Пример #1
0
SymbolicValue
ConstExprFunctionState::computeConstantValueBuiltin(BuiltinInst *inst) {
  const BuiltinInfo &builtin = inst->getBuiltinInfo();

  // Handle various cases in groups.
  auto unknownResult = [&]() -> SymbolicValue {
    return evaluator.getUnknown(SILValue(inst), UnknownReason::Default);
  };

  // Unary operations.
  if (inst->getNumOperands() == 1) {
    auto operand = getConstantValue(inst->getOperand(0));
    // TODO: Could add a "value used here" sort of diagnostic.
    if (!operand.isConstant())
      return operand;

    // TODO: SUCheckedConversion/USCheckedConversion

    // Implement support for s_to_s_checked_trunc_Int2048_Int64 and other
    // checking integer truncates.  These produce a tuple of the result value
    // and an overflow bit.
    //
    // TODO: We can/should diagnose statically detectable integer overflow
    // errors and subsume the ConstantFolding.cpp mandatory SIL pass.
    auto IntCheckedTruncFn = [&](bool srcSigned,
                                 bool dstSigned) -> SymbolicValue {
      if (operand.getKind() != SymbolicValue::Integer)
        return unknownResult();

      auto operandVal = operand.getIntegerValue();
      uint32_t srcBitWidth = operandVal.getBitWidth();
      auto dstBitWidth =
          builtin.Types[1]->castTo<BuiltinIntegerType>()->getGreatestWidth();

      APInt result = operandVal.trunc(dstBitWidth);

      // Compute the overflow by re-extending the value back to its source and
      // checking for loss of value.
      APInt reextended =
          dstSigned ? result.sext(srcBitWidth) : result.zext(srcBitWidth);
      bool overflowed = (operandVal != reextended);

      if (!srcSigned && dstSigned)
        overflowed |= result.isSignBitSet();

      if (overflowed)
        return evaluator.getUnknown(SILValue(inst), UnknownReason::Overflow);

      auto &astContext = evaluator.getASTContext();
      // Build the Symbolic value result for our truncated value.
      return SymbolicValue::getAggregate(
          {SymbolicValue::getInteger(result, astContext),
           SymbolicValue::getInteger(APInt(1, overflowed), astContext)},
          astContext);
    };

    switch (builtin.ID) {
    default:
      break;
    case BuiltinValueKind::SToSCheckedTrunc:
      return IntCheckedTruncFn(true, true);
    case BuiltinValueKind::UToSCheckedTrunc:
      return IntCheckedTruncFn(false, true);
    case BuiltinValueKind::SToUCheckedTrunc:
      return IntCheckedTruncFn(true, false);
    case BuiltinValueKind::UToUCheckedTrunc:
      return IntCheckedTruncFn(false, false);

    case BuiltinValueKind::Trunc:
    case BuiltinValueKind::TruncOrBitCast:
    case BuiltinValueKind::ZExt:
    case BuiltinValueKind::ZExtOrBitCast:
    case BuiltinValueKind::SExt:
    case BuiltinValueKind::SExtOrBitCast: {
      if (operand.getKind() != SymbolicValue::Integer)
        return unknownResult();

      unsigned destBitWidth =
          inst->getType().castTo<BuiltinIntegerType>()->getGreatestWidth();

      APInt result = operand.getIntegerValue();
      if (result.getBitWidth() != destBitWidth) {
        switch (builtin.ID) {
        default:
          assert(0 && "Unknown case");
        case BuiltinValueKind::Trunc:
        case BuiltinValueKind::TruncOrBitCast:
          result = result.trunc(destBitWidth);
          break;
        case BuiltinValueKind::ZExt:
        case BuiltinValueKind::ZExtOrBitCast:
          result = result.zext(destBitWidth);
          break;
        case BuiltinValueKind::SExt:
        case BuiltinValueKind::SExtOrBitCast:
          result = result.sext(destBitWidth);
          break;
        }
      }
      return SymbolicValue::getInteger(result, evaluator.getASTContext());
    }
    }
  }

  // Binary operations.
  if (inst->getNumOperands() == 2) {
    auto operand0 = getConstantValue(inst->getOperand(0));
    auto operand1 = getConstantValue(inst->getOperand(1));
    if (!operand0.isConstant())
      return operand0;
    if (!operand1.isConstant())
      return operand1;

    auto constFoldIntCompare =
        [&](const std::function<bool(const APInt &, const APInt &)> &fn)
        -> SymbolicValue {
      if (operand0.getKind() != SymbolicValue::Integer ||
          operand1.getKind() != SymbolicValue::Integer)
        return unknownResult();

      auto result = fn(operand0.getIntegerValue(), operand1.getIntegerValue());
      return SymbolicValue::getInteger(APInt(1, result),
                                       evaluator.getASTContext());
    };

