Пример #1
0
void NVPTXFloatMCExpr::PrintImpl(raw_ostream &OS) const {
  bool Ignored;
  unsigned NumHex;
  APFloat APF = getAPFloat();

  switch (Kind) {
  default: llvm_unreachable("Invalid kind!");
  case VK_NVPTX_SINGLE_PREC_FLOAT:
    OS << "0f";
    NumHex = 8;
    APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_DOUBLE_PREC_FLOAT:
    OS << "0d";
    NumHex = 16;
    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Ignored);
    break;
  }

  APInt API = APF.bitcastToAPInt();
  std::string HexStr(utohexstr(API.getZExtValue()));
  if (HexStr.length() < NumHex)
    OS << std::string(NumHex - HexStr.length(), '0');
  OS << utohexstr(API.getZExtValue());
}
Пример #2
0
int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    // Constants loaded via lgfi.
    if (isInt<32>(Imm.getSExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llilf.
    if (isUInt<32>(Imm.getZExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llihf:
    if ((Imm.getZExtValue() & 0xffffffff) == 0)
      return TTI::TCC_Basic;

    return 2 * TTI::TCC_Basic;
  }

  return 4 * TTI::TCC_Basic;
}
Пример #3
0
void NVPTXFloatMCExpr::printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const {
  bool Ignored;
  unsigned NumHex;
  APFloat APF = getAPFloat();

  switch (Kind) {
  default: llvm_unreachable("Invalid kind!");
  case VK_NVPTX_HALF_PREC_FLOAT:
    // ptxas does not have a way to specify half-precision floats.
    // Instead we have to print and load fp16 constants as .b16
    OS << "0x";
    NumHex = 4;
    APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_SINGLE_PREC_FLOAT:
    OS << "0f";
    NumHex = 8;
    APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  case VK_NVPTX_DOUBLE_PREC_FLOAT:
    OS << "0d";
    NumHex = 16;
    APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Ignored);
    break;
  }

  APInt API = APF.bitcastToAPInt();
  std::string HexStr(utohexstr(API.getZExtValue()));
  if (HexStr.length() < NumHex)
    OS << std::string(NumHex - HexStr.length(), '0');
  OS << utohexstr(API.getZExtValue());
}
Пример #4
0
int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TTI::TCC_Basic;

      return 2 * TTI::TCC_Basic;
    }
  }

  return 4 * TTI::TCC_Basic;
}
Пример #5
0
void PTXInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
                                  raw_ostream &O) {
  const MCOperand &Op = MI->getOperand(OpNo);
  if (Op.isImm()) {
    O << Op.getImm();
  } else if (Op.isFPImm()) {
    double Imm = Op.getFPImm();
    APFloat FPImm(Imm);
    APInt FPIntImm = FPImm.bitcastToAPInt();
    O << "0D";
    // PTX requires us to output the full 64 bits, even if the number is zero
    if (FPIntImm.getZExtValue() > 0) {
      O << FPIntImm.toString(16, false);
    } else {
      O << "0000000000000000";
    }
  } else if (Op.isReg()) {
    printRegName(O, Op.getReg());
  } else {
    assert(Op.isExpr() && "unknown operand kind in printOperand");
    const MCExpr *Expr = Op.getExpr();
    if (const MCSymbolRefExpr *SymRefExpr = dyn_cast<MCSymbolRefExpr>(Expr)) {
      const MCSymbol &Sym = SymRefExpr->getSymbol();
      O << Sym.getName();
    } else {
      O << *Op.getExpr();
    }
  }
}
Пример #6
0
int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

 unsigned Bits = Ty->getPrimitiveSizeInBits();
 if (Bits == 0 || Imm.getActiveBits() >= 64)
   return 4;

  int64_t SImmVal = Imm.getSExtValue();
  uint64_t ZImmVal = Imm.getZExtValue();
  if (!ST->isThumb()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  if (ST->isThumb2()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  // Thumb1, any i8 imm cost 1.
  if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
    return 1;
  if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
    return 2;
  // Load from constantpool.
  return 3;
}
unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned Bits = Ty->getPrimitiveSizeInBits();
  if (Bits == 0 || Bits > 32)
    return 4;

  int32_t SImmVal = Imm.getSExtValue();
  uint32_t ZImmVal = Imm.getZExtValue();
  if (!ST->isThumb()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  } else if (ST->isThumb2()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  } else /*Thumb1*/ {
    if (SImmVal >= 0 && SImmVal < 256)
      return 1;
    if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
      return 2;
    // Load from constantpool.
    return 3;
  }
  return 2;
}
unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm.getBitWidth() <= 64 &&
      (isInt<32>(Imm.getSExtValue()) || isUInt<32>(Imm.getZExtValue())))
    return TCC_Basic;
  else
    return 2 * TCC_Basic;
}
/// Return true if it is OK to use SIToFPInst for an induction variable
/// with given initial and exit values.
static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
                          uint64_t intIV, uint64_t intEV) {

  if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
    return true;

