예제 #1
0
std::unique_ptr<FluidProperties> createFluidProperties(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__fluid__density}
    auto const& rho_conf = config.getConfigSubtree("density");
    auto liquid_density = MaterialLib::Fluid::createFluidDensityModel(rho_conf);

    //! \ogs_file_param{material__fluid__viscosity}
    auto const& mu_conf = config.getConfigSubtree("viscosity");
    auto viscosity = MaterialLib::Fluid::createViscosityModel(mu_conf);
    const bool is_mu_density_dependent =
        (viscosity->getName().find("density dependent") != std::string::npos);

    bool is_cp_density_dependent = false;
    std::unique_ptr<MaterialLib::Fluid::FluidProperty> specific_heat_capacity =
        nullptr;
    auto heat_capacity__opt_conf =
        //! \ogs_file_param{material__fluid__specific_heat_capacity}
        config.getConfigSubtreeOptional("specific_heat_capacity");
    if (heat_capacity__opt_conf)
    {
        const auto& heat_capacity_conf = *heat_capacity__opt_conf;
        specific_heat_capacity =
            createSpecificFluidHeatCapacityModel(heat_capacity_conf);
        is_cp_density_dependent =
            (specific_heat_capacity->getName().find("density dependent") !=
             std::string::npos);
    }

    bool is_KT_density_dependent = false;
    std::unique_ptr<MaterialLib::Fluid::FluidProperty> thermal_conductivity =
        nullptr;
    auto const& thermal_conductivity_opt_conf =
        //! \ogs_file_param{material__fluid__thermal_conductivity}
        config.getConfigSubtreeOptional("thermal_conductivity");
    if (thermal_conductivity_opt_conf)
    {
        auto const& thermal_conductivity_conf = *thermal_conductivity_opt_conf;
        thermal_conductivity =
            MaterialLib::Fluid::createFluidThermalConductivityModel(
                thermal_conductivity_conf);
        is_KT_density_dependent =
            (specific_heat_capacity->getName().find("density dependent") !=
             std::string::npos);
    }

    if (is_mu_density_dependent || is_cp_density_dependent ||
        is_KT_density_dependent)
        return std::make_unique<
            MaterialLib::Fluid::FluidPropertiesWithDensityDependentModels>(
            std::move(liquid_density), std::move(viscosity),
            std::move(specific_heat_capacity), std::move(thermal_conductivity),
            is_mu_density_dependent, is_cp_density_dependent,
            is_KT_density_dependent);

    return std::make_unique<
        MaterialLib::Fluid::PrimaryVariableDependentFluidProperties>(
        std::move(liquid_density), std::move(viscosity),
        std::move(specific_heat_capacity), std::move(thermal_conductivity));
}
예제 #2
0
static std::tuple<BoreholeGeometry,
                  RefrigerantProperties,
                  GroutParameters,
                  FlowAndTemperatureControl,
                  PipeConfigurationCoaxial>
parseBHECoaxialConfig(
    BaseLib::ConfigTree const& config,
    std::map<std::string,
             std::unique_ptr<MathLib::PiecewiseLinearInterpolation>> const&
        curves)
{
    auto const borehole_geometry =
        //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole}
        createBoreholeGeometry(config.getConfigSubtree("borehole"));

    //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes}
    auto const& pipes_config = config.getConfigSubtree("pipes");
    //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__outer}
    Pipe const outer_pipe = createPipe(pipes_config.getConfigSubtree("outer"));
    Pipe const inner_pipe =
        //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inner}
        createPipe(pipes_config.getConfigSubtree("inner"));
    const auto pipe_longitudinal_dispersion_length =
        //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__longitudinal_dispersion_length}
        pipes_config.getConfigParameter<double>(
            "longitudinal_dispersion_length");
    PipeConfigurationCoaxial const pipes{inner_pipe, outer_pipe,
                                         pipe_longitudinal_dispersion_length};

    //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout}
    auto const grout = createGroutParameters(config.getConfigSubtree("grout"));

    auto const refrigerant =
        //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant}
        createRefrigerantProperties(config.getConfigSubtree("refrigerant"));

    auto const flowAndTemperatureControl = createFlowAndTemperatureControl(
        //! \ogs_file_param{prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control}
        config.getConfigSubtree("flow_and_temperature_control"),
        curves,
        refrigerant);

    return {borehole_geometry, refrigerant, grout, flowAndTemperatureControl,
            pipes};
}
예제 #3
0
std::unique_ptr<Process> createGroundwaterFlowProcess(
    MeshLib::Mesh& mesh,
    Process::NonlinearSolver& nonlinear_solver,
    std::unique_ptr<Process::TimeDiscretization>&& time_discretization,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "GROUNDWATER_FLOW");

    DBUG("Create GroundwaterFlowProcess.");

    // Process variable.
    auto process_variables = findProcessVariables(
        variables, config,
        {//! \ogs_file_param_special{process__GROUNDWATER_FLOW__process_variables__process_variable}
         "process_variable"});

    // Hydraulic conductivity parameter.
    auto& hydraulic_conductivity = findParameter<double,
                                                 MeshLib::Element const&>(
        config,
        //! \ogs_file_param_special{process__GROUNDWATER_FLOW__hydraulic_conductivity}
        "hydraulic_conductivity",
        parameters);

    DBUG("Use \'%s\' as hydraulic conductivity parameter.",
         hydraulic_conductivity.name.c_str());

    GroundwaterFlowProcessData process_data{hydraulic_conductivity};

    SecondaryVariableCollection secondary_variables{
        //! \ogs_file_param{process__secondary_variables}
        config.getConfigSubtreeOptional("secondary_variables"),
        {//! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_x}
         "darcy_velocity_x",
         //! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_y}
         "darcy_velocity_y",
         //! \ogs_file_param_special{process__GROUNDWATER_FLOW__secondary_variables__darcy_velocity_z}
         "darcy_velocity_z"}};

