLib::Mesh const& mesh,
    int const variable_id, int const component_id)
{
    DBUG(
        "Constructing PhaseFieldIrreversibleDamageOracleBoundaryCondition from "
        "config.");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
    config.checkConfigParameter(
        "type", "PhaseFieldIrreversibleDamageOracleBoundaryCondition");

    return std::make_unique<
        PhaseFieldIrreversibleDamageOracleBoundaryCondition>(
        dof_table, mesh, variable_id, component_id);
}
std::unique_ptr<RelativePermeability> createRelativePermeabilityModel(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__porous_medium__relative_permeability__type}
    auto const type = config.peekConfigParameter<std::string>("type");

    if (type == "WettingPhaseVanGenuchten")
    {
        return createWettingPhaseVanGenuchten(config);
    }
    if (type == "NonWettingPhaseVanGenuchten")
    {
        return createNonWettingPhaseVanGenuchten(config);
    }
    if (type == "WettingPhaseBrooksCoreyOilGas")
    {
        return createWettingPhaseBrooksCoreyOilGas(config);
    }
    if (type == "NonWettingPhaseBrooksCoreyOilGas")
    {
        return createNonWettingPhaseBrooksCoreyOilGas(config);
    }
    if (type == "Curve")
    {
        //! \ogs_file_param{material__porous_medium__relative_permeability__type}
        config.checkConfigParameter("type", "Curve");

        //! \ogs_file_param{material__porous_medium__relative_permeability__Curve__curve}
        auto const& curve_config = config.getConfigSubtree("curve");

        auto curve = MathLib::createPiecewiseLinearCurve<MathLib
                              ::PiecewiseLinearInterpolation>(curve_config);
        return std::make_unique<RelativePermeabilityCurve>(std::move(curve));
    }

    OGS_FATAL(
        "The relative permeability model %s is unavailable.\n"
        "The available models are:"
        "\n\tWettingPhaseVanGenuchten,"
        "\n\tNonWettingPhaseVanGenuchten,"
        "\n\tWettingPhaseBrooksCoreyOilGas,"
        "\n\tNonWettingPhaseBrooksCoreyOilGas,",
        "\n\tCurve.\n",
        type.data());
}
예제 #15
0
std::unique_ptr<NodalSourceTerm> createNodalSourceTerm(
    BaseLib::ConfigTree const& config,
    const NumLib::LocalToGlobalIndexMap& dof_table, std::size_t const mesh_id,
    std::size_t const node_id, const int variable_id, const int component_id,
    std::vector<std::unique_ptr<ProcessLib::ParameterBase>> const& parameters)
{
    DBUG("Constructing NodalSourceTerm from config.");
    //! \ogs_file_param{prj__process_variables__process_variable__source_terms__source_term__type}
    config.checkConfigParameter("type", "Nodal");

    //! \ogs_file_param{prj__process_variables__process_variable__source_terms__source_term__Nodal__parameter}
    auto const param_name = config.getConfigParameter<std::string>("parameter");
    DBUG("Using parameter %s as nodal source term.", param_name.c_str());

    auto& param = findParameter<double>(param_name, parameters, 1);

    return std::make_unique<NodalSourceTerm>(
        dof_table, mesh_id, node_id, variable_id, component_id, param);
}
예제 #16
0
std::unique_ptr<FractureModelBase<DisplacementDim>>
createMohrCoulomb(
    std::vector<std::unique_ptr<ProcessLib::ParameterBase>> const& parameters,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__fracture_model__type}
    config.checkConfigParameter("type", "MohrCoulomb");
    DBUG("Create MohrCoulomb material");

    auto& Kn = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__fracture_model__MohrCoulomb__normal_stiffness}
        config, "normal_stiffness", parameters, 1);

    auto& Ks = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__fracture_model__MohrCoulomb__shear_stiffness}
        config, "shear_stiffness", parameters, 1);

    auto& friction_angle = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__fracture_model__MohrCoulomb__friction_angle}
        config, "friction_angle", parameters, 1);

    auto& dilatancy_angle = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__fracture_model__MohrCoulomb__dilatancy_angle}
        config, "dilatancy_angle", parameters, 1);

    auto& cohesion = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__fracture_model__MohrCoulomb__cohesion}
        config, "cohesion", parameters, 1);

    auto const penalty_aperture_cutoff =
        //! \ogs_file_param{material__fracture_model__MohrCoulomb__penalty_aperture_cutoff}
        config.getConfigParameter<double>("penalty_aperture_cutoff");

    auto const tension_cutoff =
        //! \ogs_file_param{material__fracture_model__MohrCoulomb__tension_cutoff}
        config.getConfigParameter<bool>("tension_cutoff");

    typename MohrCoulomb<DisplacementDim>::MaterialProperties mp{
        Kn, Ks, friction_angle, dilatancy_angle, cohesion};

    return std::make_unique<MohrCoulomb<DisplacementDim>>(
        penalty_aperture_cutoff, tension_cutoff, mp);
}
예제 #17
0
std::unique_ptr<CentralDifferencesJacobianAssembler>
createCentralDifferencesJacobianAssembler(BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__jacobian_assembler__type}
    config.checkConfigParameter("type", "CentralDifferences");

