void OBAtomTyper::AssignTypes(OBMol &mol) { if (!_init) Init(); obErrorLog.ThrowError(__FUNCTION__, "Ran OpenBabel::AssignTypes", obAuditMsg); mol.SetAtomTypesPerceived(); vector<vector<int> >::iterator j; vector<pair<OBSmartsPattern*,string> >::iterator i; for (i = _vexttyp.begin();i != _vexttyp.end();++i) if (i->first->Match(mol)) { _mlist = i->first->GetMapList(); for (j = _mlist.begin();j != _mlist.end();++j) mol.GetAtom((*j)[0])->SetType(i->second); } // Special cases vector<OBAtom*>::iterator a; OBAtom* atom; for (atom = mol.BeginAtom(a); atom; atom = mol.NextAtom(a)) { // guanidinium. Fixes PR#1800964 if (strncasecmp(atom->GetType(),"C2", 2) == 0) { int guanidineN = 0; OBAtom *nbr; vector<OBBond*>::iterator k; for (nbr = atom->BeginNbrAtom(k);nbr;nbr = atom->NextNbrAtom(k)) { if (strncasecmp(nbr->GetType(),"Npl", 3) == 0 || strncasecmp(nbr->GetType(),"N2", 2) == 0 || strncasecmp(nbr->GetType(),"Ng+", 3) == 0) ++guanidineN; } if (guanidineN == 3) atom->SetType("C+"); } // end C2 carbon for guanidinium } // end special cases }
bool WriteAlchemy(ostream &ofs,OBMol &mol) { unsigned int i; char buffer[BUFF_SIZE]; char bond_string[10]; snprintf(buffer, BUFF_SIZE, "%5d ATOMS, %5d BONDS, 0 CHARGES", mol.NumAtoms(), mol.NumBonds()); ofs << buffer << endl; ttab.SetFromType("INT"); ttab.SetToType("ALC"); OBAtom *atom; string str,str1; for(i = 1;i <= mol.NumAtoms(); i++) { atom = mol.GetAtom(i); str = atom->GetType(); ttab.Translate(str1,str); snprintf(buffer, BUFF_SIZE, "%5d %-6s%8.4f %8.4f %8.4f 0.0000", i, (char*)str1.c_str(), atom->GetX(), atom->GetY(), atom->GetZ()); ofs << buffer << endl; } OBBond *bond; vector<OBEdgeBase*>::iterator j; for (bond = mol.BeginBond(j);bond;bond = mol.NextBond(j)) { switch(bond->GetBO()) { case 1 : strcpy(bond_string,"SINGLE"); break; case 2 : strcpy(bond_string,"DOUBLE"); break; case 3 : strcpy(bond_string,"TRIPLE"); break; case 5 : strcpy(bond_string,"AROMATIC"); break; default : strcpy(bond_string,"SINGLE"); } snprintf(buffer, BUFF_SIZE, "%5d %4d %4d %s", bond->GetIdx()+1, bond->GetBeginAtomIdx(), bond->GetEndAtomIdx(), bond_string); ofs << buffer << endl; } return(true); }
bool MOL2Format::WriteMolecule(OBBase* pOb, OBConversion* pConv) { OBMol* pmol = dynamic_cast<OBMol*>(pOb); if(pmol==NULL) return false; //Define some references so we can use the old parameter names ostream &ofs = *pConv->GetOutStream(); OBMol &mol = *pmol; bool ligandsOnly = pConv->IsOption("l", OBConversion::OUTOPTIONS)!=NULL; //The old code follows.... string str,str1; char buffer[BUFF_SIZE],label[BUFF_SIZE]; char rnum[BUFF_SIZE],rlabel[BUFF_SIZE]; ofs << "@<TRIPOS>MOLECULE" << endl; str = mol.GetTitle(); if (str.empty()) ofs << "*****" << endl; else ofs << str << endl; snprintf(buffer, BUFF_SIZE," %d %d 0 0 0", mol.NumAtoms(),mol.NumBonds()); ofs << buffer << endl; ofs << "SMALL" << endl; OBPairData *dp = (OBPairData*)mol.GetData("PartialCharges"); if (dp != NULL) { // Tripos spec says: // NO_CHARGES, DEL_RE, GASTEIGER, GAST_HUCK, HUCKEL, PULLMAN, // GAUSS80_CHARGES, AMPAC_CHARGES, MULLIKEN_CHARGES, DICT_ CHARGES, // MMFF94_CHARGES, USER_CHARGES if (dp->GetValue() == "Mulliken") ofs << "MULLIKEN_CHARGES" << endl; else // should pick from the Tripos types ofs << "GASTEIGER" << endl; } else { // No