Пример #1
0
void FatBits::drawTriangle(SkCanvas* canvas, SkPoint pts[3]) {
    SkPaint paint;

    fInverse.mapPoints(pts, 3);

    if (fGrid) {
        apply_grid(pts, 3);
    }

    SkPath path;
    path.moveTo(pts[0]);
    path.lineTo(pts[1]);
    path.lineTo(pts[2]);
    path.close();

    erase(fMinSurface);
    this->setupPaint(&paint);
    paint.setColor(FAT_PIXEL_COLOR);
    fMinSurface->getCanvas()->drawPath(path, paint);
    this->copyMinToMax();

    SkCanvas* max = fMaxSurface->getCanvas();

    fMatrix.mapPoints(pts, 3);
    this->drawTriangleSkeleton(max, pts);

    fMaxSurface->draw(canvas, 0, 0, NULL);
}
Пример #2
0
void FatBits::drawLine(SkCanvas* canvas, SkPoint pts[]) {
    SkPaint paint;

    fInverse.mapPoints(pts, 2);

    if (fGrid) {
        apply_grid(pts, 2);
    }

    erase(fMinSurface);
    this->setupPaint(&paint);
    paint.setColor(FAT_PIXEL_COLOR);
    if (fUseClip) {
        fMinSurface->getCanvas()->save();
        SkRect r = fClipRect;
        r.inset(SK_Scalar1/3, SK_Scalar1/3);
        fMinSurface->getCanvas()->clipRect(r, SkRegion::kIntersect_Op, true);
    }
    fMinSurface->getCanvas()->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
    if (fUseClip) {
        fMinSurface->getCanvas()->restore();
    }
    this->copyMinToMax();

    SkCanvas* max = fMaxSurface->getCanvas();

    fMatrix.mapPoints(pts, 2);
    this->drawLineSkeleton(max, pts);

    fMaxSurface->draw(canvas, 0, 0, NULL);
}
Пример #3
0
void FatBits::drawRect(SkCanvas* canvas, SkPoint pts[2]) {
    SkPaint paint;

    fInverse.mapPoints(pts, 2);

    if (fGrid) {
        apply_grid(pts, 2);
    }

    SkRect r;
    r.set(pts, 2);

    erase(fMinSurface);
    this->setupPaint(&paint);
    paint.setColor(FAT_PIXEL_COLOR);
    {
        SkCanvas* c = fMinSurface->getCanvas();
        fRectAsOval ? c->drawOval(r, paint) : c->drawRect(r, paint);
    }
    this->copyMinToMax();

    SkCanvas* max = fMaxSurface->getCanvas();

    fMatrix.mapPoints(pts, 2);
    r.set(pts, 2);
    this->drawRectSkeleton(max, r);

    fMaxSurface->draw(canvas, 0, 0, NULL);
}
Пример #4
0
    virtual void onDraw(SkCanvas* canvas) {
        SkMatrix m;
        m.reset();
        m.setRotate(33 * SK_Scalar1);
        m.postScale(3000 * SK_Scalar1, 3000 * SK_Scalar1);
        m.postTranslate(6000 * SK_Scalar1, -5000 * SK_Scalar1);
        canvas->concat(m);

        SkPaint paint;
        paint.setColor(SK_ColorRED);
        paint.setAntiAlias(true);

        bool success = m.invert(&m);
        SkASSERT(success);
        (void) success; // silence compiler :(

        SkPath path;

        SkPoint pt = {10 * SK_Scalar1, 10 * SK_Scalar1};
        SkScalar small = 1 / (500 * SK_Scalar1);

        m.mapPoints(&pt, 1);
        path.addCircle(pt.fX, pt.fY, small);
        canvas->drawPath(path, paint);

        pt.set(30 * SK_Scalar1, 10 * SK_Scalar1);
        m.mapPoints(&pt, 1);
        SkRect rect = {pt.fX - small, pt.fY - small,
                       pt.fX + small, pt.fY + small};
        canvas->drawRect(rect, paint);