    // TODO make non-optional.
    //! \ogs_file_param{prj__processes__process__jacobian_assembler__relative_epsilons}
    auto rel_eps = config.getConfigParameterOptional<std::vector<double>>(
        "relative_epsilons");
    //! \ogs_file_param{prj__processes__process__jacobian_assembler__component_magnitudes}
    auto comp_mag = config.getConfigParameterOptional<std::vector<double>>(
        "component_magnitudes");

    if (!!rel_eps != !!comp_mag) {
        OGS_FATAL(
            "Either both or none of <relative_epsilons> and "
            "<component_magnitudes> have to be specified.");
    }

    std::vector<double> abs_eps;

    if (rel_eps) {
        if (rel_eps->size() != comp_mag->size()) {
            OGS_FATAL(
                "The numbers of components of  <relative_epsilons> and "
                "<component_magnitudes> do not match.");
        }

        abs_eps.resize(rel_eps->size());
        for (std::size_t i=0; i<rel_eps->size(); ++i) {
            abs_eps[i] = (*rel_eps)[i] * (*comp_mag)[i];
        }
    } else {
        // By default 1e-8 is used as epsilon for all components.
        // TODO: remove this default value.
        abs_eps.emplace_back(1e-8);
    }

    return std::unique_ptr<CentralDifferencesJacobianAssembler>(
        new CentralDifferencesJacobianAssembler(std::move(abs_eps)));
}
예제 #18
0
std::unique_ptr<Process> createTESProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "TES");

    DBUG("Create TESProcess.");

    //! \ogs_file_param{prj__processes__process__TES__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto per_process_variables = findProcessVariables(
        variables, pv_config,
        {
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__fluid_pressure}
        "fluid_pressure",
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__temperature}
        "temperature",
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__vapour_mass_fraction}
        "vapour_mass_fraction"});
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"TES_pressure", "TES_temperature", "TES_vapour_mass_fraction"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<TESProcess>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(secondary_variables),
        std::move(named_function_caller), config);
}
예제 #19
0
std::unique_ptr<DirichletBoundaryCondition> createDirichletBoundaryCondition(
    BaseLib::ConfigTree const& config, std::vector<std::size_t>&& mesh_node_ids,
    NumLib::LocalToGlobalIndexMap const& dof_table, std::size_t const mesh_id,
    int const variable_id, int const component_id,
    const std::vector<std::unique_ptr<ProcessLib::ParameterBase>>& parameters)
{
    DBUG("Constructing DirichletBoundaryCondition from config.");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
    config.checkConfigParameter("type", "Dirichlet");

    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Dirichlet__parameter}
    auto const param_name = config.getConfigParameter<std::string>("parameter");
    DBUG("Using parameter %s", param_name.c_str());

    auto& param = findParameter<double>(param_name, parameters, 1);

    return std::unique_ptr<DirichletBoundaryCondition>(
        new DirichletBoundaryCondition(param, std::move(mesh_node_ids),
                                       dof_table, mesh_id, variable_id,
                                       component_id));
}
예제 #20
0
std::unique_ptr<RobinBoundaryCondition> createRobinBoundaryCondition(
    BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh,
    NumLib::LocalToGlobalIndexMap const& dof_table, int const variable_id,
    int const component_id, unsigned const integration_order,
    unsigned const shapefunction_order, unsigned const global_dim,
    std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters)
{
    DBUG("Constructing RobinBcConfig from config.");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
    config.checkConfigParameter("type", "Robin");

    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__alpha}
    auto const alpha_name = config.getConfigParameter<std::string>("alpha");
    //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__u_0}
    auto const u_0_name = config.getConfigParameter<std::string>("u_0");

    auto const& alpha =
        ParameterLib::findParameter<double>(alpha_name, parameters, 1);
    auto const& u_0 =
        ParameterLib::findParameter<double>(u_0_name, parameters, 1);