    ProcessOutput
        //! \ogs_file_param{process__output}
        process_output{config.getConfigSubtree("output"), process_variables,
                       secondary_variables};

    return std::unique_ptr<Process>{new GroundwaterFlowProcess{
        mesh, nonlinear_solver, std::move(time_discretization),
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(process_output)}};
}
예제 #4
0
ProjectData::ProjectData(BaseLib::ConfigTree const& project_config,
                         std::string const& project_directory,
                         std::string const& output_directory)
{
    std::string const geometry_file = BaseLib::copyPathToFileName(
        //! \ogs_file_param{prj__geometry}
        project_config.getConfigParameter<std::string>("geometry"),
        project_directory);
    detail::readGeometry(geometry_file, *_geoObjects);

    {
        //! \ogs_file_param{prj__mesh}
        auto const mesh_param = project_config.getConfigParameter("mesh");

        std::string const mesh_file = BaseLib::copyPathToFileName(
            mesh_param.getValue<std::string>(), project_directory);

        MeshLib::Mesh* const mesh = MeshLib::IO::readMeshFromFile(mesh_file);
        if (!mesh)
        {
            OGS_FATAL("Could not read mesh from \'%s\' file. No mesh added.",
                      mesh_file.c_str());
        }

        if (auto const axially_symmetric =
                //! \ogs_file_attr{prj__mesh__axially_symmetric}
            mesh_param.getConfigAttributeOptional<bool>("axially_symmetric"))
        {
            mesh->setAxiallySymmetric(*axially_symmetric);
        }
        _mesh_vec.push_back(mesh);
    }

    //! \ogs_file_param{prj__curves}
    parseCurves(project_config.getConfigSubtreeOptional("curves"));

    //! \ogs_file_param{prj__parameters}
    parseParameters(project_config.getConfigSubtree("parameters"));

    //! \ogs_file_param{prj__process_variables}
    parseProcessVariables(project_config.getConfigSubtree("process_variables"));

    //! \ogs_file_param{prj__processes}
    parseProcesses(project_config.getConfigSubtree("processes"),
                   project_directory, output_directory);

    //! \ogs_file_param{prj__linear_solvers}
    parseLinearSolvers(project_config.getConfigSubtree("linear_solvers"));

    //! \ogs_file_param{prj__nonlinear_solvers}
    parseNonlinearSolvers(project_config.getConfigSubtree("nonlinear_solvers"));

    //! \ogs_file_param{prj__time_loop}
    parseTimeLoop(project_config.getConfigSubtree("time_loop"),
                  output_directory);
}
std::unique_ptr<RelativePermeability> createRelativePermeabilityModel(
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{material__porous_medium__relative_permeability__type}
    auto const type = config.peekConfigParameter<std::string>("type");

    if (type == "WettingPhaseVanGenuchten")
    {
        return createWettingPhaseVanGenuchten(config);
    }
    if (type == "NonWettingPhaseVanGenuchten")
    {
        return createNonWettingPhaseVanGenuchten(config);
    }
    if (type == "WettingPhaseBrooksCoreyOilGas")
    {
        return createWettingPhaseBrooksCoreyOilGas(config);
    }
    if (type == "NonWettingPhaseBrooksCoreyOilGas")
    {
        return createNonWettingPhaseBrooksCoreyOilGas(config);
    }
    if (type == "Curve")
    {
        //! \ogs_file_param{material__porous_medium__relative_permeability__type}
        config.checkConfigParameter("type", "Curve");

        //! \ogs_file_param{material__porous_medium__relative_permeability__Curve__curve}
        auto const& curve_config = config.getConfigSubtree("curve");

        auto curve = MathLib::createPiecewiseLinearCurve<MathLib
                              ::PiecewiseLinearInterpolation>(curve_config);
        return std::make_unique<RelativePermeabilityCurve>(std::move(curve));
    }

    OGS_FATAL(
        "The relative permeability model %s is unavailable.\n"
        "The available models are:"
        "\n\tWettingPhaseVanGenuchten,"
        "\n\tNonWettingPhaseVanGenuchten,"
        "\n\tWettingPhaseBrooksCoreyOilGas,"
        "\n\tNonWettingPhaseBrooksCoreyOilGas,",
        "\n\tCurve.\n",
        type.data());
}
예제 #6
0
파일: Process.cpp 프로젝트: norihiro-w/ogs
std::vector<std::reference_wrapper<ProcessVariable>>
findProcessVariables(
        std::vector<ProcessVariable> const& variables,
        BaseLib::ConfigTree const& process_config,
        std::initializer_list<std::string> tag_names)
{
    std::vector<std::reference_wrapper<ProcessVariable>> vars;
    vars.reserve(tag_names.size());

    //! \ogs_file_param{process__process_variables}
    auto const pv_conf = process_config.getConfigSubtree("process_variables");

    for (auto const& tag : tag_names) {
        vars.emplace_back(findProcessVariable(variables, pv_conf, tag));
    }

    return vars;
}
예제 #7
0
std::unique_ptr<Process> createTESProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "TES");

    DBUG("Create TESProcess.");

    //! \ogs_file_param{prj__processes__process__TES__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto per_process_variables = findProcessVariables(
        variables, pv_config,
        {
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__fluid_pressure}
        "fluid_pressure",
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__temperature}
        "temperature",
        //! \ogs_file_param_special{prj__processes__process__TES__process_variables__vapour_mass_fraction}
        "vapour_mass_fraction"});
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"TES_pressure", "TES_temperature", "TES_vapour_mass_fraction"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<TESProcess>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(secondary_variables),
        std::move(named_function_caller), config);
}
std::unique_ptr<TwoPhaseFlowWithPrhoMaterialProperties>
createTwoPhaseFlowPrhoMaterialProperties(
    BaseLib::ConfigTree const& config,
    boost::optional<MeshLib::PropertyVector<int> const&> material_ids,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters)
{
    DBUG("Reading material properties of two-phase flow process.");

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__fluid}
    auto const& fluid_config = config.getConfigSubtree("fluid");

    // Get fluid properties
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__liquid_density}
    auto const& rho_conf = fluid_config.getConfigSubtree("liquid_density");
    auto _liquid_density =
        MaterialLib::Fluid::createFluidDensityModel(rho_conf);
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__gas_density}
    auto const& rho_gas_conf = fluid_config.getConfigSubtree("gas_density");
    auto _gas_density =
        MaterialLib::Fluid::createFluidDensityModel(rho_gas_conf);
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__liquid_viscosity}
    auto const& mu_conf = fluid_config.getConfigSubtree("liquid_viscosity");
    auto _viscosity = MaterialLib::Fluid::createViscosityModel(mu_conf);
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__gas_viscosity}
    auto const& mu_gas_conf = fluid_config.getConfigSubtree("gas_viscosity");
    auto _gas_viscosity = MaterialLib::Fluid::createViscosityModel(mu_gas_conf);