  // If the iteration range can be handled by SIToFPInst then use it.
  APInt Max = APInt::getSignedMaxValue(32);
  if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
    return true;

  return false;
}
Пример #10
0
int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    // These get expanded to include a normal addition/subtraction.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    // These get expanded to include a normal multiplication.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}
Пример #11
0
error_code Archive::Child::getName(StringRef &Result) const {
  StringRef name = ToHeader(Data.data())->getName();
  // Check if it's a special name.
  if (name[0] == '/') {
    if (name.size() == 1) { // Linker member.
      Result = name;
      return object_error::success;
    }
    if (name.size() == 2 && name[1] == '/') { // String table.
      Result = name;
      return object_error::success;
    }
    // It's a long name.
    // Get the offset.
    APInt offset;
    name.substr(1).getAsInteger(10, offset);
    const char *addr = Parent->StringTable->Data.begin()
                       + sizeof(ArchiveMemberHeader)
                       + offset.getZExtValue();
    // Verify it.
    if (Parent->StringTable == Parent->end_children()
        || addr < (Parent->StringTable->Data.begin()
                   + sizeof(ArchiveMemberHeader))
        || addr > (Parent->StringTable->Data.begin()
                   + sizeof(ArchiveMemberHeader)
                   + Parent->StringTable->getSize()))
      return object_error::parse_failed;
    Result = addr;
    return object_error::success;
  } else if (name.startswith("#1/")) {
    APInt name_size;
    name.substr(3).getAsInteger(10, name_size);
    Result = Data.substr(0, name_size.getZExtValue());
    return object_error::success;
  }
  // It's a simple name.
  if (name[name.size() - 1] == '/')
    Result = name.substr(0, name.size() - 1);
  else
    Result = name;
  return object_error::success;
}
Пример #12
0
bool PointsToNodeFactory::matchGEPNode(const GEPOperator *I, const PointsToNode *N) const {
    if (const GEPPointsToNode *GEPNode = dyn_cast<GEPPointsToNode>(N)) {
        auto GEPNodeI = GEPNode->indices.begin(), GEPNodeE = GEPNode->indices.end();
        for (auto Index = I->idx_begin(), E = I->idx_end(); Index != E; ++Index, ++GEPNodeI) {
            if (GEPNodeI == GEPNodeE)
                return false;

            ConstantInt *Int = cast<ConstantInt>(Index);
            APInt a = Int->getValue(), b = *GEPNodeI;
            // We can't compare a and b directly here because they might have
            // different bitwidths, so we assume that the values fit into 64
            // bits and compare the zero-extended 64-bit values.
            if (a.getZExtValue() != b.getZExtValue())
                return false;
        }

        return GEPNodeI == GEPNodeE;
    }

    return false;
}
static std::string toString(const APFloat &FP) {
  // Print NaNs with custom payloads specially.
  if (FP.isNaN() &&
      !FP.bitwiseIsEqual(APFloat::getQNaN(FP.getSemantics())) &&
      !FP.bitwiseIsEqual(APFloat::getQNaN(FP.getSemantics(), /*Negative=*/true))) {
    APInt AI = FP.bitcastToAPInt();
    return
        std::string(AI.isNegative() ? "-" : "") + "nan:0x" +
        utohexstr(AI.getZExtValue() &
                  (AI.getBitWidth() == 32 ? INT64_C(0x007fffff) :
                                            INT64_C(0x000fffffffffffff)),
                  /*LowerCase=*/true);
  }