idea what these charges are... all our code sets "PartialCharges" ofs << "GASTEIGER" << endl; } ofs << "Energy = " << mol.GetEnergy() << endl; if (mol.HasData(OBGenericDataType::CommentData)) { OBCommentData *cd = (OBCommentData*)mol.GetData(OBGenericDataType::CommentData); ofs << cd->GetData(); } ofs << endl; ofs << "@<TRIPOS>ATOM" << endl; OBAtom *atom; OBResidue *res; vector<OBAtom*>::iterator i; vector<int> labelcount; labelcount.resize( etab.GetNumberOfElements() ); ttab.SetFromType("INT"); ttab.SetToType("SYB"); for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) { // // Use sequentially numbered atom names if no residues // snprintf(label,BUFF_SIZE, "%s%d", etab.GetSymbol(atom->GetAtomicNum()), ++labelcount[atom->GetAtomicNum()]); strcpy(rlabel,"<1>"); strcpy(rnum,"1"); str = atom->GetType(); ttab.Translate(str1,str); // // Use original atom names if there are residues // if (!ligandsOnly && (res = atom->GetResidue()) ) { // use original atom names defined by residue snprintf(label,BUFF_SIZE,"%s",(char*)res->GetAtomID(atom).c_str()); // make sure that residue name includes its number snprintf(rlabel,BUFF_SIZE,"%s%d",res->GetName().c_str(), res->GetNum()); snprintf(rnum,BUFF_SIZE,"%d",res->GetNum()); } snprintf(buffer,BUFF_SIZE,"%7d%1s%-6s%12.4f%10.4f%10.4f%1s%-5s%4s%1s %-8s%10.4f", atom->GetIdx(),"",label, atom->GetX(),atom->GetY(),atom->GetZ(), "",str1.c_str(), rnum,"",rlabel, atom->GetPartialCharge()); ofs << buffer << endl; } ofs << "@<TRIPOS>BOND" << endl; OBBond *bond; vector<OBBond*>::iterator j; OBSmartsPattern pat; string s1, s2; for (bond = mol.BeginBond(j);bond;bond = mol.NextBond(j)) { s1 = bond->GetBeginAtom()->GetType(); s2 = bond->GetEndAtom()->GetType(); if (bond->IsAromatic() || s1 == "O.co2" || s2 == "O.co2") strcpy(label,"ar"); else if (bond->IsAmide()) strcpy(label,"am"); else snprintf(label,BUFF_SIZE,"%d",bond->GetBO()); snprintf(buffer, BUFF_SIZE,"%6d%6d%6d%3s%2s", bond->GetIdx()+1,bond->GetBeginAtomIdx(),bond->GetEndAtomIdx(), "",label); ofs << buffer << endl; } // NO trailing blank line (PR#1868929). // ofs << endl; return(true); }
bool TinkerFormat::WriteMolecule(OBBase* pOb, OBConversion* pConv) { OBMol* pmol = dynamic_cast<OBMol*>(pOb); if(pmol==NULL) return false; //Define some references so we can use the old parameter names ostream &ofs = *pConv->GetOutStream(); OBMol &mol = *pmol; bool mmffTypes = pConv->IsOption("m",OBConversion::OUTOPTIONS) != NULL; unsigned int i; char buffer[BUFF_SIZE]; OBBond *bond; vector<OBBond*>::iterator j; // Before we try output of MMFF94 atom types, check if it works OBForceField *ff = OpenBabel::OBForceField::FindForceField("MMFF94"); if (mmffTypes && ff && ff->Setup(mol)) mmffTypes = ff->GetAtomTypes(mol); else mmffTypes = false; // either the force field isn't available, or it doesn't work if (!mmffTypes) snprintf(buffer, BUFF_SIZE, "%6d %-20s MM2 parameters\n",mol.NumAtoms(),mol.GetTitle()); else snprintf(buffer, BUFF_SIZE, "%6d %-20s MMFF94 parameters\n",mol.NumAtoms(),mol.GetTitle()); ofs << buffer; ttab.SetFromType("INT"); OBAtom *atom; string str,str1; for(i = 1;i <= mol.NumAtoms(); i++) { atom = mol.GetAtom(i); str = atom->GetType(); ttab.SetToType("MM2"); ttab.Translate(str1,str); if (mmffTypes) { // Override the MM2 