    // Get porous properties
    std::vector<int> mat_ids;
    std::vector<int> mat_krel_ids;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Permeability>>
        _intrinsic_permeability_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Porosity>>
        _porosity_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Storage>>
        _storage_models;
    std::vector<
        std::unique_ptr<MaterialLib::PorousMedium::CapillaryPressureSaturation>>
        _capillary_pressure_models;
    std::vector<
        std::unique_ptr<MaterialLib::PorousMedium::RelativePermeability>>
        _relative_permeability_models;

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium}
    auto const& poro_config = config.getConfigSubtree("porous_medium");
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium}
    for (auto const& conf : poro_config.getConfigSubtreeList("porous_medium"))
    {
        //! \ogs_file_attr{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__id}
        auto const id = conf.getConfigAttributeOptional<int>("id");
        mat_ids.push_back(*id);

        //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__permeability}
        auto const& permeability_conf = conf.getConfigSubtree("permeability");
        _intrinsic_permeability_models.emplace_back(
            MaterialLib::PorousMedium::createPermeabilityModel(
                permeability_conf, parameters));

        //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__porosity}
        auto const& porosity_conf = conf.getConfigSubtree("porosity");
        auto n = MaterialLib::PorousMedium::createPorosityModel(porosity_conf,
                                                                parameters);
        _porosity_models.emplace_back(std::move(n));

        //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__storage}
        auto const& storage_conf = conf.getConfigSubtree("storage");
        auto beta = MaterialLib::PorousMedium::createStorageModel(storage_conf);
        _storage_models.emplace_back(std::move(beta));

        auto const& capillary_pressure_conf =
            //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__capillary_pressure}
            conf.getConfigSubtree("capillary_pressure");
        auto pc = MaterialLib::PorousMedium::createCapillaryPressureModel(
            capillary_pressure_conf);
        _capillary_pressure_models.emplace_back(std::move(pc));

        auto const& krel_config =
            //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__relative_permeability}
            conf.getConfigSubtree("relative_permeability");
        for (
            auto const& krel_conf :
            //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__relative_permeability__relative_permeability}
            krel_config.getConfigSubtreeList("relative_permeability"))
        {
            auto const krel_id =
                //! \ogs_file_attr{prj__processes__process__TWOPHASE_FLOW_PRHO__material_property__porous_medium__porous_medium__relative_permeability__relative_permeability__id}
                krel_conf.getConfigAttributeOptional<int>("id");
            mat_krel_ids.push_back(*krel_id);
            auto krel_n =
                MaterialLib::PorousMedium::createRelativePermeabilityModel(
                    krel_conf);
            _relative_permeability_models.emplace_back(std::move(krel_n));
        }
        BaseLib::reorderVector(_relative_permeability_models, mat_krel_ids);
    }

    BaseLib::reorderVector(_intrinsic_permeability_models, mat_ids);
    BaseLib::reorderVector(_porosity_models, mat_ids);
    BaseLib::reorderVector(_storage_models, mat_ids);

    return std::make_unique<TwoPhaseFlowWithPrhoMaterialProperties>(
        material_ids, std::move(_liquid_density), std::move(_viscosity),
        std::move(_gas_density), std::move(_gas_viscosity),
        std::move(_intrinsic_permeability_models), std::move(_porosity_models),
        std::move(_storage_models), std::move(_capillary_pressure_models),
        std::move(_relative_permeability_models));
}
std::unique_ptr<Process> createTwoPhaseFlowWithPPProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config,
    std::map<std::string,
             std::unique_ptr<MathLib::PiecewiseLinearInterpolation>> const&
        curves)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "TWOPHASE_FLOW_PP");

    DBUG("Create TwoPhaseFlowProcess with PP model.");
    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto per_process_variables = findProcessVariables(
        variables, pv_config,
        {//! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__process_variables__gas_pressure}
         "gas_pressure",
         //! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__process_variables__capillary_pressure}
         "capillary_pressure"});
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"TwoPhaseFlow_pressure"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);
    // Specific body force
    std::vector<double> const b =
        //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__specific_body_force}
        config.getConfigParameter<std::vector<double>>("specific_body_force");
    assert(!b.empty() && b.size() < 4);
    Eigen::VectorXd specific_body_force(b.size());
    bool const has_gravity = MathLib::toVector(b).norm() > 0;
    if (has_gravity)
        std::copy_n(b.data(), b.size(), specific_body_force.data());

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__mass_lumping}
    auto const mass_lumping = config.getConfigParameter<bool>("mass_lumping");

    auto& temperature = findParameter<double>(
        config,
        //! \ogs_file_param_special{prj__processes__process__TWOPHASE_FLOW_PP__temperature}
        "temperature", parameters, 1);

    //! \ogs_file_param{prj__processes__process__TWOPHASE_FLOW_PP__material_property}
    auto const& mat_config = config.getConfigSubtree("material_property");

    auto const material_ids = materialIDs(mesh);
    if (material_ids)
    {
        INFO("The twophase flow is in heterogeneous porous media.");
    }
    else
    {
        INFO("The twophase flow is in homogeneous porous media.");
    }
    std::unique_ptr<TwoPhaseFlowWithPPMaterialProperties> material =
        createTwoPhaseFlowWithPPMaterialProperties(mat_config, material_ids,
                                                   parameters);

    TwoPhaseFlowWithPPProcessData process_data{
        specific_body_force, has_gravity, mass_lumping, temperature, std::move(material)};

    return std::make_unique<TwoPhaseFlowWithPPProcess>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller),
        mat_config, curves);
}
std::unique_ptr<Process> createSmallDeformationProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
    boost::optional<ParameterLib::CoordinateSystem> const&
        local_coordinate_system,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "SMALL_DEFORMATION_WITH_LIE");
    DBUG("Create SmallDeformationProcess with LIE.");