  // Use C99's hexadecimal floating-point representation.
  static const size_t BufBytes = 128;
  char buf[BufBytes];
  auto Written = FP.convertToHexString(
      buf, /*hexDigits=*/0, /*upperCase=*/false, APFloat::rmNearestTiesToEven);
  (void)Written;
  assert(Written != 0);
  assert(Written < BufBytes);
  return buf;
}
Пример #14
0
int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    if (Idx == 0 && Imm.getBitWidth() <= 64) {
      // Any 8-bit immediate store can by implemented via mvi.
      if (BitSize == 8)
        return TTI::TCC_Free;
      // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
      if (isInt<16>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::ICmp:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Comparisons against signed 32-bit immediates implemented via cgfi.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
      // Comparisons against unsigned 32-bit immediates implemented via clgfi.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Add:
  case Instruction::Sub:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Or their negation, by swapping addition vs. subtraction.
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Mul:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use msgfi to multiply by 32-bit signed immediates.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Or:
  case Instruction::Xor:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Masks supported by oilf/xilf.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Masks supported by oihf/xihf.
      if ((Imm.getZExtValue() & 0xffffffff) == 0)
        return TTI::TCC_Free;
    }
    break;
  case Instruction::And:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Any 32-bit AND operation can by implemented via nilf.
      if (BitSize <= 32)
        return TTI::TCC_Free;
      // 64-bit masks supported by nilf.
      if (isUInt<32>(~Imm.getZExtValue()))
        return TTI::TCC_Free;
      // 64-bit masks supported by nilh.
      if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
        return TTI::TCC_Free;
      // Some 64-bit AND operations can be implemented via risbg.
      const SystemZInstrInfo *TII = ST->getInstrInfo();
      unsigned Start, End;
      if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    // Always return TCC_Free for the shift value of a shift instruction.
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}
Пример #15
0
void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
  const TargetData *TD = TM.getTargetData();
  unsigned Size = TD->getTypeAllocSize(CV->getType());

  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
      EmitGlobalConstant(CVA->getOperand(i), GblS);
    return;
  } else if (isa<ConstantAggregateZero>(CV)) {
    GblS.emitZeros(Size);
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    EmitGlobalConstantStruct(CVS, GblS);
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    APInt Val = CFP->getValueAPF().bitcastToAPInt();
    if (CFP->getType()->isDoubleTy())
      GblS.emitWord64(Val.getZExtValue());
    else if (CFP->getType()->isFloatTy())
      GblS.emitWord32(Val.getZExtValue());
    else if (CFP->getType()->isX86_FP80Ty()) {
      unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
                         TD->getTypeStoreSize(CFP->getType());
      GblS.emitWordFP80(Val.getRawData(), PadSize);
    } else if (CFP->getType()->isPPC_FP128Ty())
      llvm_unreachable("PPC_FP128Ty global emission not implemented");
    return;
  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    if (Size == 1)
      GblS.emitByte(CI->getZExtValue());
    else if (Size == 2) 
      GblS.emitWord16(CI->getZExtValue());
    else if (Size == 4)
      GblS.emitWord32(CI->getZExtValue());
    else 
      EmitGlobalConstantLargeInt(CI, GblS);
    return;
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    const VectorType *PTy = CP->getType();
    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
      EmitGlobalConstant(CP->getOperand(I), GblS);
    return;
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    // Resolve a constant expression which returns a (Constant, Offset)
    // pair. If 'Res.first' is a GlobalValue, emit a relocation with 
    // the offset 'Res.second', otherwise emit a global constant like
    // it is always done for not contant expression types.
    CstExprResTy Res = ResolveConstantExpr(CE);
    const Constant *Op = Res.first;

    if (isa<GlobalValue>(Op))
      EmitGlobalDataRelocation(cast<const GlobalValue>(Op), 
                               TD->getTypeAllocSize(Op->getType()), 
                               GblS, Res.second);
    else
      EmitGlobalConstant(Op, GblS);

    return;
  } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
    // Fill the data entry with zeros or emit a relocation entry
    if (isa<ConstantPointerNull>(CV))
      GblS.emitZeros(Size);
    else 
      EmitGlobalDataRelocation(cast<const GlobalValue>(CV), 
                               Size, GblS);
    return;
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
    // This is a constant address for a global variable or function and
    // therefore must be referenced using a relocation entry.
    EmitGlobalDataRelocation(GV, Size, GblS);
    return;
  }

  std::string msg;
  raw_string_ostream ErrorMsg(msg);
  ErrorMsg << "Constant unimp for type: " << *CV->getType();
  report_fatal_error(ErrorMsg.str());
}
Пример #16
0
int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                              Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::And:
    // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
    // by using a 32-bit operation with implicit zero extension. Detect such
    // immediates here as the normal path expects bit 31 to be sign extended.
    if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
      return TTI::TCC_Free;
    // Fallthrough
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }

  return X86TTIImpl::getIntImmCost(Imm, Ty);
}
Пример #17
0
APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
  if (RoundToAlign && Align)
    return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
  return Size;
}
Пример #18
0
int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                              Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    LLVM_FALLTHROUGH;
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    LLVM_FALLTHROUGH;
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Zero comparisons can use record-form instructions.
    LLVM_FALLTHROUGH;
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TTI::TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TTI::TCC_Free;

