예제 #1
0
파일: Adaptor.cpp 프로젝트: TomFischer/ogs
void Initialize(BaseLib::ConfigTree const& scripts_config,
                std::string const& path)
{
    if (Processor == nullptr)
    {
        Processor = vtkCPProcessor::New();
        Processor->Initialize();
    }
    else
    {
        Processor->RemoveAllPipelines();
    }
    //! \ogs_file_param{prj__insitu__scripts__script}
    for (auto script_config : scripts_config.getConfigSubtreeList("script"))
    {
        //! \ogs_file_param{prj__insitu__scripts__script__name}
        auto scriptName = script_config.getConfigParameter<std::string>("name");
        INFO("Initializing in-situ script: %s", scriptName.c_str());
        std::stringstream ss;
        ss << path << scriptName;
        vtkNew<vtkCPPythonScriptPipeline> pipeline;
        pipeline->Initialize(ss.str().c_str());
        Processor->AddPipeline(pipeline.GetPointer());
    }
}
예제 #2
0
std::vector<std::unique_ptr<ProcessData>> createPerProcessData(
    BaseLib::ConfigTree const& config,
    const std::map<std::string, std::unique_ptr<Process>>& processes,
    std::map<std::string, std::unique_ptr<NumLib::NonlinearSolverBase>> const&
        nonlinear_solvers)
{
    std::vector<std::unique_ptr<ProcessData>> per_process_data;

    //! \ogs_file_param{prj__time_loop__processes__process}
    for (auto pcs_config : config.getConfigSubtreeList("process"))
    {
        //! \ogs_file_attr{prj__time_loop__processes__process__ref}
        auto const pcs_name = pcs_config.getConfigAttribute<std::string>("ref");
        auto& pcs = *BaseLib::getOrError(
            processes, pcs_name,
            "A process with the given name has not been defined.");

        auto const nl_slv_name =
            //! \ogs_file_param{prj__time_loop__processes__process__nonlinear_solver}
            pcs_config.getConfigParameter<std::string>("nonlinear_solver");
        auto& nl_slv = *BaseLib::getOrError(
            nonlinear_solvers, nl_slv_name,
            "A nonlinear solver with the given name has not been defined.");

        auto time_disc = NumLib::createTimeDiscretization(
            //! \ogs_file_param{prj__time_loop__processes__process__time_discretization}
            pcs_config.getConfigSubtree("time_discretization"));

        auto timestepper = NumLib::createTimeStepper(
            //! \ogs_file_param{prj__time_loop__processes__process__time_stepping}
            pcs_config.getConfigSubtree("time_stepping"));

        auto conv_crit = NumLib::createConvergenceCriterion(
            //! \ogs_file_param{prj__time_loop__processes__process__convergence_criterion}
            pcs_config.getConfigSubtree("convergence_criterion"));

        ProcessOutput process_output =
            //! \ogs_file_param{prj__time_loop__processes__process__output}
            createProcessOutput(pcs_config.getConfigSubtree("output"));

        per_process_data.emplace_back(makeProcessData(
            std::move(timestepper), nl_slv, pcs, std::move(time_disc),
            std::move(conv_crit), std::move(process_output)));
    }

    if (per_process_data.size() != processes.size())
    {
        if (processes.size() > 1)
        {
            OGS_FATAL(
                "Some processes have not been configured to be solved by this "
                " time loop.");
        }
        else
        {
            INFO(
                "The equations of the coupled processes will be solved by the "
                "staggered scheme.");
        }
    }

    return per_process_data;
}
std::unique_ptr<Process> createSmallDeformationProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
    boost::optional<ParameterLib::CoordinateSystem> const&
        local_coordinate_system,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "SMALL_DEFORMATION_WITH_LIE");
    DBUG("Create SmallDeformationProcess with LIE.");