    // Process variables
    //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables}
    auto const pv_conf = config.getConfigSubtree("process_variables");
    auto range =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__process_variables__process_variable}
        pv_conf.getConfigParameterList<std::string>("process_variable");
    std::vector<std::reference_wrapper<ProcessVariable>> per_process_variables;

    std::size_t n_var_du = 0;
    for (std::string const& pv_name : range)
    {
        if (pv_name != "displacement" && pv_name.find("displacement_jump") != 0)
        {
            OGS_FATAL(
                "Found a process variable name '%s'. It should be "
                "'displacement' or 'displacement_jumpN' or "
                "'displacement_junctionN'");
        }
        if (pv_name.find("displacement_jump") == 0)
        {
            n_var_du++;
        }

        auto variable = std::find_if(variables.cbegin(), variables.cend(),
                                     [&pv_name](ProcessVariable const& v) {
                                         return v.getName() == pv_name;
                                     });

        if (variable == variables.end())
        {
            OGS_FATAL(
                "Could not find process variable '%s' in the provided "
                "variables "
                "list for config tag <%s>.",
                pv_name.c_str(), "process_variable");
        }
        DBUG("Found process variable '%s' for config tag <%s>.",
             variable->getName().c_str(), "process_variable");

        per_process_variables.emplace_back(
            const_cast<ProcessVariable&>(*variable));
    }

    if (n_var_du < 1)
    {
        OGS_FATAL("No displacement jump variables are specified");
    }

    DBUG("Associate displacement with process variable '%s'.",
         per_process_variables.back().get().getName().c_str());

    if (per_process_variables.back().get().getNumberOfComponents() !=
        DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            per_process_variables.back().get().getName().c_str(),
            per_process_variables.back().get().getNumberOfComponents(),
            DisplacementDim);
    }
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    process_variables.push_back(std::move(per_process_variables));

    auto solid_constitutive_relations =
        MaterialLib::Solids::createConstitutiveRelations<DisplacementDim>(
            parameters, local_coordinate_system, config);

    // Fracture constitutive relation.
    // read type;
    auto const fracture_model_config =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model}
        config.getConfigSubtree("fracture_model");

    auto const frac_type =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_model__type}
        fracture_model_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Fracture::FractureModelBase<DisplacementDim>>
        fracture_model = nullptr;
    if (frac_type == "LinearElasticIsotropic")
    {
        fracture_model = MaterialLib::Fracture::createLinearElasticIsotropic<
            DisplacementDim>(parameters, fracture_model_config);
    }
    else if (frac_type == "MohrCoulomb")
    {
        fracture_model =
            MaterialLib::Fracture::createMohrCoulomb<DisplacementDim>(
                parameters, fracture_model_config);
    }
    else if (frac_type == "CohesiveZoneModeI")
    {
        fracture_model =
            MaterialLib::Fracture::CohesiveZoneModeI::createCohesiveZoneModeI<
                DisplacementDim>(parameters, fracture_model_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct fracture constitutive relation of given type "
            "'%s'.",
            frac_type.c_str());
    }

    // Fracture properties
    std::vector<FractureProperty> fracture_properties;
    for (
        auto fracture_properties_config :
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties}
        config.getConfigSubtreeList("fracture_properties"))
    {
        fracture_properties.emplace_back(
            fracture_properties.size(),
            //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__material_id}
            fracture_properties_config.getConfigParameter<int>("material_id"),
            ParameterLib::findParameter<double>(
                //! \ogs_file_param_special{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__fracture_properties__initial_aperture}
                fracture_properties_config, "initial_aperture", parameters, 1));
    }

    if (n_var_du < fracture_properties.size())
    {
        OGS_FATAL(
            "The number of displacement jumps and the number of "
            "<fracture_properties> "
            "are not consistent");
    }

    // Reference temperature
    const auto& reference_temperature =
        //! \ogs_file_param{prj__processes__process__SMALL_DEFORMATION_WITH_LIE__reference_temperature}
        config.getConfigParameter<double>(
            "reference_temperature", std::numeric_limits<double>::quiet_NaN());

    SmallDeformationProcessData<DisplacementDim> process_data(
        materialIDs(mesh), std::move(solid_constitutive_relations),
        std::move(fracture_model), std::move(fracture_properties),
        reference_temperature);

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"SmallDeformation_displacement"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<SmallDeformationProcess<DisplacementDim>>(
        mesh, std::move(jacobian_assembler), parameters, integration_order,
        std::move(process_variables), std::move(process_data),
        std::move(secondary_variables), std::move(named_function_caller));
}
예제 #11
0
std::unique_ptr<Process> createLiquidFlowProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "LIQUID_FLOW");

    DBUG("Create LiquidFlowProcess.");

    // Process variable.
    auto process_variables = findProcessVariables(
        variables, config,
        {//! \ogs_file_param_special{process__LIQUID_FLOW__process_variables__process_variable}
         "process_variable"});

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller({"LiquidFlow_pressure"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    // Get the gravity vector for the Darcy velocity
    //! \ogs_file_param{process__LIQUID_FLOW__darcy_gravity}
    auto const& darcy_g_config = config.getConfigSubtree("darcy_gravity");
    const int gravity_axis_id_input =
        //! \ogs_file_param_special{process__LIQUID_FLOW__darcy_gravity_axis_id}
        darcy_g_config.getConfigParameter<int>("axis_id");
    assert(gravity_axis_id_input < static_cast<int>(mesh.getDimension()));
    const double g =
        //! \ogs_file_param_special{process__LIQUID_FLOW__darcy_gravity_g}
        darcy_g_config.getConfigParameter<double>("g");
    assert(g >= 0.);
    const int gravity_axis_id = (g == 0.) ? -1 : gravity_axis_id_input;

    //! \ogs_file_param{process__LIQUID_FLOW__material_property}
    auto const& mat_config = config.getConfigSubtree("material_property");

    auto const& mat_ids =
        mesh.getProperties().getPropertyVector<int>("MaterialIDs");
    if (mat_ids)
    {
        INFO("The liquid flow is in heterogeneous porous media.");
        const bool has_material_ids = true;
        return std::unique_ptr<Process>{new LiquidFlowProcess{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(secondary_variables),
            std::move(named_function_caller), *mat_ids, has_material_ids,
            gravity_axis_id, g, mat_config}};
    }
    else
    {
        INFO("The liquid flow is in homogeneous porous media.");