typing OBPairData *type = (OpenBabel::OBPairData*)atom->GetData("FFAtomType"); if (type) str1 = type->GetValue().c_str(); } snprintf(buffer, BUFF_SIZE, "%6d %2s %12.6f%12.6f%12.6f %5d", i, etab.GetSymbol(atom->GetAtomicNum()), atom->GetX(), atom->GetY(), atom->GetZ(), atoi((char*)str1.c_str())); ofs << buffer; for (bond = atom->BeginBond(j); bond; bond = atom->NextBond(j)) { snprintf(buffer, BUFF_SIZE, "%6d", (bond->GetNbrAtom(atom))->GetIdx()); ofs << buffer; } ofs << endl; } return(true); }
bool BGFFormat::WriteMolecule(OBBase* pOb, OBConversion* pConv) { OBMol* pmol = dynamic_cast<OBMol*>(pOb); if(pmol==NULL) return false; //Define some references so we can use the old parameter names ostream &ofs = *pConv->GetOutStream(); OBMol &mol = *pmol; vector<OBAtom*>::iterator i; int max_val; OBAtom *atom; char buffer[BUFF_SIZE]; char elmnt_typ[8], dreid_typ[8], atm_sym[16], max_val_str[8]; mol.Kekulize(); ofs << "BIOGRF 200\n"; snprintf(buffer, BUFF_SIZE, "DESCRP %s\n",mol.GetTitle()); ofs << buffer; snprintf(buffer, BUFF_SIZE, "REMARK BGF file created by Open Babel %s\n",BABEL_VERSION); ofs << "FORCEFIELD DREIDING \n"; // write unit cell if available if (mol.HasData(OBGenericDataType::UnitCell)) { OBUnitCell *uc = (OBUnitCell*)mol.GetData(OBGenericDataType::UnitCell); // e.g. CRYSTX 49.30287 49.23010 25.45631 90.00008 89.99995 57.10041 snprintf(buffer, BUFF_SIZE, "CRYSTX%12.5f%12.5f%12.5f%12.5f%12.5f%12.5f", uc->GetA(), uc->GetB(), uc->GetC(), uc->GetAlpha() , uc->GetBeta(), uc->GetGamma()); ofs << buffer << "\n"; } ofs << "FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5)\n"; ttab.SetFromType("INT"); for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) { strncpy(elmnt_typ,etab.GetSymbol(atom->GetAtomicNum()), 7); // make sure to null-terminate elmnt_typ[sizeof(elmnt_typ) - 1] = '0'; ToUpper(elmnt_typ); ttab.SetToType("DRE"); ttab.Translate(dreid_typ,atom->GetType()); ttab.SetToType("HAD"); ttab.Translate(max_val_str,atom->GetType()); max_val = atoi(max_val_str); if (max_val == 0) max_val = 1; snprintf(atm_sym,16,"%s%d",elmnt_typ,atom->GetIdx()); snprintf(buffer,BUFF_SIZE,"%6s %5d %-5s %3s %1s %5s%10.5f%10.5f%10.5f %-5s%3d%2d %8.5f\n", "HETATM", atom->GetIdx(), atm_sym, "RES", "A", "444", atom->GetX(), atom->GetY(), atom->GetZ(), dreid_typ, max_val, 0, atom->GetPartialCharge()); ofs << buffer; } ofs<< "FORMAT CONECT (a6,12i6)\n\n"; OBAtom *nbr; vector<OBBond*>::iterator j; for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) if (atom->GetValence()) { snprintf(buffer,BUFF_SIZE,"CONECT%6d",atom->GetIdx()); ofs << buffer; for (nbr = atom->BeginNbrAtom(j);nbr;nbr = atom->NextNbrAtom(j)) { snprintf(buffer,BUFF_SIZE,"%6d",nbr->GetIdx()); ofs << buffer; } ofs << endl; snprintf(buffer,BUFF_SIZE,"ORDER %6d",atom->GetIdx()); ofs << buffer; for (nbr = atom->BeginNbrAtom(j);nbr;nbr = atom->NextNbrAtom(j)) { snprintf(buffer,BUFF_SIZE,"%6d",(*j)->GetBO()); ofs << buffer; } ofs << endl; } ofs << "END" << endl; return(true); }