    // In case of partitioned mesh the boundary could be empty, i.e. there is no
    // boundary condition.
#ifdef USE_PETSC
    // This can be extracted to createBoundaryCondition() but then the config
    // parameters are not read and will cause an error.
    // TODO (naumov): Add a function to ConfigTree for skipping the tags of the
    // subtree and move the code up in createBoundaryCondition().
    if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 &&
        bc_mesh.getNumberOfElements() == 0)
    {
        return nullptr;
    }
#endif  // USE_PETSC

    return std::make_unique<RobinBoundaryCondition>(
        integration_order, shapefunction_order, dof_table, variable_id,
        component_id, global_dim, bc_mesh,
        RobinBoundaryConditionData{alpha, u_0});
}
std::unique_ptr<LinearElasticOrthotropic<DisplacementDim>>
createLinearElasticOrthotropic(
    std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
    boost::optional<ParameterLib::CoordinateSystem> const&
        local_coordinate_system,
    BaseLib::ConfigTree const& config, const bool skip_type_checking)
{
    if (!skip_type_checking)
    {
        //! \ogs_file_param{material__solid__constitutive_relation__type}
        config.checkConfigParameter("type", "LinearElasticOrthotropic");
        DBUG("Create LinearElasticOrthotropic material");
    }

    // The three Youngs moduli are required even in two-dimensional case. Same
    // for the shear moduli and the Poissons ratios.
    auto& youngs_moduli = ParameterLib::findParameter<double>(
        //! \ogs_file_param_special{material__solid__constitutive_relation__LinearElasticOrthotropic__youngs_moduli}
        config, "youngs_moduli", parameters, 3);
    DBUG("Use '%s' as youngs_moduli parameter.", youngs_moduli.name.c_str());

    // Shear moduli
    auto& shear_moduli = ParameterLib::findParameter<double>(
        //! \ogs_file_param_special{material__solid__constitutive_relation__LinearElasticOrthotropic__shear_moduli}
        config, "shear_moduli", parameters, 3);
    DBUG("Use '%s' as shear_moduli parameter.", shear_moduli.name.c_str());

    // Poissons ratios
    auto& poissons_ratios = ParameterLib::findParameter<double>(
        //! \ogs_file_param_special{material__solid__constitutive_relation__LinearElasticOrthotropic__poissons_ratios}
        config, "poissons_ratios", parameters, 3);
    DBUG("Use '%s' as poissons_ratios parameter.",
         poissons_ratios.name.c_str());

    typename LinearElasticOrthotropic<DisplacementDim>::MaterialProperties mp{
        youngs_moduli, shear_moduli, poissons_ratios};

    return std::make_unique<LinearElasticOrthotropic<DisplacementDim>>(
        mp, local_coordinate_system);
}
예제 #22
0
std::unique_ptr<ConvergenceCriterionResidual>
createConvergenceCriterionResidual(const BaseLib::ConfigTree& config)
{
    //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__type}
    config.checkConfigParameter("type", "Residual");

    //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__Residual__abstol}
    auto abstol = config.getConfigParameterOptional<double>("abstol");
    //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__Residual__reltol}
    auto reltol = config.getConfigParameterOptional<double>("reltol");
    auto const norm_type_str =
        //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion__Residual__norm_type}
        config.getConfigParameter<std::string>("norm_type");
    auto const norm_type = MathLib::convertStringToVecNormType(norm_type_str);

    if (norm_type == MathLib::VecNormType::INVALID)
        OGS_FATAL("Unknown vector norm type `%s'.", norm_type_str.c_str());

    return std::unique_ptr<ConvergenceCriterionResidual>(
        new ConvergenceCriterionResidual(std::move(abstol), std::move(reltol),
                                         norm_type));
}
예제 #23
0
std::unique_ptr<FractureModelBase<DisplacementDim>>
createLinearElasticIsotropic(
    std::vector<std::unique_ptr<ProcessLib::ParameterBase>> const& parameters,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__solid__constitutive_relation__type}
    config.checkConfigParameter("type", "LinearElasticIsotropic");
    DBUG("Create LinearElasticIsotropic material");

    auto& Kn = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__solid__constitutive_relation__LinearElasticIsotropic__normal_stiffness}
        config, "normal_stiffness", parameters, 1);

    auto& Ks = ProcessLib::findParameter<double>(
        //! \ogs_file_param_special{material__solid__constitutive_relation__LinearElasticIsotropic__shear_stiffness}
        config, "shear_stiffness", parameters, 1);

    typename LinearElasticIsotropic<DisplacementDim>::MaterialProperties mp{
        Kn, Ks};

    return std::unique_ptr<LinearElasticIsotropic<DisplacementDim>>{
        new LinearElasticIsotropic<DisplacementDim>{mp}};
}
예제 #24
0
std::unique_ptr<ParameterBase> createConstantParameter(
    std::string const& name, BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__parameters__parameter__type}
    config.checkConfigParameter("type", "Constant");