        MeshLib::Properties dummy_property;
        // For a reference argument of LiquidFlowProcess(...).
        auto const& dummy_property_vector =
            dummy_property.createNewPropertyVector<int>(
                "MaterialIDs", MeshLib::MeshItemType::Cell, 1);

        // Since dummy_property_vector is only visible in this function,
        // the following constant, has_material_ids, is employed to indicate
        // that material_ids does not exist.
        const bool has_material_ids = false;

        return std::unique_ptr<Process>{new LiquidFlowProcess{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(secondary_variables),
            std::move(named_function_caller), *dummy_property_vector,
            has_material_ids, gravity_axis_id, g, mat_config}};
    }
}
std::unique_ptr<RichardsFlowMaterialProperties>
createRichardsFlowMaterialProperties(
    BaseLib::ConfigTree const& config,
    MeshLib::PropertyVector<int> const* const material_ids,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters)
{
    DBUG("Reading material properties of Richards flow process.");

    //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__fluid}
    auto const& fluid_config = config.getConfigSubtree("fluid");
    auto fluid_properties =
        MaterialLib::Fluid::createFluidProperties(fluid_config);

    // Get porous properties
    std::vector<int> mat_ids;
    std::vector<int> mat_krel_ids;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Permeability>>
        intrinsic_permeability_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Porosity>>
        porosity_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Storage>>
        storage_models;
    std::vector<
        std::unique_ptr<MaterialLib::PorousMedium::CapillaryPressureSaturation>>
        capillary_pressure_models;
    std::vector<
        std::unique_ptr<MaterialLib::PorousMedium::RelativePermeability>>
        relative_permeability_models;

    //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium}
    auto const& poro_config = config.getConfigSubtree("porous_medium");
    //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium}
    for (auto const& conf : poro_config.getConfigSubtreeList("porous_medium"))
    {
        //! \ogs_file_attr{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__id}
        auto const id = conf.getConfigAttributeOptional<int>("id");
        mat_ids.push_back(*id);

        //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__permeability}
        auto const& permeability_conf = conf.getConfigSubtree("permeability");
        intrinsic_permeability_models.emplace_back(
            MaterialLib::PorousMedium::createPermeabilityModel(
                permeability_conf, parameters));

        //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__porosity}
        auto const& porosity_conf = conf.getConfigSubtree("porosity");
        auto n = MaterialLib::PorousMedium::createPorosityModel(porosity_conf,
                                                                parameters);
        porosity_models.emplace_back(std::move(n));

        //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__storage}
        auto const& storage_conf = conf.getConfigSubtree("storage");
        auto beta = MaterialLib::PorousMedium::createStorageModel(storage_conf);
        storage_models.emplace_back(std::move(beta));

        auto const& capillary_pressure_conf =
            //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__capillary_pressure}
            conf.getConfigSubtree("capillary_pressure");
        auto pc = MaterialLib::PorousMedium::createCapillaryPressureModel(
            capillary_pressure_conf);
        capillary_pressure_models.emplace_back(std::move(pc));

        auto const& krel_config =
            //! \ogs_file_param{prj__processes__process__RICHARDS_FLOW__material_property__porous_medium__porous_medium__relative_permeability}
            conf.getConfigSubtree("relative_permeability");
        auto krel = MaterialLib::PorousMedium::createRelativePermeabilityModel(
            krel_config);
        relative_permeability_models.emplace_back(std::move(krel));
    }

    BaseLib::reorderVector(intrinsic_permeability_models, mat_ids);
    BaseLib::reorderVector(porosity_models, mat_ids);
    BaseLib::reorderVector(storage_models, mat_ids);

    return std::unique_ptr<RichardsFlowMaterialProperties>{
        new RichardsFlowMaterialProperties{
            material_ids, std::move(fluid_properties),
            std::move(intrinsic_permeability_models),
            std::move(porosity_models), std::move(storage_models),
            std::move(capillary_pressure_models),
            std::move(relative_permeability_models)}};
}
예제 #13
0
std::unique_ptr<Process> createPhaseFieldProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "PHASE_FIELD");
    DBUG("Create PhaseFieldProcess.");

    auto const staggered_scheme =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__coupling_scheme}
        config.getConfigParameterOptional<std::string>("coupling_scheme");
    const bool use_monolithic_scheme =
        !(staggered_scheme && (*staggered_scheme == "staggered"));

    // Process variable.

    //! \ogs_file_param{prj__processes__process__PHASE_FIELD__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    ProcessVariable* variable_ph;
    ProcessVariable* variable_u;
    std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
        process_variables;
    if (use_monolithic_scheme)  // monolithic scheme.
    {
        auto per_process_variables = findProcessVariables(
            variables, pv_config,
            {//! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__process_variables__phasefield}
            "phasefield",
             //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__process_variables__displacement}
            "displacement"});
        variable_ph = &per_process_variables[0].get();
        variable_u = &per_process_variables[1].get();
        process_variables.push_back(std::move(per_process_variables));
    }
    else  // staggered scheme.
    {
        using namespace std::string_literals;
        for (auto const& variable_name : {"phasefield"s, "displacement"s})
        {
            auto per_process_variables =
                findProcessVariables(variables, pv_config, {variable_name});
            process_variables.push_back(std::move(per_process_variables));
        }
        variable_ph = &process_variables[0][0].get();
        variable_u = &process_variables[1][0].get();
    }

    DBUG("Associate displacement with process variable \'%s\'.",
         variable_u->getName().c_str());

    if (variable_u->getNumberOfComponents() != DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            variable_u->getName().c_str(),
            variable_u->getNumberOfComponents(),
            DisplacementDim);
    }

    DBUG("Associate phase field with process variable \'%s\'.",
         variable_ph->getName().c_str());
    if (variable_ph->getNumberOfComponents() != 1)
    {
        OGS_FATAL(
            "Pressure process variable '%s' is not a scalar variable but has "
            "%d components.",
            variable_ph->getName().c_str(),
            variable_ph->getNumberOfComponents());
    }