bool TinkerFormat::WriteMolecule(OBBase* pOb, OBConversion* pConv) { OBMol* pmol = dynamic_cast<OBMol*>(pOb); if(pmol==NULL) return false; //Define some references so we can use the old parameter names ostream &ofs = *pConv->GetOutStream(); OBMol &mol = *pmol; bool mm2Types = false; bool mmffTypes = pConv->IsOption("m",OBConversion::OUTOPTIONS) != NULL; bool mm3Types = pConv->IsOption("3",OBConversion::OUTOPTIONS) != NULL; bool classTypes = pConv->IsOption("c", OBConversion::OUTOPTIONS) != NULL; unsigned int i; char buffer[BUFF_SIZE]; OBBond *bond; vector<OBBond*>::iterator j; // Before we try output of MMFF94 atom types, check if it works OBForceField *ff = OpenBabel::OBForceField::FindForceField("MMFF94"); if (mmffTypes && ff && ff->Setup(mol)) mmffTypes = ff->GetAtomTypes(mol); else mmffTypes = false; // either the force field isn't available, or it doesn't work if (!mmffTypes && !mm3Types && !classTypes) { snprintf(buffer, BUFF_SIZE, "%6d %-20s MM2 parameters\n",mol.NumAtoms(),mol.GetTitle()); mm2Types = true; } else if (mm3Types) snprintf(buffer, BUFF_SIZE, "%6d %-20s MM3 parameters\n",mol.NumAtoms(),mol.GetTitle()); else if (classTypes) snprintf(buffer, BUFF_SIZE, "%6d %-20s Custom parameters\n",mol.NumAtoms(),mol.GetTitle()); else snprintf(buffer, BUFF_SIZE, "%6d %-20s MMFF94 parameters\n",mol.NumAtoms(),mol.GetTitle()); ofs << buffer; ttab.SetFromType("INT"); OBAtom *atom; string str,str1; int atomType; for(i = 1;i <= mol.NumAtoms(); i++) { atom = mol.GetAtom(i); str = atom->GetType(); atomType = 0; // Something is very wrong if this doesn't get set below if (mm2Types) { ttab.SetToType("MM2"); ttab.Translate(str1,str); atomType = atoi((char*)str1.c_str()); } if (mmffTypes) { // Override the MM2 typing OBPairData *type = (OpenBabel::OBPairData*)atom->GetData("FFAtomType"); if (type) { str1 = type->GetValue().c_str(); atomType = atoi((char*)str1.c_str()); } } if (mm3Types) { // convert to integer for MM3 typing atomType = SetMM3Type(atom); } if (classTypes) { // Atom classes are set by the user, so use those OBGenericData *data = atom->GetData("Atom Class"); if (data) { OBPairInteger* acdata = dynamic_cast<OBPairInteger*>(data); // Could replace with C-style cast if willing to live dangerously if (acdata) { int ac = acdata->GetGenericValue(); if (ac >= 0) atomType = ac; } } } snprintf(buffer, BUFF_SIZE, "%6d %2s %12.6f%12.6f%12.6f %5d", i, OBElements::GetSymbol(atom->GetAtomicNum()), atom->GetX(), atom->GetY(), atom->GetZ(), atomType); ofs << buffer; for (bond = atom->BeginBond(j); bond; bond = atom->NextBond(j)) { snprintf(buffer, BUFF_SIZE, "%6d", (bond->GetNbrAtom(atom))->GetIdx()); ofs << buffer; } ofs << endl; } return(true); }
bool AlchemyFormat::WriteMolecule(OBBase* pOb, OBConversion* pConv) { OBMol* pmol = dynamic_cast<OBMol*>(pOb); if(pmol==NULL) return false; //Define some references so we can use the old parameter names ostream &ofs = *pConv->GetOutStream(); OBMol &mol = *pmol; unsigned int i; char buffer[BUFF_SIZE]; char bond_string[10]; snprintf(buffer, BUFF_SIZE, "%5d ATOMS, %5d BONDS, 0 CHARGES", mol.NumAtoms(), mol.NumBonds()); ofs << buffer << endl; OBAtom *atom; string str,str1; for(i = 1;i <= mol.NumAtoms(); i++) { atom = mol.GetAtom(i); str = atom->GetType(); ttab.SetFromType("INT"); ttab.SetToType("ALC"); ttab.Translate(str1,str); snprintf(buffer, BUFF_SIZE, "%5d %-6s%8.4f %8.4f %8.4f 0.0000", i, (char*)str1.c_str(), atom->GetX(), atom->GetY(), atom->GetZ()); ofs << buffer << endl; } OBBond *bond; vector<OBBond*>::iterator j; for (bond = mol.BeginBond(j);bond;bond = mol.NextBond(j)) { switch(bond->GetBO()) { case 1 : strcpy(bond_string,"SINGLE"); break; case 2 : strcpy(bond_string,"DOUBLE"); break; case 3 : strcpy(bond_string,"TRIPLE"); break; case 5 : strcpy(bond_string,"AROMATIC"); break; default : strcpy(bond_string,"SINGLE"); } snprintf(buffer, BUFF_SIZE, "%5d %4d %4d %s", bond->GetIdx()+1, bond->GetBeginAtomIdx(), bond->GetEndAtomIdx(), bond_string); ofs << buffer << endl; } return(true); }