        SkBitmap bmp;
        bmp.setConfig(SkBitmap::kARGB_8888_Config, 2, 2);
        bmp.allocPixels();
        bmp.lockPixels();
        uint32_t* pixels = reinterpret_cast<uint32_t*>(bmp.getPixels());
        pixels[0] = SkPackARGB32(0xFF, 0xFF, 0x00, 0x00);
        pixels[1] = SkPackARGB32(0xFF, 0x00, 0xFF, 0x00);
        pixels[2] = SkPackARGB32(0x80, 0x00, 0x00, 0x00);
        pixels[3] = SkPackARGB32(0xFF, 0x00, 0x00, 0xFF);
        bmp.unlockPixels();
        pt.set(30 * SK_Scalar1, 30 * SK_Scalar1);
        m.mapPoints(&pt, 1);
        SkShader* shader = SkShader::CreateBitmapShader(
                                            bmp,
                                            SkShader::kRepeat_TileMode,
                                            SkShader::kRepeat_TileMode);
        SkMatrix s;
        s.reset();
        s.setScale(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
        shader->setLocalMatrix(s);
        paint.setShader(shader)->unref();
        paint.setAntiAlias(false);
        paint.setFilterLevel(SkPaint::kLow_FilterLevel);
        rect.setLTRB(pt.fX - small, pt.fY - small,
                     pt.fX + small, pt.fY + small);
        canvas->drawRect(rect, paint);
    }
Пример #5
0
void Matrix::NativeMapPoints(
    /* [in] */ Int64 matrixHandle,
    /* [out] */ ArrayOf<Float>* dst,
    /* [in] */ Int32 dstIndex,
    /* [in] */ ArrayOf<Float>* src,
    /* [in] */ Int32 srcIndex,
    /* [in] */ Int32 ptCount,
    /* [in] */ Boolean isPts)
{
    SkASSERT(ptCount >= 0);
    SkASSERT(src->GetLength() >= srcIndex + (ptCount << 1));
    SkASSERT(dst->GetLength() >= dstIndex + (ptCount << 1));

    SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
    // AutoJavaFloatArray autoSrc(env, src, srcIndex + (ptCount << 1), kRO_JNIAccess);
    // AutoJavaFloatArray autoDst(env, dst, dstIndex + (ptCount << 1), kRW_JNIAccess);
    Float* srcArray = src->GetPayload() + srcIndex;
    Float* dstArray = dst->GetPayload() + dstIndex;
#ifdef SK_SCALAR_IS_FLOAT
    if (isPts)
        matrix->mapPoints((SkPoint*)dstArray, (const SkPoint*)srcArray,
                          ptCount);
    else
        matrix->mapVectors((SkVector*)dstArray, (const SkVector*)srcArray,
                           ptCount);
#else
    SkASSERT(FALSE);
#endif
}
Пример #6
0
    GiantDashBench(LineType lt, SkScalar width)  {
        fName.printf("giantdashline_%s_%g", LineTypeName(lt), width);
        fStrokeWidth = width;

        // deliberately pick intervals that won't be caught by asPoints(), so
        // we can test the filterPath code-path.
        const SkScalar intervals[] = { 20, 10, 10, 10 };
        fPathEffect.reset(SkDashPathEffect::Create(intervals,
                                                   SK_ARRAY_COUNT(intervals), 0));

        SkScalar cx = 640 / 2;  // center X
        SkScalar cy = 480 / 2;  // center Y
        SkMatrix matrix;

        switch (lt) {
            case kHori_LineType:
                matrix.setIdentity();
                break;
            case kVert_LineType:
                matrix.setRotate(90, cx, cy);
                break;
            case kDiag_LineType:
                matrix.setRotate(45, cx, cy);
                break;
            case kLineTypeCount:
                // Not a real enum value.
                break;
        }

        const SkScalar overshoot = 100*1000;
        const SkPoint pts[2] = {
            { -overshoot, cy }, { 640 + overshoot, cy }
        };
        matrix.mapPoints(fPts, pts, 2);
    }
Пример #7
0
static void make_strip(Rec* rec, int texWidth, int texHeight) {
    const SkScalar tx = SkIntToScalar(texWidth);
    const SkScalar ty = SkIntToScalar(texHeight);
    const int n = 24;

    rec->fMode = SkCanvas::kTriangleStrip_VertexMode;
    rec->fCount = 2 * (n + 1);
    rec->fVerts = new SkPoint[rec->fCount];
    rec->fTexs  = new SkPoint[rec->fCount];

    SkPoint* v = rec->fVerts;
    SkPoint* t = rec->fTexs;

    for (int i = 0; i < n; i++) {
        SkScalar cos;
        SkScalar sin = SkScalarSinCos(SK_ScalarPI * 2 * i / n, &cos);
        v[i*2 + 0].set(cos/2, sin/2);
        v[i*2 + 1].set(cos, sin);

        t[i*2 + 0].set(tx * i / n, ty);
        t[i*2 + 1].set(tx * i / n, 0);
    }
    v[2*n + 0] = v[0];
    v[2*n + 1] = v[1];

    t[2*n + 0].set(tx, ty);
    t[2*n + 1].set(tx, 0);

    SkMatrix m;
    m.setScale(SkIntToScalar(100), SkIntToScalar(100));
    m.postTranslate(SkIntToScalar(110), SkIntToScalar(110));
    m.mapPoints(v, rec->fCount);
}
Пример #8
0
 virtual bool onClick(Click* click) {
     SkPoint pts[2] = { click->fOrig, click->fCurr };
     fInverse.mapPoints(pts, 2);
     this->warp(pts[0], pts[1]);
     this->inval(NULL);
     return true;
 }
Пример #9
0
/**
 *  For the purposes of drawing bitmaps, if a matrix is "almost" translate
 *  go ahead and treat it as if it were, so that subsequent code can go fast.
 */
static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) {
    SkASSERT(matrix_only_scale_translate(matrix));

    if (matrix.getType() & SkMatrix::kScale_Mask) {
        SkRect src, dst;
        bitmap.getBounds(&src);