    // Optional case for single-component variables where the value can be used.
    // If the 'value' tag is found, use it and return. Otherwise continue with
    // then required tag 'values'.
    {
        //! \ogs_file_param{prj__parameters__parameter__Constant__value}
        auto const value = config.getConfigParameterOptional<double>("value");

        if (value)
        {
            DBUG("Using value %g for constant parameter.", *value);
            return std::make_unique<ConstantParameter<double>>(name, *value);
        }
    }

    // Value tag not available; continue with required values tag.
    std::vector<double> const values =
        //! \ogs_file_param{prj__parameters__parameter__Constant__values}
        config.getConfigParameter<std::vector<double>>("values");

    if (values.empty())
        OGS_FATAL("No value available for constant parameter.");

    DBUG("Using following values for the constant parameter:");
    for (double const v : values)
    {
        (void)v;  // unused value if building w/o DBUG output.
        DBUG("\t%g", v);
    }

    return std::make_unique<ConstantParameter<double>>(name, values);
}
예제 #25
0
std::unique_ptr<Process> createHydroMechanicsProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "HYDRO_MECHANICS");
    DBUG("Create HydroMechanicsProcess.");

    // Process variable.

    //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto process_variables = findProcessVariables(
                                 variables, pv_config,
    {   //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__process_variables__pressure}
        "pressure",
        //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__process_variables__displacement}
        "displacement"
    });

    DBUG("Associate displacement with process variable \'%s\'.",
         process_variables[1].get().getName().c_str());

    if (process_variables[1].get().getNumberOfComponents() !=
            DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            process_variables[1].get().getName().c_str(),
            process_variables[1].get().getNumberOfComponents(),
            DisplacementDim);
    }

    DBUG("Associate pressure with process variable \'%s\'.",
         process_variables[0].get().getName().c_str());
    if (process_variables[0].get().getNumberOfComponents() != 1)
    {
        OGS_FATAL(
            "Pressure process variable '%s' is not a scalar variable but has "
            "%d components.",
            process_variables[0].get().getName().c_str(),
            process_variables[0].get().getNumberOfComponents());
    }


    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const type =
        //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__constitutive_relation__type}
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::MechanicsBase<DisplacementDim>>
            material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        material =
            MaterialLib::Solids::createLinearElasticIsotropic<DisplacementDim>(
                parameters, constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Intrinsic permeability
    auto& intrinsic_permeability = findParameter<double>(
                                       config,
                                       //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__intrinsic_permeability}
                                       "intrinsic_permeability",
                                       parameters, 1);

    DBUG("Use \'%s\' as intrinsic conductivity parameter.",
         intrinsic_permeability.name.c_str());

    // Storage coefficient
    auto& specific_storage = findParameter<double>(
                                 config,
                                 //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__specific_storage}
                                 "specific_storage", parameters, 1);

    DBUG("Use \'%s\' as storage coefficient parameter.",
         specific_storage.name.c_str());

    // Fluid viscosity
    auto& fluid_viscosity = findParameter<double>(
                                config,
                                //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__fluid_viscosity}
                                "fluid_viscosity",
                                parameters, 1);
    DBUG("Use \'%s\' as fluid viscosity parameter.",
         fluid_viscosity.name.c_str());

    // Fluid density
    auto& fluid_density = findParameter<double>(
                              config,
                              //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__fluid_density}
                              "fluid_density",
                              parameters, 1);
    DBUG("Use \'%s\' as fluid density parameter.",
         fluid_density.name.c_str());

    // Biot coefficient
    auto& biot_coefficient = findParameter<double>(
                                 config,
                                 //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__biot_coefficient}
                                 "biot_coefficient",
                                 parameters, 1);
    DBUG("Use \'%s\' as Biot coefficient parameter.",
         biot_coefficient.name.c_str());

    // Porosity
    auto& porosity = findParameter<double>(
                         config,
                         //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__porosity}
                         "porosity",
                         parameters, 1);
    DBUG("Use \'%s\' as porosity parameter.",
         porosity.name.c_str());

    // Solid density
    auto& solid_density = findParameter<double>(
                              config,
                              //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__solid_density}
                              "solid_density",
                              parameters, 1);
    DBUG("Use \'%s\' as solid density parameter.",
         solid_density.name.c_str());

