void writePointScalarData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, FILE* vtkFile, int nT) { IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName); QString ss; if (NULL != data.get()) { T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "SCALARS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data()); fprintf(vtkFile, "LOOKUP_TABLE default\n"); for(int i = 0; i < nT; ++i) { T swapped = 0x00; if(writeBinaryData == true) { swapped = static_cast<T>(m[i]); SIMPLib::Endian::FromSystemToBig::convert(swapped); fwrite(&swapped, sizeof(T), 1, vtkFile); } else { ss = QString::number(m[i]) + " "; fprintf(vtkFile, "%s ", ss.toLatin1().data()); //if (i%50 == 0) { fprintf(vtkFile, "\n"); } } } } }
/** * @brief * @param parentId * @return */ virtual int readH5Data(hid_t parentId) { int err = 0; resize(0); IDataArray::Pointer p = H5DataArrayReader::ReadIDataArray(parentId, getName()); if (p.get() == NULL) { return -1; } m_Array = reinterpret_cast<T*>(p->getVoidPointer(0)); m_Size = p->getSize(); m_OwnsData = true; m_MaxId = (m_Size == 0) ? 0 : m_Size - 1; m_IsAllocated = true; m_Name = p->getName(); m_NumTuples = p->getNumberOfTuples(); m_CompDims = p->getComponentDimensions(); m_NumComponents = p->getNumberOfComponents(); // Tell the intermediate DataArray to release ownership of the data as we are going to be responsible // for deleting the memory p->releaseOwnership(); return err; }
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels) { TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>(); int64_t numTriangles = triangleGeom->getNumberOfTris(); IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName); QString ss; if (NULL != data.get()) { int32_t totalCellsWritten = 0; T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data()); fprintf(vtkFile, "LOOKUP_TABLE default\n"); // Loop over all the features for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter) { int32_t gid = featureIter.key(); // The current Feature Id size_t size = featureIter.value(); // The number of triangles for this feature id std::vector<T> buffer(size, 0); totalCellsWritten += size; size_t index = 0; for (int j = 0; j < numTriangles; j++) { if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; } // Get the data T s0 = static_cast<T>(m[j]); if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid) { s0 = s0 * -1; } // Write the values to the buffer after an Endian swap. if(writeBinaryData == true) { SIMPLib::Endian::FromSystemToBig::convert(s0); buffer[index] = s0; ++index; } else { ss = QString::number(s0); fprintf(vtkFile, "%s\n", ss.toLatin1().data()); } } // Write the Buffer if(writeBinaryData == true) { fwrite(&(buffer.front()), sizeof(T), size, vtkFile); } } } }
int testCase1_Execute(const QString& name, int scalarType) { int err = 0; int dataArraySize = ARRAY_SIZE * N; int junkArraySize = 0; int skipHeaderBytes = 0; qDebug() << "Testing case 1: " << name << " with num comps " << N; // Allocate an array, and get the dataArray from that array boost::shared_array<T> array(new T[dataArraySize]); // This makes sure our allocated array is deleted when we leave T* dataArray = array.get(); // Write some data into the data array for(size_t i = 0; i < dataArraySize; ++i) { dataArray[i] = static_cast<T>(i); } // Create junkArray and set it to NULL because there is no junk in this test case T* junkArray = NULL; // Create the file and write to it. If any of the information is wrong, the result will be false bool result = createAndWriteToFile(dataArray, dataArraySize, junkArray, junkArraySize, Detail::None); // Test to make sure that the file was created and written to successfully DREAM3D_REQUIRED(result, == , true) // Create the data container VolumeDataContainer::Pointer m = VolumeDataContainer::New(); m->setName(DREAM3D::Defaults::DataContainerName); DataContainerArray::Pointer dca = DataContainerArray::New(); dca->pushBack(m); // Create the filter, passing in the skipHeaderBytes RawBinaryReader::Pointer filt = createRawBinaryReaderFilter(scalarType, N, skipHeaderBytes); filt->setDataContainerArray(dca); // Preflight, get the error condition, and check that there are no errors filt->preflight(); err = filt->getErrorCondition(); DREAM3D_REQUIRED(err, >= , 0) // Execute the filter, check that there are no errors, and compare the data filt->execute(); DREAM3D_REQUIRED(err, >= , 0) IDataArray::Pointer iData = m->getAttributeMatrix(getCellAttributeMatrixName())->getAttributeArray("Test_Array"); T* data = reinterpret_cast<T*>(iData->getVoidPointer(0)); T d, p; for(size_t i = 0; i < dataArraySize; ++i) { d = data[i]; p = dataArray[i]; DREAM3D_REQUIRE_EQUAL(d, p) } return err; }