        // Can't call mapRect(), since that will fix up inverted rectangles,
        // e.g. when scale is negative, and we don't want to return true for
        // those.
        matrix.mapPoints(SkTCast<SkPoint*>(&dst),
                         SkTCast<const SkPoint*>(&src),
                         2);

        // Now round all 4 edges to device space, and then compare the device
        // width/height to the original. Note: we must map all 4 and subtract
        // rather than map the "width" and compare, since we care about the
        // phase (in pixel space) that any translate in the matrix might impart.
        SkIRect idst;
        dst.round(&idst);
        return idst.width() == bitmap.width() && idst.height() == bitmap.height();
    }
    // if we got here, we're either kTranslate_Mask or identity
    return true;
}
Пример #10
0
bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
{
    SkRect tolDevBounds = devBounds;
    // The bounds ought to be tight, but in perspective the below code runs the verts
    // through the view matrix to get back to dev coords, which can introduce imprecision.
    if (viewMatrix.hasPerspective()) {
        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    } else {
        // Non-persp matrices cause this path renderer to draw in device space.
        SkASSERT(viewMatrix.isIdentity());
    }
    SkRect actualBounds;

    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    bool first = true;
    for (int i = 0; i < vCount; ++i) {
        SkPoint pos = verts[i].fPos;
        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
        if (SK_ScalarMax == pos.fX) {
            continue;
        }
        viewMatrix.mapPoints(&pos, 1);
        if (first) {
            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
            first = false;
        } else {
            actualBounds.growToInclude(pos.fX, pos.fY);
        }
    }
    if (!first) {
        return tolDevBounds.contains(actualBounds);
    }

    return true;
}
void GrStencilAndCoverTextContext::flush() {
    if (fQueuedGlyphCount > 0) {
        SkAutoTUnref<GrPathProcessor> pp(GrPathProcessor::Create(fPaint.getColor(),
                                                                 fViewMatrix,
                                                                 fLocalMatrix));

        // We should only be flushing about once every run.  However, if this impacts performance
        // we could move the creation of the GrPipelineBuilder earlier.
        GrPipelineBuilder pipelineBuilder(fPaint, fRenderTarget, fClip);
        SkASSERT(fRenderTarget->isStencilBufferMultisampled() || !fPaint.isAntiAlias());
        pipelineBuilder.setState(GrPipelineBuilder::kHWAntialias_Flag, fPaint.isAntiAlias());

        GR_STATIC_CONST_SAME_STENCIL(kStencilPass,
                                     kZero_StencilOp,
                                     kZero_StencilOp,
                                     kNotEqual_StencilFunc,
                                     0xffff,
                                     0x0000,
                                     0xffff);

        *pipelineBuilder.stencil() = kStencilPass;

        SkASSERT(0 == fQueuedGlyphCount);
        SkASSERT(kGlyphBufferSize == fFallbackGlyphsIdx);

        fDrawContext->drawPaths(&pipelineBuilder, pp, fGlyphs,
                                fGlyphIndices, GrPathRange::kU16_PathIndexType,
                                get_xy_scalar_array(fGlyphPositions),
                                GrPathRendering::kTranslate_PathTransformType,
                                fQueuedGlyphCount, GrPathRendering::kWinding_FillType);

        fQueuedGlyphCount = 0;
    }

    if (fFallbackGlyphsIdx < kGlyphBufferSize) {
        int fallbackGlyphCount = kGlyphBufferSize - fFallbackGlyphsIdx;

        GrPaint paintFallback(fPaint);

        SkPaint skPaintFallback(fSkPaint);
        if (!fUsingDeviceSpaceGlyphs) {
            fStroke.applyToPaint(&skPaintFallback);
        }
        skPaintFallback.setTextAlign(SkPaint::kLeft_Align); // Align has already been accounted for.
        skPaintFallback.setTextEncoding(SkPaint::kGlyphID_TextEncoding);

        SkMatrix inverse;
        if (this->mapToFallbackContext(&inverse)) {
            inverse.mapPoints(&fGlyphPositions[fFallbackGlyphsIdx], fallbackGlyphCount);
        }

        fFallbackTextContext->drawPosText(fRenderTarget, fClip, paintFallback, skPaintFallback,
                                          fViewMatrix, (char*)&fGlyphIndices[fFallbackGlyphsIdx],
                                          2 * fallbackGlyphCount,
                                          get_xy_scalar_array(&fGlyphPositions[fFallbackGlyphsIdx]),
                                          2, SkPoint::Make(0, 0), fRegionClipBounds);

        fFallbackGlyphsIdx = kGlyphBufferSize;
    }
}
Пример #12
0
    void make_fan(Rec* rec, int texWidth, int texHeight) {
        const SkScalar tx = SkIntToScalar(texWidth);
        const SkScalar ty = SkIntToScalar(texHeight);
        const int n = 24;

        rec->fMode = SkCanvas::kTriangleFan_VertexMode;
        rec->fCount = n + 2;
        rec->fVerts = new SkPoint[rec->fCount];
        rec->fTexs  = new SkPoint[rec->fCount];