    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const phasefield_parameters_config =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__phasefield_parameters}
        config.getConfigSubtree("phasefield_parameters");

    auto const type =
        //! \ogs_file_param{prj__processes__process__PHASE_FIELD__constitutive_relation__type}
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::PhaseFieldExtension<DisplacementDim>>
        material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        auto elastic_model = MaterialLib::Solids::createLinearElasticIsotropic<
                DisplacementDim>(parameters, constitutive_relation_config);
        material =
                std::make_unique<MaterialLib::Solids::LinearElasticIsotropicPhaseField<
                DisplacementDim>>(std::move(elastic_model->getMaterialProperties()));
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Residual stiffness
    auto& residual_stiffness = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__residual_stiffness}
        "residual_stiffness", parameters, 1);
    DBUG("Use \'%s\' as residual stiffness.", residual_stiffness.name.c_str());

    // Crack resistance
    auto& crack_resistance = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__crack_resistance}
        "crack_resistance", parameters, 1);
    DBUG("Use \'%s\' as crack resistance.", crack_resistance.name.c_str());

    // Crack length scale
    auto& crack_length_scale = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__crack_length_scale}
        "crack_length_scale", parameters, 1);
    DBUG("Use \'%s\' as crack length scale.", crack_length_scale.name.c_str());

    // Kinetic coefficient
    auto& kinetic_coefficient = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__kinetic_coefficient}
        "kinetic_coefficient", parameters, 1);
    DBUG("Use \'%s\' as kinetic coefficient.",
         kinetic_coefficient.name.c_str());

    // Solid density
    auto& solid_density = findParameter<double>(
        config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__solid_density}
        "solid_density", parameters, 1);
    DBUG("Use \'%s\' as solid density parameter.", solid_density.name.c_str());

    // History field
    auto& history_field = findParameter<double>(
        phasefield_parameters_config,
        //! \ogs_file_param_special{prj__processes__process__PHASE_FIELD__phasefield_parameters__history_field}
        "history_field", parameters, 1);
    DBUG("Use \'%s\' as history field.", history_field.name.c_str());

    // Specific body force
    Eigen::Matrix<double, DisplacementDim, 1> specific_body_force;
    {
        std::vector<double> const b =
            //! \ogs_file_param{prj__processes__process__PHASE_FIELD__specific_body_force}
            config.getConfigParameter<std::vector<double>>(
                "specific_body_force");
        if (b.size() != DisplacementDim)
            OGS_FATAL(
                "The size of the specific body force vector does not match the "
                "displacement dimension. Vector size is %d, displacement "
                "dimension is %d",
                b.size(), DisplacementDim);

        std::copy_n(b.data(), b.size(), specific_body_force.data());
    }

    PhaseFieldProcessData<DisplacementDim> process_data{
        std::move(material), residual_stiffness,  crack_resistance,
        crack_length_scale,  kinetic_coefficient, solid_density,
        history_field,       specific_body_force};

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"PhaseField_displacement"});

    ProcessLib::createSecondaryVariables(config, secondary_variables,
                                         named_function_caller);

    return std::make_unique<PhaseFieldProcess<DisplacementDim>>(
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller),
            use_monolithic_scheme);
}
예제 #14
0
std::unique_ptr<Process> createHydroMechanicsProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{prj__processes__process__type}
    config.checkConfigParameter("type", "HYDRO_MECHANICS");
    DBUG("Create HydroMechanicsProcess.");

    // Process variable.

    //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__process_variables}
    auto const pv_config = config.getConfigSubtree("process_variables");

    auto process_variables = findProcessVariables(
                                 variables, pv_config,
    {   //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__process_variables__pressure}
        "pressure",
        //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__process_variables__displacement}
        "displacement"
    });

    DBUG("Associate displacement with process variable \'%s\'.",
         process_variables[1].get().getName().c_str());

    if (process_variables[1].get().getNumberOfComponents() !=
            DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            process_variables[1].get().getName().c_str(),
            process_variables[1].get().getNumberOfComponents(),
            DisplacementDim);
    }

    DBUG("Associate pressure with process variable \'%s\'.",
         process_variables[0].get().getName().c_str());
    if (process_variables[0].get().getNumberOfComponents() != 1)
    {
        OGS_FATAL(
            "Pressure process variable '%s' is not a scalar variable but has "
            "%d components.",
            process_variables[0].get().getName().c_str(),
            process_variables[0].get().getNumberOfComponents());
    }


    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const type =
        //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__constitutive_relation__type}
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::MechanicsBase<DisplacementDim>>
            material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        material =
            MaterialLib::Solids::createLinearElasticIsotropic<DisplacementDim>(
                parameters, constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Intrinsic permeability
    auto& intrinsic_permeability = findParameter<double>(
                                       config,
                                       //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__intrinsic_permeability}
                                       "intrinsic_permeability",
                                       parameters, 1);

    DBUG("Use \'%s\' as intrinsic conductivity parameter.",
         intrinsic_permeability.name.c_str());

    // Storage coefficient
    auto& specific_storage = findParameter<double>(
                                 config,
                                 //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__specific_storage}
                                 "specific_storage", parameters, 1);

    DBUG("Use \'%s\' as storage coefficient parameter.",
         specific_storage.name.c_str());

    // Fluid viscosity
    auto& fluid_viscosity = findParameter<double>(
                                config,
                                //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__fluid_viscosity}
                                "fluid_viscosity",
                                parameters, 1);
    DBUG("Use \'%s\' as fluid viscosity parameter.",
         fluid_viscosity.name.c_str());

    // Fluid density
    auto& fluid_density = findParameter<double>(
                              config,
                              //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__fluid_density}
                              "fluid_density",
                              parameters, 1);
    DBUG("Use \'%s\' as fluid density parameter.",
         fluid_density.name.c_str());

    // Biot coefficient
    auto& biot_coefficient = findParameter<double>(
                                 config,
                                 //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__biot_coefficient}
                                 "biot_coefficient",
                                 parameters, 1);
    DBUG("Use \'%s\' as Biot coefficient parameter.",
         biot_coefficient.name.c_str());

    // Porosity
    auto& porosity = findParameter<double>(
                         config,
                         //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__porosity}
                         "porosity",
                         parameters, 1);
    DBUG("Use \'%s\' as porosity parameter.",
         porosity.name.c_str());