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, bool writeConformalMesh, FILE* vtkFile, int nT) { IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName); QString buf; QTextStream ss(&buf); if (NULL != data.get()) { T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data()); for(int i = 0; i < nT; ++i) { T s0 = 0x00; T s1 = 0x00; T s2 = 0x00; if(writeBinaryData == true) { s0 = static_cast<T>(m[i * 3 + 0]); s1 = static_cast<T>(m[i * 3 + 1]); s2 = static_cast<T>(m[i * 3 + 2]); SIMPLib::Endian::FromSystemToBig::convert(s0); SIMPLib::Endian::FromSystemToBig::convert(s1); SIMPLib::Endian::FromSystemToBig::convert(s2); fwrite(&s0, sizeof(T), 1, vtkFile); fwrite(&s1, sizeof(T), 1, vtkFile); fwrite(&s2, sizeof(T), 1, vtkFile); if(false == writeConformalMesh) { s0 = static_cast<T>(m[i * 3 + 0]) * -1.0; s1 = static_cast<T>(m[i * 3 + 1]) * -1.0; s2 = static_cast<T>(m[i * 3 + 2]) * -1.0; SIMPLib::Endian::FromSystemToBig::convert(s0); SIMPLib::Endian::FromSystemToBig::convert(s1); SIMPLib::Endian::FromSystemToBig::convert(s2); fwrite(&s0, sizeof(T), 1, vtkFile); fwrite(&s1, sizeof(T), 1, vtkFile); fwrite(&s2, sizeof(T), 1, vtkFile); } } else { ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " "; if(false == writeConformalMesh) { ss << -1.0 * m[i * 3 + 0] << " " << -1.0 * m[i * 3 + 1] << " " << -1.0 * m[i * 3 + 2] << " "; } fprintf(vtkFile, "%s ", buf.toLatin1().data()); buf.clear(); if (i % 50 == 0) { fprintf(vtkFile, "\n"); } } } } }
/** * @brief deepCopy * @param forceNoAllocate * @return */ virtual IDataArray::Pointer deepCopy(bool forceNoAllocate = false) { IDataArray::Pointer daCopy = createNewArray(getNumberOfTuples(), getComponentDimensions(), getName(), m_IsAllocated); if(m_IsAllocated == true && forceNoAllocate == false) { T* src = getPointer(0); void* dest = daCopy->getVoidPointer(0); size_t totalBytes = (getNumberOfTuples() * getNumberOfComponents() * sizeof(T)); ::memcpy(dest, src, totalBytes); } return daCopy; }
void writeCellVectorData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, const QString& vtkAttributeType, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds) { TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>(); int64_t numTriangles = triangleGeom->getNumberOfTris(); IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName); QString ss; if (NULL != data.get()) { T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data()); for(int i = 0; i < numTriangles; ++i) { T s0 = 0x00; T s1 = 0x00; T s2 = 0x00; if(writeBinaryData == true) { s0 = static_cast<T>(m[i * 3 + 0]); s1 = static_cast<T>(m[i * 3 + 1]); s2 = static_cast<T>(m[i * 3 + 2]); SIMPLib::Endian::FromSystemToBig::convert(s0); SIMPLib::Endian::FromSystemToBig::convert(s1); SIMPLib::Endian::FromSystemToBig::convert(s2); fwrite(&s0, sizeof(T), 1, vtkFile); fwrite(&s1, sizeof(T), 1, vtkFile); fwrite(&s2, sizeof(T), 1, vtkFile); } else { ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " "; fprintf(vtkFile, "%s ", ss.toLatin1().data()); if (i % 25 == 0) { fprintf(vtkFile, "\n"); } } } } }
IDataArray::Pointer readH5Dataset(hid_t locId, const QString& datasetPath, const QVector<size_t>& tDims, const QVector<size_t>& cDims) { herr_t err = -1; IDataArray::Pointer ptr; ptr = DataArray<T>::CreateArray(tDims, cDims, datasetPath); T* data = (T*)(ptr->getVoidPointer(0)); err = QH5Lite::readPointerDataset(locId, datasetPath, data); if(err < 0) { qDebug() << "readH5Data read error: " << __FILE__ << "(" << __LINE__ << ")" ; ptr = IDataArray::NullPointer(); } return ptr; }
virtual IDataArray::Pointer reorderCopy(QVector<size_t> newOrderMap) { if(newOrderMap.size() != static_cast<QVector<size_t>::size_type>(getNumberOfTuples())) { return IDataArray::NullPointer(); } IDataArray::Pointer daCopy = createNewArray(getNumberOfTuples(), getComponentDimensions(), getName(), m_IsAllocated); if(m_IsAllocated == true) { daCopy->initializeWithZeros(); size_t chunkSize = getNumberOfComponents() * sizeof(T); for(size_t i = 0; i < getNumberOfTuples(); i++) { T* src = getPointer(i * getNumberOfComponents()); void* dest = daCopy->getVoidPointer(newOrderMap[i] * getNumberOfComponents()); ::memcpy(dest, src, chunkSize); } } return daCopy; }