    // Specific body force
    Eigen::Matrix<double, DisplacementDim, 1> specific_body_force;
    {
        std::vector<double> const b =
            //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__specific_body_force}
            config.getConfigParameter<std::vector<double>>(
                "specific_body_force");
        if (specific_body_force.size() != DisplacementDim)
            OGS_FATAL(
                "The size of the specific body force vector does not match the "
                "displacement dimension. Vector size is %d, displacement "
                "dimension is %d",
                specific_body_force.size(), DisplacementDim);

        std::copy_n(b.data(), b.size(), specific_body_force.data());
    }

    HydroMechanicsProcessData<DisplacementDim> process_data{
        std::move(material),
        intrinsic_permeability,
        specific_storage,
        fluid_viscosity,
        fluid_density,
        biot_coefficient,
        porosity,
        solid_density,
        specific_body_force};

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
    {"HydroMechanics_displacement"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    return std::unique_ptr<HydroMechanicsProcess<DisplacementDim>> {
        new HydroMechanicsProcess<DisplacementDim>{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller)
        }
    };
}
std::unique_ptr<Process> createTwoPhaseFlowWithPPProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config,
    std::map<std::string,
             std::unique_ptr<MathLib::PiecewiseLinearInterpolation>> const&
        curves)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "TWOPHASE_FLOW_PP");

    DBUG("Create TwoPhaseFlowProcess with PP model.");
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto per_process_variables = findProcessVariables(
        variables, pv_config,
        {//! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__process_variables__gas_pressure}
         "gas_pressure",
         //! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__process_variables__capillary_pressure}
         "capillary_pressure"});
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"TwoPhaseFlow_pressure"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);
    // Specific body force
    std::vector<double> const b =
        //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__specific_body_force}
        config.getConfigParameter<std::vector<double>>("specific_body_force");
    assert(!b.empty() && b.size() < 4);
    Eigen::VectorXd specific_body_force(b.size());
    bool const has_gravity = MathLib::toVector(b).norm() > 0;
    if (has_gravity)
        std::copy_n(b.data(), b.size(), specific_body_force.data());

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__mass_lumping}
    auto const mass_lumping = config.getConfigParameter<bool>("mass_lumping");

    auto& temperature = findParameter<double>(
        config,
        //! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__temperature}
        "temperature", parameters, 1);

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__material_property}
    auto const& mat_config = config.getConfigSubtree("material_property");

    auto const material_ids = materialIDs(mesh);
    if (material_ids)
    {
        INFO("The twophase flow is in heterogeneous porous media.");
    }
    else
    {
        INFO("The twophase flow is in homogeneous porous media.");
    }
    std::unique_ptr<TwoPhaseFlowWithPPMaterialProperties> material =
        createTwoPhaseFlowWithPPMaterialProperties(mat_config, material_ids,
                                                   parameters);

    TwoPhaseFlowWithPPProcessData process_data{
        specific_body_force, has_gravity, mass_lumping, temperature, std::move(material)};

    return std::make_unique<TwoPhaseFlowWithPPProcess>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller),
        mat_config, curves);
}
std::unique_ptr<Process> createSmallDeformationProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
    boost::optional<ParameterLib::CoordinateSystem> const&
        local_coordinate_system,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "SMALL_DEFORMATION_WITH_LIE");
    DBUG("Create SmallDeformationProcess with LIE.");

    // Process variables
    //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables}
    auto const pv_conf = config.getConfigSubtree("process_variables");
    auto range =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables__process_variable}
        pv_conf.getConfigParameterList<std::string>("process_variable");
    std::vector<std::reference_wrapper<ProcessVariable>> per_process_variables;

    std::size_t n_var_du = 0;
    for (std::string const& pv_name : range)
    {
        if (pv_name != "displacement" && pv_name.find("displacement_jump") != 0)
        {
            OGS_FATAL(
                "Found a process variable name '%s'. It should be "
                "'displacement' or 'displacement_jumpN' or "
                "'displacement_junctionN'");
        }
        if (pv_name.find("displacement_jump") == 0)
        {
            n_var_du++;
        }

        auto variable = std::find_if(variables.cbegin(), variables.cend(),
                                     [&pv_name](ProcessVariable const& v) {
                                         return v.getName() == pv_name;
                                     });

        if (variable == variables.end())
        {
            OGS_FATAL(
                "Could not find process variable '%s' in the provided "
                "variables "
                "list for config tag <%s>.",
                pv_name.c_str(), "process_variable");
        }
        DBUG("Found process variable '%s' for config tag <%s>.",
             variable->getName().c_str(), "process_variable");

        per_process_variables.emplace_back(
            const_cast<ProcessVariable&>(*variable));
    }

    if (n_var_du < 1)
    {
        OGS_FATAL("No displacement jump variables are specified");
    }