        SkPoint* v = rec->fVerts;
        SkPoint* t = rec->fTexs;

        v[0].set(0, 0);
        t[0].set(0, 0);
        for (int i = 0; i < n; i++) {
            SkScalar cos;
            SkScalar sin = SkScalarSinCos(SK_ScalarPI * 2 * i / n, &cos);
            v[i+1].set(cos, sin);
            t[i+1].set(i*tx/n, ty);
        }
        v[n+1] = v[1];
        t[n+1].set(tx, ty);

        SkMatrix m;
        m.setScale(SkIntToScalar(100), SkIntToScalar(100));
        m.postTranslate(SkIntToScalar(110), SkIntToScalar(110));
        m.mapPoints(v, rec->fCount);
    }
Пример #13
0
SkPoint View::convertToLocal(SkPoint point, View* reference)
{
    SkMatrix m;
    if (currentTransformMatrix(reference).invert(&m)) {
        m.mapPoints(&point, 1);
    }
    return point;
}
 int hittest(SkScalar x, SkScalar y) {
     SkPoint target = { x, y };
     SkPoint pts[2] = { fPts[1], fPts[2] };
     fMatrix.mapPoints(pts, 2);
     for (int i = 0; i < 2; i++) {
         if (SkPoint::Distance(pts[i], target) < SkIntToScalar(4)) {
             return i + 1;
         }
     }
     return -1;
 }
Пример #15
0
static bool isPointSkiaSafe(const SkMatrix& transform, const SkPoint& pt)
{
#ifdef ENSURE_VALUE_SAFETY_FOR_SKIA
    // Now check for points that will overflow. We check the *transformed*
    // points since this is what will be rasterized.
    SkPoint xPt;
    transform.mapPoints(&xPt, &pt, 1);
    return isCoordinateSkiaSafe(xPt.fX) && isCoordinateSkiaSafe(xPt.fY);
#else
    return true;
#endif
}
Пример #16
0
 void drawShape(SkCanvas* canvas,
                SkPaint* paint,
                ShapeType type) {
     static const SkRect kRect = SkRect::MakeXYWH(SkIntToScalar(-50), SkIntToScalar(-50),
                                                  SkIntToScalar(75), SkIntToScalar(105));
     switch (type) {
         case kCircle_ShapeType:
             canvas->drawCircle(0, 0, 50, *paint);
             break;
         case kRoundRect_ShapeType:
             canvas->drawRoundRect(kRect, SkIntToScalar(10), SkIntToScalar(20), *paint);
             break;
         case kRect_ShapeType:
             canvas->drawRect(kRect, *paint);
             break;
         case kConvexPath_ShapeType:
             if (fConvexPath.isEmpty()) {
                 SkPoint points[4];
                 kRect.toQuad(points);
                 fConvexPath.moveTo(points[0]);
                 fConvexPath.quadTo(points[1], points[2]);
                 fConvexPath.quadTo(points[3], points[0]);
                 SkASSERT(fConvexPath.isConvex());
             }
             canvas->drawPath(fConvexPath, *paint);
             break;
         case kConcavePath_ShapeType:
             if (fConcavePath.isEmpty()) {
                 SkPoint points[5] = {{0, SkIntToScalar(-50)} };
                 SkMatrix rot;
                 rot.setRotate(SkIntToScalar(360) / 5);
                 for (int i = 1; i < 5; ++i) {
                     rot.mapPoints(points + i, points + i - 1, 1);
                 }
                 fConcavePath.moveTo(points[0]);
                 for (int i = 0; i < 5; ++i) {
                     fConcavePath.lineTo(points[(2 * i) % 5]);
                 }
                 fConcavePath.setFillType(SkPath::kEvenOdd_FillType);
                 SkASSERT(!fConcavePath.isConvex());
             }
             canvas->drawPath(fConcavePath, *paint);
             break;
         case kText_ShapeType: {
             const char* text = "Hello!";
             paint->setTextSize(30);
             sk_tool_utils::set_portable_typeface(paint);
             canvas->drawText(text, strlen(text), 0, 0, *paint);
         }
         default:
             break;
     }
 }
void GrStencilAndCoverTextContext::flush(GrDrawContext* dc) {
    if (fDraw) {
        SkASSERT(fDraw->count());

        // We should only be flushing about once every run.  However, if this impacts performance
        // we could move the creation of the GrPipelineBuilder earlier.
        GrPipelineBuilder pipelineBuilder(fPaint, fRenderTarget, fClip);
        SkASSERT(fRenderTarget->isStencilBufferMultisampled() || !fPaint.isAntiAlias());
        pipelineBuilder.setState(GrPipelineBuilder::kHWAntialias_Flag, fPaint.isAntiAlias());