      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TTI::TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TTI::TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TTI::TCC_Free;
  }

  return PPCTTIImpl::getIntImmCost(Imm, Ty);
}
Пример #19
0
APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
  if (Options.RoundToAlign && Align)
    return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
  return Size;
}
Пример #20
0
/// \brief Fold binary operations.
///
/// The list of operations we constant fold might not be complete. Start with
/// folding the operations used by the standard library.
static SILInstruction *constantFoldBinary(BuiltinInst *BI,
                                          BuiltinValueKind ID,
                                          Optional<bool> &ResultsInError) {
  switch (ID) {
  default:
    llvm_unreachable("Not all BUILTIN_BINARY_OPERATIONs are covered!");

  // Not supported yet (not easily computable for APInt).
  case BuiltinValueKind::ExactSDiv:
  case BuiltinValueKind::ExactUDiv:
    return nullptr;

  // Not supported now.
  case BuiltinValueKind::FRem:
    return nullptr;

  // Fold constant division operations and report div by zero.
  case BuiltinValueKind::SDiv:
  case BuiltinValueKind::SRem:
  case BuiltinValueKind::UDiv:
  case BuiltinValueKind::URem: {
    return constantFoldAndCheckDivision(BI, ID, ResultsInError);
  }

  // Are there valid uses for these in stdlib?
  case BuiltinValueKind::Add:
  case BuiltinValueKind::Mul:
  case BuiltinValueKind::Sub:
    return nullptr;

  case BuiltinValueKind::And:
  case BuiltinValueKind::AShr:
  case BuiltinValueKind::LShr:
  case BuiltinValueKind::Or:
  case BuiltinValueKind::Shl:
  case BuiltinValueKind::Xor: {
    OperandValueArrayRef Args = BI->getArguments();
    auto *LHS = dyn_cast<IntegerLiteralInst>(Args[0]);
    auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
    if (!RHS || !LHS)
      return nullptr;
    APInt LHSI = LHS->getValue();
    APInt RHSI = RHS->getValue();

    bool IsShift = ID == BuiltinValueKind::AShr ||
                   ID == BuiltinValueKind::LShr ||
                   ID == BuiltinValueKind::Shl;

    // Reject shifting all significant bits
    if (IsShift && RHSI.getZExtValue() >= LHSI.getBitWidth()) {
      diagnose(BI->getModule().getASTContext(),
               RHS->getLoc().getSourceLoc(),
               diag::shifting_all_significant_bits);

      ResultsInError = Optional<bool>(true);
      return nullptr;
    }

    APInt ResI = constantFoldBitOperation(LHSI, RHSI, ID);
    // Add the literal instruction to represent the result.
    SILBuilderWithScope B(BI);
    return B.createIntegerLiteral(BI->getLoc(), BI->getType(), ResI);
  }
  case BuiltinValueKind::FAdd:
  case BuiltinValueKind::FDiv:
  case BuiltinValueKind::FMul:
  case BuiltinValueKind::FSub: {
    OperandValueArrayRef Args = BI->getArguments();
    auto *LHS = dyn_cast<FloatLiteralInst>(Args[0]);
    auto *RHS = dyn_cast<FloatLiteralInst>(Args[1]);
    if (!RHS || !LHS)
      return nullptr;
    APFloat LHSF = LHS->getValue();
    APFloat RHSF = RHS->getValue();
    switch (ID) {
    default: llvm_unreachable("Not all cases are covered!");
    case BuiltinValueKind::FAdd:
      LHSF.add(RHSF, APFloat::rmNearestTiesToEven);
      break;
    case BuiltinValueKind::FDiv:
      LHSF.divide(RHSF, APFloat::rmNearestTiesToEven);
      break;
    case BuiltinValueKind::FMul:
      LHSF.multiply(RHSF, APFloat::rmNearestTiesToEven);
      break;
    case BuiltinValueKind::FSub:
      LHSF.subtract(RHSF, APFloat::rmNearestTiesToEven);
      break;
    }

    // Add the literal instruction to represent the result.
    SILBuilderWithScope B(BI);
    return B.createFloatLiteral(BI->getLoc(), BI->getType(), LHSF);
  }
  }
}