    // Solid density
    auto& solid_density = findParameter<double>(
                              config,
                              //! \ogs_file_param_special{prj__processes__process__HYDRO_MECHANICS__solid_density}
                              "solid_density",
                              parameters, 1);
    DBUG("Use \'%s\' as solid density parameter.",
         solid_density.name.c_str());

    // Specific body force
    Eigen::Matrix<double, DisplacementDim, 1> specific_body_force;
    {
        std::vector<double> const b =
            //! \ogs_file_param{prj__processes__process__HYDRO_MECHANICS__specific_body_force}
            config.getConfigParameter<std::vector<double>>(
                "specific_body_force");
        if (specific_body_force.size() != DisplacementDim)
            OGS_FATAL(
                "The size of the specific body force vector does not match the "
                "displacement dimension. Vector size is %d, displacement "
                "dimension is %d",
                specific_body_force.size(), DisplacementDim);

        std::copy_n(b.data(), b.size(), specific_body_force.data());
    }

    HydroMechanicsProcessData<DisplacementDim> process_data{
        std::move(material),
        intrinsic_permeability,
        specific_storage,
        fluid_viscosity,
        fluid_density,
        biot_coefficient,
        porosity,
        solid_density,
        specific_body_force};

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
    {"HydroMechanics_displacement"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    return std::unique_ptr<HydroMechanicsProcess<DisplacementDim>> {
        new HydroMechanicsProcess<DisplacementDim>{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller)
        }
    };
}
예제 #15
0
std::unique_ptr<Process>
createSmallDeformationProcess(
    MeshLib::Mesh& mesh,
    std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
    std::vector<ProcessVariable> const& variables,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    unsigned const integration_order,
    BaseLib::ConfigTree const& config)
{
    //! \ogs_file_param{process__type}
    config.checkConfigParameter("type", "SMALL_DEFORMATION_WITH_LIE");
    DBUG("Create SmallDeformationProcess with LIE.");

    // Process variables
    auto const pv_conf = config.getConfigSubtree("process_variables");
    auto range = pv_conf.getConfigParameterList<std::string>("process_variable");
    std::vector<std::reference_wrapper<ProcessVariable>> process_variables;
    for (std::string const& pv_name : range)
    {
        if (pv_name != "displacement"
            && pv_name.find("displacement_jump")==std::string::npos)
            OGS_FATAL("Found a process variable name '%s'. It should be 'displacement' or 'displacement_jumpN'");
        auto variable = std::find_if(
            variables.cbegin(), variables.cend(),
            [&pv_name](ProcessVariable const& v) { return v.getName() == pv_name; });

        if (variable == variables.end())
        {
            OGS_FATAL(
                "Could not find process variable '%s' in the provided variables "
                "list for config tag <%s>.",
                pv_name.c_str(), "process_variable");
        }
        DBUG("Found process variable \'%s\' for config tag <%s>.",
             variable->getName().c_str(), "process_variable");

        process_variables.emplace_back(const_cast<ProcessVariable&>(*variable));
    }
    if (process_variables.size() > 2)
        OGS_FATAL("Currently only one displacement jump is supported");

    DBUG("Associate displacement with process variable \'%s\'.",
         process_variables.back().get().getName().c_str());

    if (process_variables.back().get().getNumberOfComponents() !=
        DisplacementDim)
    {
        OGS_FATAL(
            "Number of components of the process variable '%s' is different "
            "from the displacement dimension: got %d, expected %d",
            process_variables.back().get().getName().c_str(),
            process_variables.back().get().getNumberOfComponents(),
            DisplacementDim);
    }

    // Constitutive relation.
    // read type;
    auto const constitutive_relation_config =
        //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__constitutive_relation}
        config.getConfigSubtree("constitutive_relation");

    auto const type =
        constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Solids::MechanicsBase<DisplacementDim>> material = nullptr;
    if (type == "LinearElasticIsotropic")
    {
        material = MaterialLib::Solids::createLinearElasticIsotropic<DisplacementDim>(
            parameters, constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct constitutive relation of given type \'%s\'.",
            type.c_str());
    }

    // Fracture constitutive relation.
    // read type;
    auto const fracture_constitutive_relation_config =
        //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__constitutive_relation}
        config.getConfigSubtree("fracture_constitutive_relation");

    auto const frac_type =
        fracture_constitutive_relation_config.peekConfigParameter<std::string>("type");

    std::unique_ptr<MaterialLib::Fracture::FractureModelBase<DisplacementDim>> fracture_model = nullptr;
    if (frac_type == "LinearElasticIsotropic")
    {
        fracture_model = MaterialLib::Fracture::createLinearElasticIsotropic<DisplacementDim>(
            parameters, fracture_constitutive_relation_config);
    }
    else if (frac_type == "MohrCoulomb")
    {
        fracture_model = MaterialLib::Fracture::createMohrCoulomb<DisplacementDim>(
            parameters, fracture_constitutive_relation_config);
    }
    else
    {
        OGS_FATAL(
            "Cannot construct fracture constitutive relation of given type \'%s\'.",
            frac_type.c_str());
    }

    // Fracture properties
    //! \ogs_file_param{process__SMALL_DEFORMATION_WITH_LIE__fracture_properties}
    auto fracture_properties_config = config.getConfigSubtree("fracture_properties");
    auto &para_b0 = ProcessLib::findParameter<double>(fracture_properties_config, "initial_aperture", parameters, 1);
    std::unique_ptr<FractureProperty> frac_prop(new FractureProperty());
    frac_prop->mat_id = fracture_properties_config.getConfigParameter<int>("material_id");
    frac_prop->aperture0 = &para_b0;


    SmallDeformationProcessData<DisplacementDim> process_data(
        std::move(material), std::move(fracture_model), std::move(frac_prop));

    SecondaryVariableCollection secondary_variables;

    NumLib::NamedFunctionCaller named_function_caller(
        {"SmallDeformation_displacement"});