#define REQUIRE_KIND(KIND)                                                     \
  if (operand0.getKind() != SymbolicValue::KIND ||                             \
      operand1.getKind() != SymbolicValue::KIND)                               \
    return unknownResult();

    switch (builtin.ID) {
    default:
      break;
#define INT_BINOP(OPCODE, EXPR)                                                \
  case BuiltinValueKind::OPCODE: {                                             \
    REQUIRE_KIND(Integer)                                                      \
    auto l = operand0.getIntegerValue(), r = operand1.getIntegerValue();       \
    return SymbolicValue::getInteger((EXPR), evaluator.getASTContext());       \
  }
      INT_BINOP(Add, l + r)
      INT_BINOP(And, l & r)
      INT_BINOP(AShr, l.ashr(r))
      INT_BINOP(LShr, l.lshr(r))
      INT_BINOP(Or, l | r)
      INT_BINOP(Mul, l * r)
      INT_BINOP(SDiv, l.sdiv(r))
      INT_BINOP(Shl, l << r)
      INT_BINOP(SRem, l.srem(r))
      INT_BINOP(Sub, l - r)
      INT_BINOP(UDiv, l.udiv(r))
      INT_BINOP(URem, l.urem(r))
      INT_BINOP(Xor, l ^ r)
#undef INT_BINOP

#define INT_COMPARE(OPCODE, EXPR)                                              \
  case BuiltinValueKind::OPCODE:                                               \
    REQUIRE_KIND(Integer)                                                      \
    return constFoldIntCompare(                                                \
        [&](const APInt &l, const APInt &r) -> bool { return (EXPR); })
      INT_COMPARE(ICMP_EQ, l == r);
      INT_COMPARE(ICMP_NE, l != r);
      INT_COMPARE(ICMP_SLT, l.slt(r));
      INT_COMPARE(ICMP_SGT, l.sgt(r));
      INT_COMPARE(ICMP_SLE, l.sle(r));
      INT_COMPARE(ICMP_SGE, l.sge(r));
      INT_COMPARE(ICMP_ULT, l.ult(r));
      INT_COMPARE(ICMP_UGT, l.ugt(r));
      INT_COMPARE(ICMP_ULE, l.ule(r));
      INT_COMPARE(ICMP_UGE, l.uge(r));
#undef INT_COMPARE
#undef REQUIRE_KIND
    }
  }

  // Three operand builtins.
  if (inst->getNumOperands() == 3) {
    auto operand0 = getConstantValue(inst->getOperand(0));
    auto operand1 = getConstantValue(inst->getOperand(1));
    auto operand2 = getConstantValue(inst->getOperand(2));
    if (!operand0.isConstant())
      return operand0;
    if (!operand1.isConstant())
      return operand1;
    if (!operand2.isConstant())
      return operand2;

    // Overflowing integer operations like sadd_with_overflow take three
    // operands: the last one is a "should report overflow" bit.
    auto constFoldIntOverflow =
        [&](const std::function<APInt(const APInt &, const APInt &, bool &)>
                &fn) -> SymbolicValue {
      if (operand0.getKind() != SymbolicValue::Integer ||
          operand1.getKind() != SymbolicValue::Integer ||
          operand2.getKind() != SymbolicValue::Integer)
        return unknownResult();

      auto l = operand0.getIntegerValue(), r = operand1.getIntegerValue();
      bool overflowed = false;
      auto result = fn(l, r, overflowed);

      // Return a statically diagnosed overflow if the operation is supposed to
      // trap on overflow.
      if (overflowed && !operand2.getIntegerValue().isNullValue())
        return evaluator.getUnknown(SILValue(inst), UnknownReason::Overflow);

      auto &astContext = evaluator.getASTContext();
      // Build the Symbolic value result for our normal and overflow bit.
      return SymbolicValue::getAggregate(
          {SymbolicValue::getInteger(result, astContext),
           SymbolicValue::getInteger(APInt(1, overflowed), astContext)},
          astContext);
    };

    switch (builtin.ID) {
    default:
      break;

#define INT_OVERFLOW(OPCODE, METHOD)                                           \
  case BuiltinValueKind::OPCODE:                                               \
    return constFoldIntOverflow(                                               \
        [&](const APInt &l, const APInt &r, bool &overflowed) -> APInt {       \
          return l.METHOD(r, overflowed);                                      \
        })
      INT_OVERFLOW(SAddOver, sadd_ov);
      INT_OVERFLOW(UAddOver, uadd_ov);
      INT_OVERFLOW(SSubOver, ssub_ov);
      INT_OVERFLOW(USubOver, usub_ov);
      INT_OVERFLOW(SMulOver, smul_ov);
      INT_OVERFLOW(UMulOver, umul_ov);
#undef INT_OVERFLOW
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "ConstExpr Unknown Builtin: " << *inst << "\n");

  // Otherwise, we don't know how to handle this builtin.
  return unknownResult();
}