int main(int argc,char **argv) { char *program_name= argv[0]; char *FileIn = NULL; if (argc != 2) { cout << "Usage: " << program_name << " <filename>" << endl; exit(-1); } else { FileIn = argv[1]; // const char* p = strrchr(FileIn,'.'); } // Find Input filetype OBConversion conv; OBFormat *format = conv.FormatFromExt(FileIn); if (!format || !conv.SetInAndOutFormats(format, format)) { cerr << program_name << ": cannot read input format!" << endl; exit (-1); } ifstream ifs; // Read the file ifs.open(FileIn); if (!ifs) { cerr << program_name << ": cannot read input file!" << endl; exit (-1); } OBMol mol; OBAtom *atom; for (int c=1;;++c) // big for loop (replace with do while?) { mol.Clear(); conv.Read(&mol, &ifs); if (mol.Empty()) break; cout << "Molecule "<< c << ": " << mol.GetTitle() << endl; //mol.FindChiralCenters(); // labels all chiral atoms vector<OBAtom*>::iterator i; // iterate over all atoms for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) { if(!atom->IsChiral())continue; // aborts if atom isn't chiral cout << "Atom " << atom->GetIdx() << " Is Chiral "; cout << atom->GetType()<<endl; OBChiralData* cd = (OBChiralData*)atom->GetData(OBGenericDataType::ChiralData); if (cd){ vector<unsigned int> x=cd->GetAtom4Refs(input); size_t n=0; cout <<"Atom4refs:"; for (n=0;n<x.size();++n) cout <<" "<<x[n]; cout <<endl; } else{cd=new OBChiralData;atom->SetData(cd);} vector<unsigned int> _output; unsigned int n; for(n=1;n<5;++n) _output.push_back(n); cd->SetAtom4Refs(_output,output); /* // MOLV3000 uses 1234 unless an H then 123H if (atom->GetHvyValence()==3) { OBAtom *nbr; int Hid=1000;// max Atom ID +1 should be used here vector<unsigned int> nbr_atms; vector<OBBond*>::iterator i; for (nbr = atom->BeginNbrAtom(i);nbr;nbr = atom->NextNbrAtom(i)) { if (nbr->IsHydrogen()){Hid=nbr->GetIdx();continue;} nbr_atms.push_back(nbr->GetIdx()); } sort(nbr_atms.begin(),nbr_atms.end()); nbr_atms.push_back(Hid); OBChiralData* cd=(OBChiralData*)atom->GetData(OBGenericDataType::ChiralData); cd->SetAtom4Refs(nbr_atms,output); } else if (atom->GetHvyValence()==4) { OBChiralData* cd=(OBChiralData*)atom->GetData(OBGenericDataType::ChiralData); vector<unsigned int> nbr_atms; int n; for(n=1;n<5;++n)nbr_atms.push_back(n); cd->SetAtom4Refs(nbr_atms,output); } */ /* FIXME if (!mol.HasNonZeroCoords()) { cout << "Calcing 0D chirality "<< CorrectChirality(mol,atom)<<endl; } else { cout << "Volume= "<< CalcSignedVolume(mol,atom) << endl; OBChiralData* cd=(OBChiralData*)atom->GetData(OBGenericDataType::ChiralData); size_t n; vector<unsigned int> refs=cd->GetAtom4Refs(output); cout<<"Atom refs="; for(n=0;n<refs.size();++n)cout<<" "<<refs[n]; cout<<endl; } cout << "Clockwise? " << atom->IsClockwise() << endl; */ } // end iterating over atoms } // end big for loop return(0); } // end main