    DBUG("Associate displacement with process variable '%s'.",
         per_process_variables.back().get().getName().c_str());

    if (per_process_variables.back().get().getNumberOfComponents() !=
        DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            per_process_variables.back().get().getName().c_str(),
            per_process_variables.back().get().getNumberOfComponents(),
            DisplacementDim);
    }
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    auto solid_constitutive_relations =
        MaterialLib::Solids::createConstitutiveRelations<DisplacementDim>(
            parameters, local_coordinate_system, config);

    // Fracture constitutive relation.
    // read type;
    auto const fracture_model_config =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model}
        config.getConfigSubtree("fracture_model");

    auto const frac_type =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model__type}
        fracture_model_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Fracture::FractureModelBase<DisplacementDim>>
        fracture_model = nullptr;
    if (frac_type == "LinearElasticIsotropic")
    {
        fracture_model = MaterialLib::Fracture::createLinearElasticIsotropic<
            DisplacementDim>(parameters, fracture_model_config);
    }
    else if (frac_type == "MohrCoulomb")
    {
        fracture_model =
            MaterialLib::Fracture::createMohrCoulomb<DisplacementDim>(
                parameters, fracture_model_config);
    }
    else if (frac_type == "CohesiveZoneModeI")
    {
        fracture_model =
            MaterialLib::Fracture::CohesiveZoneModeI::createCohesiveZoneModeI<
                DisplacementDim>(parameters, fracture_model_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct fracture constitutive relation of given type "
            "'%s'.",
            frac_type.c_str());
    }

    // Fracture properties
    std::vector<FractureProperty> fracture_properties;
    for (
        auto fracture_properties_config :
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties}
        config.getConfigSubtreeList("fracture_properties"))
    {
        fracture_properties.emplace_back(
            fracture_properties.size(),
            //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__material_id}
            fracture_properties_config.getConfigParameter<int>("material_id"),
            ParameterLib::findParameter<double>(
                //! \ogs_file_param_special{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__initial_aperture}
                fracture_properties_config, "initial_aperture", parameters, 1));
    }

    if (n_var_du < fracture_properties.size())
    {
        OGS_FATAL(
            "The number of displacement jumps and the number of "
            "<fracture_properties> "
            "are not consistent");
    }

    // Reference temperature
    const auto& reference_temperature =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__reference_temperature}
        config.getConfigParameter<double>(
            "reference_temperature", std::numeric_limits<double>::quiet_NaN());

    SmallDeformationProcessData<DisplacementDim> process_data(
        materialIDs(mesh), std::move(solid_constitutive_relations),
        std::move(fracture_model), std::move(fracture_properties),
        reference_temperature);

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"SmallDeformation_displacement"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<SmallDeformationProcess<DisplacementDim>>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller));
}
예제 #28
0
std::unique_ptr<Process> createLiquidFlowProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "LIQUID_FLOW");

    DBUG("Create LiquidFlowProcess.");

    // Process variable.
    auto process_variables = findProcessVariables(
        variables, config,
        {//! \ogs_file_param_special{process__LIQUID_FLOW__process_variables__process_variable}
         "process_variable"});

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller({"LiquidFlow_pressure"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    // Get the gravity vector for the Darcy velocity
    //! \ogs_file_param{process__LIQUID_FLOW__darcy_gravity}
    auto const& darcy_g_config = config.getConfigSubtree("darcy_gravity");
    const int gravity_axis_id_input =
        //! \ogs_file_param_special{process__LIQUID_FLOW__darcy_gravity_axis_id}
        darcy_g_config.getConfigParameter<int>("axis_id");
    assert(gravity_axis_id_input < static_cast<int>(mesh.getDimension()));
    const double g =
        //! \ogs_file_param_special{process__LIQUID_FLOW__darcy_gravity_g}
        darcy_g_config.getConfigParameter<double>("g");
    assert(g >= 0.);
    const int gravity_axis_id = (g == 0.) ? -1 : gravity_axis_id_input;

    //! \ogs_file_param{process__LIQUID_FLOW__material_property}
    auto const& mat_config = config.getConfigSubtree("material_property");

    auto const& mat_ids =
        mesh.getProperties().getPropertyVector<int>("MaterialIDs");
    if (mat_ids)
    {
        INFO("The liquid flow is in heterogeneous porous media.");
        const bool has_material_ids = true;
        return std::unique_ptr<Process>{new LiquidFlowProcess{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(secondary_variables),
            std::move(named_function_caller), *mat_ids, has_material_ids,
            gravity_axis_id, g, mat_config}};
    }
    else
    {
        INFO("The liquid flow is in homogeneous porous media.");