        GR_STATIC_CONST_SAME_STENCIL(kStencilPass,
                                     kZero_StencilOp,
                                     kKeep_StencilOp,
                                     kNotEqual_StencilFunc,
                                     0xffff,
                                     0x0000,
                                     0xffff);

        *pipelineBuilder.stencil() = kStencilPass;

        dc->drawPathsFromRange(&pipelineBuilder, fViewMatrix, fLocalMatrix, fPaint.getColor(),
                               fDraw, GrPathRendering::kWinding_FillType);
        fDraw->unref();
        fDraw = nullptr;
    }

    if (fFallbackIndices.count()) {
        SkASSERT(fFallbackPositions.count() == fFallbackIndices.count());
        GrPaint paintFallback(fPaint);

        SkPaint skPaintFallback(fSkPaint);
        if (!fUsingDeviceSpaceGlyphs) {
            fStroke.applyToPaint(&skPaintFallback);
        }
        skPaintFallback.setTextAlign(SkPaint::kLeft_Align); // Align has already been accounted for.
        skPaintFallback.setTextEncoding(SkPaint::kGlyphID_TextEncoding);

        SkMatrix inverse;
        if (this->mapToFallbackContext(&inverse)) {
            inverse.mapPoints(fFallbackPositions.begin(), fFallbackPositions.count());
        }

        fFallbackTextContext->drawPosText(dc, fRenderTarget, fClip, paintFallback, skPaintFallback,
                                          fViewMatrix, (char*)fFallbackIndices.begin(),
                                          sizeof(uint16_t) * fFallbackIndices.count(),
                                          get_xy_scalar_array(fFallbackPositions.begin()),
                                          2, SkPoint::Make(0, 0), fRegionClipBounds);
        fFallbackIndices.reset();
        fFallbackPositions.reset();
    }
}
Пример #18
0
// Transforms the given dimensions with the given matrix. Used to see how big
// images will be once transformed.
static void TransformDimensions(const SkMatrix& matrix, float srcWidth, float srcHeight, float* destWidth, float* destHeight) {
    // Transform 3 points to see how long each side of the bitmap will be.
    SkPoint src_points[3];  // (0, 0), (width, 0), (0, height).
    src_points[0].set(0, 0);
    src_points[1].set(SkFloatToScalar(srcWidth), 0);
    src_points[2].set(0, SkFloatToScalar(srcHeight));

    // Now measure the length of the two transformed vectors relative to the
    // transformed origin to see how big the bitmap will be. Note: for skews,
    // this isn't the best thing, but we don't have skews.
    SkPoint dest_points[3];
    matrix.mapPoints(dest_points, src_points, 3);
    *destWidth = SkScalarToFloat((dest_points[1] - dest_points[0]).length());
    *destHeight = SkScalarToFloat((dest_points[2] - dest_points[0]).length());
}
Пример #19
0
 SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned modi) override {
     // holding down shift
     if (1 == modi) {
         return new PtClick(this, -1);
     }
     // holding down ctrl
     if (2 == modi) {
         return new PtClick(this, -2);
     }
     SkPoint clickPoint = {x, y};
     fInvMatrix.mapPoints(&clickPoint, 1);
     for (size_t i = 0; i < SK_ARRAY_COUNT(fPts); i++) {
         if (hittest(fPts[i], clickPoint.fX, clickPoint.fY)) {
             return new PtClick(this, (int)i);
         }
     }
     return this->INHERITED::onFindClickHandler(x, y, modi);
 }
Пример #20
0
// Creates a star type shape using a SkPath
static SkPath create_star() {
    static const int kNumPoints = 5;
    SkPath concavePath;
    SkPoint points[kNumPoints] = {{0, SkIntToScalar(-50)} };
    SkMatrix rot;
    rot.setRotate(SkIntToScalar(360) / kNumPoints);
    for (int i = 1; i < kNumPoints; ++i) {
        rot.mapPoints(points + i, points + i - 1, 1);
    }
    concavePath.moveTo(points[0]);
    for (int i = 0; i < kNumPoints; ++i) {
        concavePath.lineTo(points[(2 * i) % kNumPoints]);
    }
    concavePath.setFillType(SkPath::kEvenOdd_FillType);
    SkASSERT(!concavePath.isConvex());
    concavePath.close();
    return concavePath;
}
Пример #21
0
void GrStencilAndCoverTextContext::flush(GrDrawContext* drawContext) {
    if (fQueuedGlyphCount > 0) {
        SkAutoTUnref<GrPathProcessor> pp(GrPathProcessor::Create(fPaint.getColor(),
                                                                 fViewMatrix,
                                                                 fLocalMatrix));

        drawContext->drawPaths(&fPipelineBuilder, pp, fGlyphs,
                               fGlyphIndices, GrPathRange::kU16_PathIndexType,
                               get_xy_scalar_array(fGlyphPositions),
                               GrPathRendering::kTranslate_PathTransformType,
                               fQueuedGlyphCount, GrPathRendering::kWinding_FillType);

        fQueuedGlyphCount = 0;
    }

    if (fFallbackGlyphsIdx < kGlyphBufferSize) {
        int fallbackGlyphCount = kGlyphBufferSize - fFallbackGlyphsIdx;