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, bool writeConformalMesh, FILE* vtkFile, int nT) { // Write the Feature Face ID Data to the file IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName); QString buf; QTextStream ss(&buf); if (NULL != data.get()) { T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data()); fprintf(vtkFile, "LOOKUP_TABLE default\n"); for(int i = 0; i < nT; ++i) { T swapped = 0x00; if(writeBinaryData == true) { swapped = static_cast<T>(m[i]); SIMPLib::Endian::FromSystemToBig::convert(swapped); fwrite(&swapped, sizeof(T), 1, vtkFile); if(false == writeConformalMesh) { fwrite(&swapped, sizeof(T), 1, vtkFile); } } else { ss << m[i] << " "; if(false == writeConformalMesh) { ss << m[i] << " "; } fprintf(vtkFile, "%s", buf.toLatin1().data()); buf.clear(); if (i % 50 == 0) { fprintf(vtkFile, "\n"); } } } } }
void writePointVectorData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, bool writeConformalMesh, const QString& vtkAttributeType, FILE* vtkFile, int nT) { IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName); QString ss; if (NULL != data.get()) { T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data()); for(int i = 0; i < nT; ++i) { T s0 = 0x00; T s1 = 0x00; T s2 = 0x00; if(writeBinaryData == true) { s0 = static_cast<T>(m[i * 3 + 0]); s1 = static_cast<T>(m[i * 3 + 1]); s2 = static_cast<T>(m[i * 3 + 2]); SIMPLib::Endian::FromSystemToBig::convert(s0); SIMPLib::Endian::FromSystemToBig::convert(s1); SIMPLib::Endian::FromSystemToBig::convert(s2); fwrite(&s0, sizeof(T), 1, vtkFile); fwrite(&s1, sizeof(T), 1, vtkFile); fwrite(&s1, sizeof(T), 1, vtkFile); } else { ss = QString::number(m[i * 3 + 0]) + " " + QString::number(m[i * 3 + 1]) + " " + QString::number(m[i * 3 + 2]) + " "; fprintf(vtkFile, "%s ", ss.toLatin1().data()); //if (i%50 == 0) { fprintf(vtkFile, "\n"); } } } } }
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType, bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels) { TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>(); int64_t numTriangles = triangleGeom->getNumberOfTris(); IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName); QString buf; QTextStream ss(&buf); if (NULL != data.get()) { int32_t totalCellsWritten = 0; T* m = reinterpret_cast<T*>(data->getVoidPointer(0)); fprintf(vtkFile, "\n"); fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data()); // Loop over all the features for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter) { int32_t gid = featureIter.key(); // The current Feature Id size_t size = featureIter.value(); // The number of triangles for this feature id std::vector<T> buffer(size * 3, 0); totalCellsWritten += size * 3; size_t index = 0; for (int j = 0; j < numTriangles; j++) { if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; } // Get the data T s0 = static_cast<T>(m[j * 3 + 0]); T s1 = static_cast<T>(m[j * 3 + 1]); T s2 = static_cast<T>(m[j * 3 + 2]); // Flip the normal if needed because the current feature id is assigned to the triangle.labels[1] if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid ) { s0 *= -1.0; s1 *= -1.0; s2 *= -1.0; } // Write the values to the buffer after an Endian swap. if(writeBinaryData == true) { SIMPLib::Endian::FromSystemToBig::convert(s0); buffer[index] = s0; ++index; SIMPLib::Endian::FromSystemToBig::convert(s1); buffer[index] = s1; ++index; SIMPLib::Endian::FromSystemToBig::convert(s2); buffer[index] = s2; ++index; } else { ss << s0 << " " << s1 << " " << s2; fprintf(vtkFile, "%s\n", buf.toLatin1().data()); buf.clear(); } } // Write the Buffer if(writeBinaryData == true) { fwrite(&(buffer.front()), sizeof(T), size * 3, vtkFile); } } } }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void WarpRegularGrid::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m; if (m_SaveAsNewDataContainer == false) { m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); } else { m = getDataContainerArray()->getDataContainer(getNewDataContainerName()); } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); AttributeMatrix::Pointer newCellAttrMat = cellAttrMat->deepCopy(); size_t dims[3] = { 0, 0, 0 }; m->getGeometryAs<ImageGeom>()->getDimensions(dims); float res[3] = { 0.0f, 0.0f, 0.0f }; m->getGeometryAs<ImageGeom>()->getResolution(res); size_t totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements(); float x = 0.0f, y = 0.0f, z = 0.0f; float newX = 0.0f, newY = 0.0f; int col = 0.0f, row = 0.0f, plane = 0.0f; size_t index; size_t index_old; std::vector<size_t> newindicies(totalPoints); std::vector<bool> goodPoint(totalPoints, true); for (size_t i = 0; i < dims[2]; i++) { QString ss = QObject::tr("Warping Data - %1 Percent Complete").arg(((float)i / dims[2]) * 100); notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss); for (size_t j = 0; j < dims[1]; j++) { for (size_t k = 0; k < dims[0]; k++) { x = static_cast<float>((k * res[0])); y = static_cast<float>((j * res[1])); z = static_cast<float>((i * res[2])); index = (i * dims[0] * dims[1]) + (j * dims[0]) + k; determine_warped_coordinates(x, y, newX, newY); col = newX / res[0]; row = newY / res[1]; plane = i; index_old = (plane * dims[0] * dims[1]) + (row * dims[0]) + col; newindicies[index] = index_old; if (col > 0 && col < dims[0] && row > 0 && row < dims[1]) { goodPoint[index] = true; } else { goodPoint[index] = false; } } } } QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; if(goodPoint[i] == true) { source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } else { int var = 0; data->initializeTuple(i, &var); } } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void NearestPointFuseRegularGrids::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer refDC = getDataContainerArray()->getDataContainer(m_ReferenceCellAttributeMatrixPath.getDataContainerName()); DataContainer::Pointer sampleDC = getDataContainerArray()->getDataContainer(m_SamplingCellAttributeMatrixPath.getDataContainerName()); AttributeMatrix::Pointer refAttrMat = refDC->getAttributeMatrix(m_ReferenceCellAttributeMatrixPath.getAttributeMatrixName()); AttributeMatrix::Pointer sampleAttrMat = sampleDC->getAttributeMatrix(m_SamplingCellAttributeMatrixPath.getAttributeMatrixName()); // Get dimensions and resolutions of two grids size_t _refDims[3] = { 0, 0, 0 }; size_t _sampleDims[3] = { 0, 0, 0 }; float refRes[3] = { 0.0f, 0.0f, 0.0f }; float sampleRes[3] = { 0.0f, 0.0f, 0.0f }; float refOrigin[3] = { 0.0f, 0.0f, 0.0f }; float sampleOrigin[3] = { 0.0f, 0.0f, 0.0f }; refDC->getGeometryAs<ImageGeom>()->getDimensions(_refDims); sampleDC->getGeometryAs<ImageGeom>()->getDimensions(_sampleDims); refDC->getGeometryAs<ImageGeom>()->getResolution(refRes); sampleDC->getGeometryAs<ImageGeom>()->getResolution(sampleRes); refDC->getGeometryAs<ImageGeom>()->getOrigin(refOrigin); sampleDC->getGeometryAs<ImageGeom>()->getOrigin(sampleOrigin); // Further down we divide by sampleRes, so here check to make sure that no components of the resolution are 0 // This would be incredible unusual behavior if it were to occur, hence why we don't spend the time // doing the validation up in the dataCheck bool zeroRes = false; for (size_t i = 0; i < 3; i++) { if (sampleRes[i] == 0.0f) { zeroRes = true; break; } } if (zeroRes == true) { QString ss = QObject::tr("A component of the resolution for the Image Geometry associated with DataContainer '%1' is 0. This would result in a division by 0 operation").arg(m_SamplingCellAttributeMatrixPath.getDataContainerName()); setErrorCondition(-5555); notifyErrorMessage(getHumanLabel(), ss, getErrorCondition()); return; } int64_t refDims[3] = { 0, 0, 0 }; int64_t sampleDims[3] = { 0, 0, 0 }; for (size_t i = 0; i < 3; i++) { refDims[i] = static_cast<int64_t>(_refDims[i]); sampleDims[i] = static_cast<int64_t>(_sampleDims[i]); } int64_t numRefTuples = refDims[0] * refDims[1] * refDims[2]; float x = 0.0f, y = 0.0f, z = 0.0f; int64_t col = 0, row = 0, plane = 0; int64_t refIndex = 0; int64_t sampleIndex = 0; int64_t planeComp = 0, rowComp = 0; // Create arrays on the reference grid to hold data present on the sampling grid QList<QString> voxelArrayNames = sampleAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = sampleAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(numRefTuples, p->getComponentDimensions(), p->getName()); refAttrMat->addAttributeArray(p->getName(), data); } bool outside = false; for (int64_t i = 0; i < refDims[2]; i++) { planeComp = i * refDims[0] * refDims[1]; for (int64_t j = 