        MeshLib::Properties dummy_property;
        // For a reference argument of LiquidFlowProcess(...).
        auto const& dummy_property_vector =
            dummy_property.createNewPropertyVector<int>(
                "MaterialIDs", MeshLib::MeshItemType::Cell, 1);

        // Since dummy_property_vector is only visible in this function,
        // the following constant, has_material_ids, is employed to indicate
        // that material_ids does not exist.
        const bool has_material_ids = false;

        return std::unique_ptr<Process>{new LiquidFlowProcess{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(secondary_variables),
            std::move(named_function_caller), *dummy_property_vector,
            has_material_ids, gravity_axis_id, g, mat_config}};
    }
}
예제 #29
0
std::unique_ptr<Process> createPhaseFieldProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "PHASE_FIELD");
    DBUG("Create PhaseFieldProcess.");

    auto const staggered_scheme =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__coupling_scheme}
        config.getConfigParameterOptional<std::string>("coupling_scheme");
    const bool use_monolithic_scheme =
        !(staggered_scheme && (*staggered_scheme == "staggered"));

    // Process variable.

    //! \ogs_file_param{prj__processes__process__PHASE_FIELD__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    ProcessVariable* variable_ph;
    ProcessVariable* variable_u;
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    if (use_monolithic_scheme)  // monolithic scheme.
    {
        auto per_process_variables = findProcessVariables(
            variables, pv_config,
            {//! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__process_variables__phasefield}
            "phasefield",
             //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__process_variables__displacement}
            "displacement"});
        variable_ph = &per_process_variables[0].get();
        variable_u = &per_process_variables[1].get();
        process_variables.push_back(std::move(per_process_variables));
    }
    else  // staggered scheme.
    {
        using namespace std::string_literals;
        for (auto const& variable_name : {"phasefield"s, "displacement"s})
        {
            auto per_process_variables =
                findProcessVariables(variables, pv_config, {variable_name});
            process_variables.push_back(std::move(per_process_variables));
        }
        variable_ph = &process_variables[0][0].get();
        variable_u = &process_variables[1][0].get();
    }

    DBUG("Associate displacement with process variable \'%s\'.",
         variable_u->getName().c_str());

    if (variable_u->getNumberOfComponents() != DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            variable_u->getName().c_str(),
            variable_u->getNumberOfComponents(),
            DisplacementDim);
    }

    DBUG("Associate phase field with process variable \'%s\'.",
         variable_ph->getName().c_str());
    if (variable_ph->getNumberOfComponents() != 1)
    {
        OGS_FATAL(
            "Pressure process variable '%s' is not a scalar variable but has "
            "%d components.",
            variable_ph->getName().c_str(),
            variable_ph->getNumberOfComponents());
    }

    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const phasefield_parameters_config =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__phasefield_parameters}
        config.getConfigSubtree("phasefield_parameters");

    auto const type =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__constitutive_relation__type}
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::PhaseFieldExtension<DisplacementDim>>
        material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        auto elastic_model = MaterialLib::Solids::createLinearElasticIsotropic<
                DisplacementDim>(parameters, constitutive_relation_config);
        material =
                std::make_unique<MaterialLib::Solids::LinearElasticIsotropicPhaseField<
                DisplacementDim>>(std::move(elastic_model->getMaterialProperties()));
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Residual stiffness
    auto& residual_stiffness = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__residual_stiffness}
        "residual_stiffness", parameters, 1);
    DBUG("Use \'%s\' as residual stiffness.", residual_stiffness.name.c_str());

    // Crack resistance
    auto& crack_resistance = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__crack_resistance}
        "crack_resistance", parameters, 1);
    DBUG("Use \'%s\' as crack resistance.", crack_resistance.name.c_str());

    // Crack length scale
    auto& crack_length_scale = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__crack_length_scale}
        "crack_length_scale", parameters, 1);
    DBUG("Use \'%s\' as crack length scale.", crack_length_scale.name.c_str());

    // Kinetic coefficient
    auto& kinetic_coefficient = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__kinetic_coefficient}
        "kinetic_coefficient", parameters, 1);
    DBUG("Use \'%s\' as kinetic coefficient.",
         kinetic_coefficient.name.c_str());

    // Solid density
    auto& solid_density = findParameter<double>(
        config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__solid_density}
        "solid_density", parameters, 1);
    DBUG("Use \'%s\' as solid density parameter.", solid_density.name.c_str());