        GrPaint paintFallback(fPaint);

        SkPaint skPaintFallback(fSkPaint);
        if (!fUsingDeviceSpaceGlyphs) {
            fStroke.applyToPaint(&skPaintFallback);
        }
        skPaintFallback.setTextAlign(SkPaint::kLeft_Align); // Align has already been accounted for.
        skPaintFallback.setTextEncoding(SkPaint::kGlyphID_TextEncoding);

        SkMatrix inverse;
        if (this->mapToFallbackContext(&inverse)) {
            inverse.mapPoints(&fGlyphPositions[fFallbackGlyphsIdx], fallbackGlyphCount);
        }

        fFallbackTextContext->drawPosText(fRenderTarget, fClip, paintFallback, skPaintFallback,
                                          fViewMatrix, (char*)&fGlyphIndices[fFallbackGlyphsIdx],
                                          2 * fallbackGlyphCount,
                                          get_xy_scalar_array(&fGlyphPositions[fFallbackGlyphsIdx]),
                                          2, SkPoint::Make(0, 0), fRegionClipBounds);

        fFallbackGlyphsIdx = kGlyphBufferSize;
    }
}
Пример #22
0
void GrAARectRenderer::fillAANestedRects(GrDrawTarget* target,
                                         GrDrawState* drawState,
                                         GrColor color,
                                         const SkRect rects[2],
                                         const SkMatrix& combinedMatrix) {
    SkASSERT(combinedMatrix.rectStaysRect());
    SkASSERT(!rects[1].isEmpty());

    SkRect devOutside, devOutsideAssist, devInside;
    combinedMatrix.mapRect(&devOutside, rects[0]);
    // can't call mapRect for devInside since it calls sort
    combinedMatrix.mapPoints((SkPoint*)&devInside, (const SkPoint*)&rects[1], 2);

    if (devInside.isEmpty()) {
        this->fillAARect(target, drawState, color, devOutside, SkMatrix::I(), devOutside);
        return;
    }

    this->geometryStrokeAARect(target, drawState, color, devOutside, devOutsideAssist, devInside,
                               true);
}
Пример #23
0
    static void mapPoints(JNIEnv* env, jobject clazz, jlong matrixHandle,
                              jfloatArray dst, jint dstIndex,
                              jfloatArray src, jint srcIndex,
                              jint ptCount, jboolean isPts) {
        SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
        SkASSERT(ptCount >= 0);
        AutoJavaFloatArray autoSrc(env, src, srcIndex + (ptCount << 1), kRO_JNIAccess);
        AutoJavaFloatArray autoDst(env, dst, dstIndex + (ptCount << 1), kRW_JNIAccess);
        float* srcArray = autoSrc.ptr() + srcIndex;
        float* dstArray = autoDst.ptr() + dstIndex;
#ifdef SK_SCALAR_IS_FLOAT
        if (isPts)
            matrix->mapPoints((SkPoint*)dstArray, (const SkPoint*)srcArray,
                              ptCount);
        else
            matrix->mapVectors((SkVector*)dstArray, (const SkVector*)srcArray,
                               ptCount);
#else
        SkASSERT(false);
#endif
    }
Пример #24
0
static void morphpoints(SkPoint dst[], const SkPoint src[], int count,
                        SkPathMeasure& meas, SkScalar dist) {
    for (int i = 0; i < count; i++) {
        SkPoint pos;
        SkVector tangent;
        
        SkScalar sx = src[i].fX;
        SkScalar sy = src[i].fY;
        
        meas.getPosTan(dist + sx, &pos, &tangent);
        
        SkMatrix    matrix;
        SkPoint     pt;
        
        pt.set(sx, sy);
        matrix.setSinCos(tangent.fY, tangent.fX, 0, 0);
        matrix.preTranslate(-sx, 0);
        matrix.postTranslate(pos.fX, pos.fY);
        matrix.mapPoints(&dst[i], &pt, 1);
    }
}
Пример #25
0
/**
 * Generates the lines and quads to be rendered. Lines are always recorded in
 * device space. We will do a device space bloat to account for the 1pixel
 * thickness.
 * Quads are recorded in device space unless m contains
 * perspective, then in they are in src space. We do this because we will
 * subdivide large quads to reduce over-fill. This subdivision has to be
 * performed before applying the perspective matrix.
 */
static int gather_lines_and_quads(const SkPath& path,
                                  const SkMatrix& m,
                                  const SkIRect& devClipBounds,
                                  GrAAHairLinePathRenderer::PtArray* lines,
                                  GrAAHairLinePathRenderer::PtArray* quads,
                                  GrAAHairLinePathRenderer::PtArray* conics,
                                  GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
                                  GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    SkPath::Iter iter(path, false);