    ProcessLib::parseSecondaryVariables(config, secondary_variables,
                                        named_function_caller);

    return std::unique_ptr<SmallDeformationProcess<DisplacementDim>>{
        new SmallDeformationProcess<DisplacementDim>{
            mesh, std::move(jacobian_assembler), parameters, integration_order,
            std::move(process_variables), std::move(process_data),
            std::move(secondary_variables), std::move(named_function_caller)}};
}
예제 #16
0
TESProcess::TESProcess(
    MeshLib::Mesh& mesh,
    Process::NonlinearSolver& nonlinear_solver,
    std::unique_ptr<Process::TimeDiscretization>&&
        time_discretization,
    std::vector<std::reference_wrapper<ProcessVariable>>&& process_variables,
    SecondaryVariableCollection&& secondary_variables,
    ProcessOutput&& process_output,
    const BaseLib::ConfigTree& config)
    : Process(
          mesh, nonlinear_solver, std::move(time_discretization),
          std::move(process_variables), std::move(secondary_variables),
          std::move(process_output))
{
    DBUG("Create TESProcess.");

    // physical parameters for local assembly
    {
        std::vector<std::pair<std::string, double*>> params{
            {"fluid_specific_heat_source",
             &_assembly_params.fluid_specific_heat_source},
            {"fluid_specific_isobaric_heat_capacity", &_assembly_params.cpG},
            {"solid_specific_heat_source",
             &_assembly_params.solid_specific_heat_source},
            {"solid_heat_conductivity", &_assembly_params.solid_heat_cond},
            {"solid_specific_isobaric_heat_capacity", &_assembly_params.cpS},
            {"tortuosity", &_assembly_params.tortuosity},
            {"diffusion_coefficient",
             &_assembly_params.diffusion_coefficient_component},
            {"porosity", &_assembly_params.poro},
            {"solid_density_dry", &_assembly_params.rho_SR_dry},
            {"solid_density_initial", &_assembly_params.initial_solid_density}};

        for (auto const& p : params)
        {
            if (auto const par = config.getConfigParameterOptional<double>(p.first))
            {
                DBUG("setting parameter `%s' to value `%g'", p.first.c_str(),
                     *par);
                *p.second = *par;
            }
        }
    }

    // characteristic values of primary variables
    {
        std::vector<std::pair<std::string, Trafo*>> const params{
            {"characteristic_pressure", &_assembly_params.trafo_p},
            {"characteristic_temperature", &_assembly_params.trafo_T},
            {"characteristic_vapour_mass_fraction", &_assembly_params.trafo_x}};

        for (auto const& p : params)
        {
            if (auto const par = config.getConfigParameterOptional<double>(p.first))
            {
                INFO("setting parameter `%s' to value `%g'", p.first.c_str(),
                     *par);
                *p.second = Trafo{*par};
            }
        }
    }

    // permeability
    if (auto par =
            config.getConfigParameterOptional<double>("solid_hydraulic_permeability"))
    {
        DBUG(
            "setting parameter `solid_hydraulic_permeability' to isotropic "
            "value `%g'",
            *par);
        const auto dim = mesh.getDimension();
        _assembly_params.solid_perm_tensor =
            Eigen::MatrixXd::Identity(dim, dim) * (*par);
    }

    // reactive system
    _assembly_params.react_sys = Adsorption::AdsorptionReaction::newInstance(
        config.getConfigSubtree("reactive_system"));

    // debug output
    if (auto const param =
            config.getConfigParameterOptional<bool>("output_element_matrices"))
    {
        DBUG("output_element_matrices: %s", (*param) ? "true" : "false");

        _assembly_params.output_element_matrices = *param;
    }

    // TODO somewhere else
    /*
    if (auto const param =
    config.getConfigParameterOptional<bool>("output_global_matrix"))
    {
        DBUG("output_global_matrix: %s", (*param) ? "true" : "false");

        this->_process_output.output_global_matrix = *param;
    }
    */
}
std::unique_ptr<LiquidFlowMaterialProperties>
createLiquidFlowMaterialProperties(
    BaseLib::ConfigTree const& config,
    std::vector<std::unique_ptr<ParameterBase>> const& parameters,
    bool const has_material_ids,
    MeshLib::PropertyVector<int> const& material_ids)
{
    DBUG("Reading material properties of liquid flow process.");

    //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__fluid}
    auto const& fluid_config = config.getConfigSubtree("fluid");
    auto fluid_properties =
        MaterialLib::Fluid::createFluidProperties(fluid_config);

    // Get porous properties
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Permeability>>
        intrinsic_permeability_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Porosity>>
        porosity_models;
    std::vector<std::unique_ptr<MaterialLib::PorousMedium::Storage>>
        storage_models;

    std::vector<int> mat_ids;
    auto const& porous_medium_configs =
        //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__porous_medium}
        config.getConfigSubtree("porous_medium");
    for (
        auto const& porous_medium_config :
        //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__porous_medium__porous_medium}
        porous_medium_configs.getConfigSubtreeList("porous_medium"))
    {
        //! \ogs_file_attr{prj__processes__process__LIQUID_FLOW__material_property__porous_medium__porous_medium__id}
        auto const id = porous_medium_config.getConfigAttribute<int>("id");
        mat_ids.push_back(id);

        auto const& permeability_config =
            //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__porous_medium__porous_medium__permeability}
            porous_medium_config.getConfigSubtree("permeability");
        intrinsic_permeability_models.emplace_back(
            MaterialLib::PorousMedium::createPermeabilityModel(
                permeability_config, parameters));

        auto const& porosity_config =
            //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__porous_medium__porous_medium__porosity}
            porous_medium_config.getConfigSubtree("porosity");
        auto n = MaterialLib::PorousMedium::createPorosityModel(porosity_config,
                                                                parameters);
        porosity_models.emplace_back(std::move(n));

        auto const& storage_config =
            //! \ogs_file_param{prj__processes__process__LIQUID_FLOW__material_property__porous_medium__porous_medium__storage}
            porous_medium_config.getConfigSubtree("storage");
        auto beta =
            MaterialLib::PorousMedium::createStorageModel(storage_config);
        storage_models.emplace_back(std::move(beta));
    }

    BaseLib::reorderVector(intrinsic_permeability_models, mat_ids);
    BaseLib::reorderVector(porosity_models, mat_ids);
    BaseLib::reorderVector(storage_models, mat_ids);

    return std::make_unique<LiquidFlowMaterialProperties>(
        std::move(fluid_properties), std::move(intrinsic_permeability_models),
        std::move(porosity_models), std::move(storage_models), has_material_ids,
        material_ids);
}