    // Process variables
    //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables}
    auto const pv_conf = config.getConfigSubtree("process_variables");
    auto range =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables__process_variable}
        pv_conf.getConfigParameterList<std::string>("process_variable");
    std::vector<std::reference_wrapper<ProcessVariable>> per_process_variables;

    std::size_t n_var_du = 0;
    for (std::string const& pv_name : range)
    {
        if (pv_name != "displacement" && pv_name.find("displacement_jump") != 0)
        {
            OGS_FATAL(
                "Found a process variable name '%s'. It should be "
                "'displacement' or 'displacement_jumpN' or "
                "'displacement_junctionN'");
        }
        if (pv_name.find("displacement_jump") == 0)
        {
            n_var_du++;
        }

        auto variable = std::find_if(variables.cbegin(), variables.cend(),
                                     [&pv_name](ProcessVariable const& v) {
                                         return v.getName() == pv_name;
                                     });

        if (variable == variables.end())
        {
            OGS_FATAL(
                "Could not find process variable '%s' in the provided "
                "variables "
                "list for config tag <%s>.",
                pv_name.c_str(), "process_variable");
        }
        DBUG("Found process variable '%s' for config tag <%s>.",
             variable->getName().c_str(), "process_variable");

        per_process_variables.emplace_back(
            const_cast<ProcessVariable&>(*variable));
    }

    if (n_var_du < 1)
    {
        OGS_FATAL("No displacement jump variables are specified");
    }

    DBUG("Associate displacement with process variable '%s'.",
         per_process_variables.back().get().getName().c_str());

    if (per_process_variables.back().get().getNumberOfComponents() !=
        DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            per_process_variables.back().get().getName().c_str(),
            per_process_variables.back().get().getNumberOfComponents(),
            DisplacementDim);
    }
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    auto solid_constitutive_relations =
        MaterialLib::Solids::createConstitutiveRelations<DisplacementDim>(
            parameters, local_coordinate_system, config);

    // Fracture constitutive relation.
    // read type;
    auto const fracture_model_config =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model}
        config.getConfigSubtree("fracture_model");

    auto const frac_type =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model__type}
        fracture_model_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Fracture::FractureModelBase<DisplacementDim>>
        fracture_model = nullptr;
    if (frac_type == "LinearElasticIsotropic")
    {
        fracture_model = MaterialLib::Fracture::createLinearElasticIsotropic<
            DisplacementDim>(parameters, fracture_model_config);
    }
    else if (frac_type == "MohrCoulomb")
    {
        fracture_model =
            MaterialLib::Fracture::createMohrCoulomb<DisplacementDim>(
                parameters, fracture_model_config);
    }
    else if (frac_type == "CohesiveZoneModeI")
    {
        fracture_model =
            MaterialLib::Fracture::CohesiveZoneModeI::createCohesiveZoneModeI<
                DisplacementDim>(parameters, fracture_model_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct fracture constitutive relation of given type "
            "'%s'.",
            frac_type.c_str());
    }

    // Fracture properties
    std::vector<FractureProperty> fracture_properties;
    for (
        auto fracture_properties_config :
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties}
        config.getConfigSubtreeList("fracture_properties"))
    {
        fracture_properties.emplace_back(
            fracture_properties.size(),
            //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__material_id}
            fracture_properties_config.getConfigParameter<int>("material_id"),
            ParameterLib::findParameter<double>(
                //! \ogs_file_param_special{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__initial_aperture}
                fracture_properties_config, "initial_aperture", parameters, 1));
    }

    if (n_var_du < fracture_properties.size())
    {
        OGS_FATAL(
            "The number of displacement jumps and the number of "
            "<fracture_properties> "
            "are not consistent");
    }

    // Reference temperature
    const auto& reference_temperature =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__reference_temperature}
        config.getConfigParameter<double>(
            "reference_temperature", std::numeric_limits<double>::quiet_NaN());

    SmallDeformationProcessData<DisplacementDim> process_data(
        materialIDs(mesh), std::move(solid_constitutive_relations),
        std::move(fracture_model), std::move(fracture_properties),
        reference_temperature);

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"SmallDeformation_displacement"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<SmallDeformationProcess<DisplacementDim>>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller));
}