    int totalQuadCount = 0;
    SkRect bounds;
    SkIRect ibounds;

    bool persp = m.hasPerspective();

    for (;;) {
        SkPoint pathPts[4];
        SkPoint devPts[4];
        SkPath::Verb verb = iter.next(pathPts);
        switch (verb) {
            case SkPath::kConic_Verb: {
                SkConic dst[4];
                // We chop the conics to create tighter clipping to hide error
                // that appears near max curvature of very thin conics. Thin
                // hyperbolas with high weight still show error.
                int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
                for (int i = 0; i < conicCnt; ++i) {
                    SkPoint* chopPnts = dst[i].fPts;
                    m.mapPoints(devPts, chopPnts, 3);
                    bounds.setBounds(devPts, 3);
                    bounds.outset(SK_Scalar1, SK_Scalar1);
                    bounds.roundOut(&ibounds);
                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
                        if (is_degen_quad_or_conic(devPts)) {
                            SkPoint* pts = lines->push_back_n(4);
                            pts[0] = devPts[0];
                            pts[1] = devPts[1];
                            pts[2] = devPts[1];
                            pts[3] = devPts[2];
                        } else {
                            // when in perspective keep conics in src space
                            SkPoint* cPts = persp ? chopPnts : devPts;
                            SkPoint* pts = conics->push_back_n(3);
                            pts[0] = cPts[0];
                            pts[1] = cPts[1];
                            pts[2] = cPts[2];
                            conicWeights->push_back() = dst[i].fW;
                        }
                    }
                }
                break;
            }
            case SkPath::kMove_Verb:
                break;
            case SkPath::kLine_Verb:
                m.mapPoints(devPts, pathPts, 2);
                bounds.setBounds(devPts, 2);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    SkPoint* pts = lines->push_back_n(2);
                    pts[0] = devPts[0];
                    pts[1] = devPts[1];
                }
                break;
            case SkPath::kQuad_Verb: {
                SkPoint choppedPts[5];
                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
                // When it is degenerate it allows the approximation with lines to work since the
                // chop point (if there is one) will be at the parabola's vertex. In the nearly
                // degenerate the QuadUVMatrix computed for the points is almost singular which
                // can cause rendering artifacts.
                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
                for (int i = 0; i < n; ++i) {
                    SkPoint* quadPts = choppedPts + i * 2;
                    m.mapPoints(devPts, quadPts, 3);
                    bounds.setBounds(devPts, 3);
                    bounds.outset(SK_Scalar1, SK_Scalar1);
                    bounds.roundOut(&ibounds);

                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
                        int subdiv = num_quad_subdivs(devPts);
                        SkASSERT(subdiv >= -1);
                        if (-1 == subdiv) {
                            SkPoint* pts = lines->push_back_n(4);
                            pts[0] = devPts[0];
                            pts[1] = devPts[1];
                            pts[2] = devPts[1];
                            pts[3] = devPts[2];
                        } else {
                            // when in perspective keep quads in src space
                            SkPoint* qPts = persp ? quadPts : devPts;
                            SkPoint* pts = quads->push_back_n(3);
                            pts[0] = qPts[0];
                            pts[1] = qPts[1];
                            pts[2] = qPts[2];
                            quadSubdivCnts->push_back() = subdiv;
                            totalQuadCount += 1 << subdiv;
                        }
                    }
                }
                break;
            }
            case SkPath::kCubic_Verb:
                m.mapPoints(devPts, pathPts, 4);
                bounds.setBounds(devPts, 4);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    PREALLOC_PTARRAY(32) q;
                    // we don't need a direction if we aren't constraining the subdivision
                    const SkPathPriv::FirstDirection kDummyDir = SkPathPriv::kCCW_FirstDirection;
                    // We convert cubics to quadratics (for now).
                    // In perspective have to do conversion in src space.
                    if (persp) {
                        SkScalar tolScale =
                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
                                                             path.getBounds());
                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
                    } else {
                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
                    }
                    for (int i = 0; i < q.count(); i += 3) {
                        SkPoint* qInDevSpace;
                        // bounds has to be calculated in device space, but q is
                        // in src space when there is perspective.
                        if (persp) {
                            m.mapPoints(devPts, &q[i], 3);
                            bounds.setBounds(devPts, 3);
                            qInDevSpace = devPts;
                        } else {
                            bounds.setBounds(&q[i], 3);
                            qInDevSpace = &q[i];
                        }
                        bounds.outset(SK_Scalar1, SK_Scalar1);
                        bounds.roundOut(&ibounds);
                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
                            int subdiv = num_quad_subdivs(qInDevSpace);
                            SkASSERT(subdiv >= -1);
                            if (-1 == subdiv) {
                                SkPoint* pts = lines->push_back_n(4);
                                // lines should always be in device coords
                                pts[0] = qInDevSpace[0];
                                pts[1] = qInDevSpace[1];
                                pts[2] = qInDevSpace[1];
                                pts[3] = qInDevSpace[2];
                            } else {
                                SkPoint* pts = quads->push_back_n(3);
                                // q is already in src space when there is no
                                // perspective and dev coords otherwise.
                                pts[0] = q[0 + i];
                                pts[1] = q[1 + i];
                                pts[2] = q[2 + i];
                                quadSubdivCnts->push_back() = subdiv;
                                totalQuadCount += 1 << subdiv;
                            }
                        }
                    }
                }
                break;
            case SkPath::kClose_Verb:
                break;
            case SkPath::kDone_Verb:
                return totalQuadCount;
        }
    }
}
Пример #26
0
static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
    SkMatrix mat;