0; j < refDims[1]; j++) { rowComp = j * refDims[0]; for (int64_t k = 0; k < refDims[0]; k++) { outside = false; x = (k * refRes[0] + refOrigin[0]); y = (j * refRes[1] + refOrigin[1]); z = (i * refRes[2] + refOrigin[2]); if ((x - sampleOrigin[0]) < 0) { outside = true; } else { col = int64_t((x - sampleOrigin[0]) / sampleRes[0]); } if ((y - sampleOrigin[1]) < 0) { outside = true; } else { row = int64_t((y - sampleOrigin[1]) / sampleRes[1]); } if ((z - sampleOrigin[2]) < 0) { outside = true; } else { plane = int64_t((z - sampleOrigin[2]) / sampleRes[2]); } if (col > sampleDims[0] || row > sampleDims[1] || plane > sampleDims[2]) { outside = true; } if (outside == false) { sampleIndex = (plane * sampleDims[0] * sampleDims[1]) + (row * sampleDims[0]) + col; refIndex = planeComp + rowComp + k; for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = sampleAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = refAttrMat->getAttributeArray(*iter); void* source = NULL; void* destination = NULL; int nComp = data->getNumberOfComponents(); source = p->getVoidPointer((nComp * sampleIndex)); destination = data->getVoidPointer((nComp * refIndex)); ::memcpy(destination, source, p->getTypeSize() * nComp); } } } } } notifyStatusMessage(getHumanLabel(), "Complete"); }
void testCase4_Execute(const QString& name, int scalarType) { int dataArraySize = ARRAY_SIZE * N; int junkArraySize = 5; int skipHeaderBytes = junkArraySize * sizeof(T); int err = 0; qDebug() << "Testing case 4: " << name << " with num comps " << N; // Allocate an array, and get the dataArray from that array boost::shared_array<T> array(new T[dataArraySize]); // This makes sure our allocated array is deleted when we leave T* dataArray = array.get(); // Write some data into the data array for(size_t i = 0; i < dataArraySize; ++i) { dataArray[i] = static_cast<T>(i); } // Create junkArray T* junkArray = new T[junkArraySize]; // Write a pattern into junkArray for(size_t i = 0; i < junkArraySize; ++i) { junkArray[i] = (unsigned)0xAB; } // Create the file and write to it. If any of the information is wrong, the result will be false bool result = createAndWriteToFile(dataArray, dataArraySize, junkArray, junkArraySize, Detail::Start); // Test to make sure that the file was created and written to successfully DREAM3D_REQUIRED(result, == , true) // Create the data container VolumeDataContainer::Pointer m = VolumeDataContainer::New(); m->setName(DREAM3D::Defaults::DataContainerName); DataContainerArray::Pointer dca = DataContainerArray::New(); dca->pushBack(m); // Create the filter, passing in the skipHeaderBytes RawBinaryReader::Pointer filt = createRawBinaryReaderFilter(scalarType, N, skipHeaderBytes); filt->setDataContainerArray(dca); // Preflight, get error condition, and check that there are no errors filt->preflight(); err = filt->getErrorCondition(); DREAM3D_REQUIRED(err, >= , 0) // Execute, get error condition, check that there are no errors, and compare the data filt->execute(); err = filt->getErrorCondition(); DREAM3D_REQUIRED(err, >= , 0) IDataArray::Pointer iData = m->getAttributeMatrix(getCellAttributeMatrixName())->getAttributeArray("Test_Array"); T* data = reinterpret_cast<T*>(iData->getVoidPointer(0)); T d, p; for(size_t i = 0; i < dataArraySize; ++i) { d = data[i]; p = dataArray[i]; DREAM3D_REQUIRE_EQUAL(d, p) } /* * SUBTEST: Test when skipHeaderBytes is larger than expected */ // Create another data container VolumeDataContainer::Pointer m2 = VolumeDataContainer::New(); m2->setName(DREAM3D::Defaults::DataContainerName); DataContainerArray::Pointer dca2 = DataContainerArray::New(); dca2->pushBack(m2); // Create another filter, passing in the skipHeaderBytes + 1 RawBinaryReader::Pointer filt2 = createRawBinaryReaderFilter(scalarType, N, skipHeaderBytes + 1); filt2->setDataContainerArray(dca2); // Preflight, get error condition, and check that there are errors filt2->preflight(); err = filt2->getErrorCondition(); DREAM3D_REQUIRED(err, < , 0) // Execute, get error condition, and check that the "file too small" error occurred filt2->execute(); err = filt2->getErrorCondition(); DREAM3D_REQUIRED(err, == , RBRT_FILE_TOO_SMALL) }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void RotateSampleRefFrame::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); float rotAngle = m_RotationAngle * SIMPLib::Constants::k_Pi / 180.0; int64_t xp = 0, yp = 0, zp = 0; float xRes = 0.0f, yRes = 0.0f, zRes = 0.0f; int64_t xpNew = 0, ypNew = 0, zpNew = 0; float xResNew = 0.0f, yResNew = 0.0f, zResNew = 0.0f; RotateSampleRefFrameImplArg_t params; xp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getXPoints()); xRes = m->getGeometryAs<ImageGeom>()->getXRes(); yp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getYPoints()); yRes = m->getGeometryAs<ImageGeom>()->getYRes(); zp = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getZPoints()); zRes = m->getGeometryAs<ImageGeom>()->getZRes(); params.xp = xp; params.xRes = xRes; params.yp = yp; params.yRes = yRes; params.zp = zp; params.zRes = zRes; size_t col = 0, row = 0, plane = 0; float rotMat[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } }; float coords[3] = { 0.0f, 0.0f, 0.0f }; float newcoords[3] = { 0.0f, 0.0f, 0.0f }; float xMin = std::numeric_limits<float>::max(); float xMax = std::numeric_limits<float>::min(); float yMin = std::numeric_limits<float>::max(); float yMax = std::numeric_limits<float>::min(); float zMin = std::numeric_limits<float>::max(); float zMax = std::numeric_limits<float>::min(); FOrientArrayType om(9); FOrientTransformsType::ax2om(FOrientArrayType(m_RotationAxis.x, m_RotationAxis.y, m_RotationAxis.z, rotAngle), om); om.toGMatrix(rotMat); for (int32_t i = 0; i < 8; i++) { if (i == 0) { col = 0, row = 0, plane = 0; } if (i == 1) { col = xp - 1, row = 0, plane = 0; } if (i == 2) { col = 0, row = yp - 1, plane = 0; } if (i == 3) { col = xp - 1, row = yp - 1, plane = 0; } if (i == 4) { col = 0, row = 0, plane = zp - 1; } if (i == 5) { col = xp - 1, row = 0, plane = zp - 1; } if (i == 6) { col = 0, row = yp - 1, plane = zp - 1; } if (i == 7) { col = xp - 1, row = yp - 1, plane = zp - 1; } coords[0] = static_cast<float>(col * xRes); coords[1] = static_cast<float>(row * yRes); coords[2] = static_cast<float>(plane * zRes); MatrixMath::Multiply3x3with3x1(rotMat, coords, newcoords); if (newcoords[0] < xMin) { xMin = newcoords[0]; } if (newcoords[0] > xMax) { xMax = newcoords[0]; } if (newcoords[1] < yMin) { yMin = newcoords[1]; } if (newcoords[1] > yMax) { yMax = newcoords[1]; } if (newcoords[2] < zMin) { zMin = newcoords[2]; } if (newcoords[2] > zMax) { zMax = newcoords[2]; } } float xAxis[3] = {1, 0, 0}; float yAxis[3] = {0, 1, 0}; float zAxis[3] = {0, 0, 1}; float xAxisNew[3] = { 0.0f, 0.0f, 0.0f }; float yAxisNew[3] = { 0.0f, 0.0f, 0.0f }; float zAxisNew[3] = { 0.0f, 0.0f, 0.0f }; MatrixMath::Multiply3x3with3x1(rotMat, xAxis, xAxisNew); MatrixMath::Multiply3x3with3x1(rotMat, yAxis, yAxisNew); MatrixMath::Multiply3x3with3x1(rotMat, zAxis, zAxisNew); float closestAxis = 0.0f; xResNew = xRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, xAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(yAxis, xAxisNew)) > closestAxis) { xResNew = yRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, xAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(zAxis, xAxisNew)) > closestAxis) { xResNew = zRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, xAxisNew)); } yResNew = yRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, yAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(xAxis, yAxisNew)) > closestAxis) { yResNew = xRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, yAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(zAxis, yAxisNew)) > closestAxis) { yResNew = zRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, yAxisNew)); } zResNew = zRes; closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(zAxis, zAxisNew)); if (fabs(GeometryMath::CosThetaBetweenVectors(xAxis, zAxisNew)) > closestAxis) { zResNew = xRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(xAxis, zAxisNew)); } if (fabs(GeometryMath::CosThetaBetweenVectors(yAxis, zAxisNew)) > closestAxis) { zResNew = yRes, closestAxis = fabs(GeometryMath::CosThetaBetweenVectors(yAxis, zAxisNew)); } xpNew = static_cast<int64_t>(nearbyint((xMax - xMin) / xResNew) + 1); ypNew = static_cast<int64_t>(nearbyint((yMax - yMin) / yResNew) + 1); zpNew = static_cast<int64_t>(nearbyint((zMax - zMin) / zResNew) + 1); params.xpNew = xpNew; params.xResNew = xResNew; params.xMinNew = xMin; params.ypNew = ypNew; params.yResNew = yResNew; params.yMinNew = yMin; params.zpNew = zpNew; params.zResNew = zResNew; params.zMinNew = zMin; int64_t newNumCellTuples = params.xpNew * params.ypNew * params.zpNew; DataArray<int64_t>::Pointer newIndiciesPtr = DataArray<int64_t>::CreateArray(newNumCellTuples, "_INTERNAL_USE_ONLY_RotateSampleRef_NewIndicies"); newIndiciesPtr->initializeWithValue(-1); int64_t* newindicies = newIndiciesPtr->getPointer(0); #ifdef SIMPLib_USE_PARALLEL_ALGORITHMS tbb::task_scheduler_init init; bool doParallel = true; #endif #ifdef SIMPLib_USE_PARALLEL_ALGORITHMS if (doParallel == true) { tbb::parallel_for(tbb::blocked_range3d<int64_t, int64_t, int64_t>(0, params.zpNew, 0, params.ypNew, 0, params.xpNew), RotateSampleRefFrameImpl(newIndiciesPtr, ¶ms, rotMat, m_SliceBySlice), tbb::auto_partitioner()); } else #endif { RotateSampleRefFrameImpl serial(newIndiciesPtr, ¶ms, rotMat, m_SliceBySlice); serial.convert(0, params.zpNew, 0, params.ypNew, 0, params.xpNew); } // This could technically be parallelized also where each thread takes an array to adjust. Except // that the DataContainer is NOT thread safe or re-entrant so that would actually be a BAD idea. QString attrMatName = getCellAttributeMatrixPath().getAttributeMatrixName(); QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames(); // resize attribute matrix QVector<size_t> tDims(3); tDims[0] = params.xpNew; tDims[1] = params.ypNew; tDims[2] = params.zpNew; m->getAttributeMatrix(attrMatName)->resizeAttributeArrays(tDims); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. IDataArray::Pointer data = p->createNewArray(newNumCellTuples, p->getComponentDimensions(), p->getName()); void* source = NULL; void* destination = NULL; int64_t newIndicies_I = 0; int32_t nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(newNumCellTuples); i++) { newIndicies_I = newindicies[i]; if(newIndicies_I >= 0) { source = p->getVoidPointer((nComp * newIndicies_I)); if (NULL == source) { QString ss = QObject::tr("The index is outside the bounds of the source array"); setErrorCondition(-11004); notifyErrorMessage(getHumanLabel(), ss, getErrorCondition()); return; } destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } else { data->initializeTuple(i, 0); } } m->getAttributeMatrix(attrMatName)->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(params.xResNew, params.yResNew, params.zResNew); m->getGeometryAs<ImageGeom>()->setDimensions(params.xpNew, params.ypNew, params.zpNew); m->getGeometryAs<ImageGeom>()->setOrigin(xMin, yMin, zMin); notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void ChangeResolution::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m; if(m_SaveAsNewDataContainer == false) { m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); } else { m = getDataContainerArray()->getDataContainer(getNewDataContainerName()); } if(m->getGeometryAs<ImageGeom>()->getXRes() == m_Resolution.x && m->getGeometryAs<ImageGeom>()->getYRes() == m_Resolution.y && m->getGeometryAs<ImageGeom>()->getZRes() == m_Resolution.z) { return; } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); size_t dims[3] = { 0, 0, 0 }; m->getGeometryAs<ImageGeom>()->getDimensions(dims); float sizex = (dims[0]) * m->getGeometryAs<ImageGeom>()->getXRes(); float sizey = (dims[1]) * m->getGeometryAs<ImageGeom>()->getYRes(); float sizez = (dims[2]) * m->getGeometryAs<ImageGeom>()->getZRes(); size_t m_XP = size_t(sizex / m_Resolution.x); size_t m_YP = size_t(sizey / m_Resolution.y); size_t m_ZP = size_t(sizez / m_Resolution.z); if (m_XP == 0) { m_XP = 1; } if (m_YP == 0) { m_YP = 1; } if (m_ZP == 0) { m_ZP = 1; } size_t totalPoints = m_XP * m_YP * m_ZP; float x = 0.0f, y = 0.0f, z = 0.0f; size_t col = 0, row = 0, plane = 0; size_t index; size_t index_old; std::vector<size_t> newindicies(totalPoints); for (size_t i = 0; i < m_ZP; i++) { QString ss = QObject::tr("Changing Resolution - %1 Percent Complete").arg(((float)i / m->getGeometryAs<ImageGeom>()->getZPoints()) * 100); notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss); for (size_t j = 0; j < m_YP; j++) { for (size_t k = 0; k < m_XP; k++) { x = (k * m_Resolution.x); y = (j * m_Resolution.y); z = (i * m_Resolution.z); col = size_t(x / m->getGeometryAs<ImageGeom>()->getXRes()); row = size_t(y / m->getGeometryAs<ImageGeom>()->getYRes()); plane = size_t(z / m->getGeometryAs<ImageGeom>()->getZRes()); index_old = (plane * m->getGeometryAs<ImageGeom>()->getXPoints() * m->getGeometryAs<ImageGeom>()->getYPoints()) + (row * m->getGeometryAs<ImageGeom>()->getXPoints()) + col; index = (i * m_XP * m_YP) + (j * m_XP) + k; newindicies[index] = index_old; } } } QVector<size_t> tDims(3, 0); tDims[0] = m_XP; tDims[1] = m_YP; tDims[2] = m_ZP; AttributeMatrix::Pointer newCellAttrMat = AttributeMatrix::New(tDims, cellAttrMat->getName(), cellAttrMat->getType()); QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory. IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(m_Resolution.x, m_Resolution.y, m_Resolution.z); m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP); m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); // Feature Ids MUST already be renumbered. if (m_RenumberFeatures == true) { totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements(); AttributeMatrix::Pointer cellFeatureAttrMat = m->getAttributeMatrix(getCellFeatureAttributeMatrixPath().getAttributeMatrixName()); size_t totalFeatures = cellFeatureAttrMat->getNumTuples(); QVector<bool> activeObjects(totalFeatures, false); if (0 == totalFeatures) { notifyErrorMessage(getHumanLabel(), "The number of Features is 0 and should be greater than 0", -600); return; } updateCellInstancePointers(); // Find the unique set of feature ids for (size_t i = 0; i < totalPoints; ++i) { activeObjects[m_FeatureIds[i]] = true; } cellFeatureAttrMat->removeInactiveObjects(activeObjects, m_FeatureIdsPtr.lock()); } notifyStatusMessage(getHumanLabel(), "Complete"); }
// ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- void RegularizeZSpacing::execute() { setErrorCondition(0); dataCheck(); if(getErrorCondition() < 0) { return; } DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName()); size_t dims[3]; m->getGeometryAs<ImageGeom>()->getDimensions(dims); std::ifstream inFile; inFile.open(m_InputFile.toLatin1().data()); float zval = 0.0f; std::vector<float> zboundvalues(dims[2] + 1, 0.0); for (size_t iter = 0; iter < dims[2] + 1; iter++) { inFile >> zval; zboundvalues[iter] = zval; } inFile.close(); float xRes = m->getGeometryAs<ImageGeom>()->getXRes(); float yRes = m->getGeometryAs<ImageGeom>()->getYRes(); float sizez = zboundvalues[dims[2]]; size_t m_XP = dims[0]; size_t m_YP = dims[1]; size_t m_ZP = static_cast<size_t>(sizez / m_NewZRes); if (m_ZP == 0) { m_ZP = 1; } size_t totalPoints = m_XP * m_YP * m_ZP; size_t index = 0, oldindex = 0; size_t plane = 0; std::vector<size_t> newindicies(totalPoints, 0); for (size_t i = 0; i < m_ZP; i++) { plane = 0; for (size_t iter = 1; iter < dims[2]; iter++) { if ((i * m_NewZRes) > zboundvalues[iter]) { plane = iter; } } for (size_t j = 0; j < m_YP; j++) { for (size_t k = 0; k < m_XP; k++) { oldindex = (plane * dims[0] * dims[1]) + (j * dims[0]) + k; index = (i * dims[0] * dims[1]) + (j * dims[0]) + k; newindicies[index] = oldindex; } } } AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); QVector<size_t> tDims(3, 0); tDims[0] = m_XP; tDims[1] = m_YP; tDims[2] = m_ZP; AttributeMatrix::Pointer newCellAttrMat = AttributeMatrix::New(tDims, cellAttrMat->getName(), cellAttrMat->getType()); QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames(); for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter) { IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter); // Make a copy of the 'p' array that has the same name. When placed into // the data container this will over write the current array with // the same name. At least in theory IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName()); data->resize(totalPoints); void* source = NULL; void* destination = NULL; size_t newIndicies_I = 0; int nComp = data->getNumberOfComponents(); for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++) { newIndicies_I = newindicies[i]; source = p->getVoidPointer((nComp * newIndicies_I)); destination = data->getVoidPointer((data->getNumberOfComponents() * i)); ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents()); } cellAttrMat->removeAttributeArray(*iter); newCellAttrMat->addAttributeArray(*iter, data); } m->getGeometryAs<ImageGeom>()->setResolution(xRes, yRes, m_NewZRes); m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP); m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName()); m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat); notifyStatusMessage(getHumanLabel(), "Complete"); }