    // History field
    auto& history_field = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__history_field}
        "history_field", parameters, 1);
    DBUG("Use \'%s\' as history field.", history_field.name.c_str());

    // Specific body force
    Eigen::Matrix<double, DisplacementDim, 1> specific_body_force;
    {
        std::vector<double> const b =
            //! \ogs_file_param{prj__processes__process__PHASE_FIELD__specific_body_force}
            config.getConfigParameter<std::vector<double>>(
                "specific_body_force");
        if (b.size() != DisplacementDim)
            OGS_FATAL(
                "The size of the specific body force vector does not match the "
                "displacement dimension. Vector size is %d, displacement "
                "dimension is %d",
                b.size(), DisplacementDim);

        std::copy_n(b.data(), b.size(), specific_body_force.data());
    }

    PhaseFieldProcessData<DisplacementDim> process_data{
        std::move(material), residual_stiffness,  crack_resistance,
        crack_length_scale,  kinetic_coefficient, solid_density,
        history_field,       specific_body_force};

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"PhaseField_displacement"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<PhaseFieldProcess<DisplacementDim>>(
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller),
            use_monolithic_scheme);
}
예제 #30
0
std::unique_ptr<Process>
createSmallDeformationProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "SMALL_DEFORMATION_WITH_LIE");
    DBUG("Create SmallDeformationProcess with LIE.");

    // Process variables
    auto const pv_conf = config.getConfigSubtree("process_variables");
    auto range = pv_conf.getConfigParameterList<std::string>("process_variable");
    std::vector<std::reference_wrapper<ProcessVariable>> process_variables;
    for (std::string const& pv_name : range)
    {
        if (pv_name != "displacement"
            && pv_name.find("displacement_jump")==std::string::npos)
            OGS_FATAL("Found a process variable name '%s'. It should be 'displacement' or 'displacement_jumpN'");
        auto variable = std::find_if(
            variables.cbegin(), variables.cend(),
            [&pv_name](ProcessVariable const& v) { return v.getName() == pv_name; });

        if (variable == variables.end())
        {
            OGS_FATAL(
                "Could not find process variable '%s' in the provided variables "
                "list for config tag <%s>.",
                pv_name.c_str(), "process_variable");
        }
        DBUG("Found process variable \'%s\' for config tag <%s>.",
             variable->getName().c_str(), "process_variable");

        process_variables.emplace_back(const_cast<ProcessVariable&>(*variable));
    }
    if (process_variables.size() > 2)
        OGS_FATAL("Currently only one displacement jump is supported");

    DBUG("Associate displacement with process variable \'%s\'.",
         process_variables.back().get().getName().c_str());

    if (process_variables.back().get().getNumberOfComponents() !=
        DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            process_variables.back().get().getName().c_str(),
            process_variables.back().get().getNumberOfComponents(),
            DisplacementDim);
    }

    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const type =
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::MechanicsBase<DisplacementDim>> material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        material = MaterialLib::Solids::createLinearElasticIsotropic<DisplacementDim>(
            parameters, constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Fracture constitutive relation.
    // read type;
    auto const fracture_constitutive_relation_config =
        //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__constitutive_relation}
        config.getConfigSubtree("fracture_constitutive_relation");

    auto const frac_type =
        fracture_constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Fracture::FractureModelBase<DisplacementDim>> fracture_model = nullptr;
    if (frac_type == "LinearElasticIsotropic")
    {
        fracture_model = MaterialLib::Fracture::createLinearElasticIsotropic<DisplacementDim>(
            parameters, fracture_constitutive_relation_config);
    }
    else if (frac_type == "MohrCoulomb")
    {
        fracture_model = MaterialLib::Fracture::createMohrCoulomb<DisplacementDim>(
            parameters, fracture_constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct fracture constitutive relation of given type \'%s\'.",
            frac_type.c_str());
    }

    // Fracture properties
    //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__fracture_properties}
    auto fracture_properties_config = config.getConfigSubtree("fracture_properties");
    auto &para_b0 = ProcessLib::findParameter<double>(fracture_properties_config, "initial_aperture", parameters, 1);
    std::unique_ptr<FractureProperty> frac_prop(new FractureProperty());
    frac_prop->mat_id = fracture_properties_config.getConfigParameter<int>("material_id");
    frac_prop->aperture0 = &para_b0;


    SmallDeformationProcessData<DisplacementDim> process_data(
        std::move(material), std::move(fracture_model), std::move(frac_prop));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"SmallDeformation_displacement"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    return std::unique_ptr<SmallDeformationProcess<DisplacementDim>>{
        new SmallDeformationProcess<DisplacementDim>{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller)}};
}