    const float kRotation0 = 15.5f;
    const float kRotation1 = -50.f;
    const float kScale0 = 5000.f;

    const int kTripleCount = 1000;
    const int kMatrixCount = 1000;
    SkRandom rand;

    SkScalar randTriples[3*kTripleCount];
    for (int i = 0; i < 3*kTripleCount; ++i) {
        randTriples[i] = rand.nextRangeF(-3000.f, 3000.f);
    }

    SkMatrix mats[kMatrixCount];
    for (int i = 0; i < kMatrixCount; ++i) {
        for (int j = 0; j < 9; ++j) {
            mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
        }
    }

    // identity
    {
    mat.reset();
    SkScalar dst[3*kTripleCount];
    mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3));
    }

    // zero matrix
    {
    mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
    SkScalar dst[3*kTripleCount];
    mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    SkScalar zeros[3] = {0.f, 0.f, 0.f};
    for (int i = 0; i < kTripleCount; ++i) {
        REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3));
    }
    }

    // zero point
    {
    SkScalar zeros[3] = {0.f, 0.f, 0.f};
    for (int i = 0; i < kMatrixCount; ++i) {
        SkScalar dst[3];
        mats[i].mapHomogeneousPoints(dst, zeros, 1);
        REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3));
    }
    }

    // doesn't crash with null dst, src, count == 0
    {
    mats[0].mapHomogeneousPoints(NULL, NULL, 0);
    }

    // uniform scale of point
    {
    mat.setScale(kScale0, kScale0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // rotation of point
    {
    mat.setRotate(kRotation0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // rotation, scale, rotation of point
    {
    mat.setRotate(kRotation1);
    mat.postScale(kScale0, kScale0);
    mat.postRotate(kRotation0);
    SkScalar dst[3];
    SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    SkPoint pnt;
    pnt.set(src[0], src[1]);
    mat.mapHomogeneousPoints(dst, src, 1);
    mat.mapPoints(&pnt, &pnt, 1);
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    }

    // compare with naive approach
    {
    for (int i = 0; i < kMatrixCount; ++i) {
        for (int j = 0; j < kTripleCount; ++j) {
            SkScalar dst[3];
            mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1);
            REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst));
        }
    }
    }

}
Пример #27
0
SkScalerContext_DW::SkScalerContext_DW(DWriteFontTypeface* typeface,
                                       const SkDescriptor* desc)
        : SkScalerContext(typeface, desc)
        , fTypeface(SkRef(typeface))
        , fGlyphCount(-1) {

    // In general, all glyphs should use CLEARTYPE_NATURAL_SYMMETRIC
    // except when bi-level rendering is requested or there are embedded
    // bi-level bitmaps (and the embedded bitmap flag is set and no rotation).
    //
    // DirectWrite's IDWriteFontFace::GetRecommendedRenderingMode does not do
    // this. As a result, determine the actual size of the text and then see if
    // there are any embedded bi-level bitmaps of that size. If there are, then
    // force bitmaps by requesting bi-level rendering.
    //
    // FreeType allows for separate ppemX and ppemY, but DirectWrite assumes
    // square pixels and only uses ppemY. Therefore the transform must track any
    // non-uniform x-scale.
    //
    // Also, rotated glyphs should have the same absolute advance widths as
    // horizontal glyphs and the subpixel flag should not affect glyph shapes.

    // A is the total matrix.
    SkMatrix A;
    fRec.getSingleMatrix(&A);

    // h is where A maps the horizontal baseline.
    SkPoint h = SkPoint::Make(SK_Scalar1, 0);
    A.mapPoints(&h, 1);

    // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
    SkMatrix G;
    SkComputeGivensRotation(h, &G);

    // GA is the matrix A with rotation removed.
    SkMatrix GA(G);
    GA.preConcat(A);

    // realTextSize is the actual device size we want (as opposed to the size the user requested).
    // gdiTextSize is the size we request when GDI compatible.
    // If the scale is negative, this means the matrix will do the flip anyway.
    SkScalar realTextSize = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
    // Due to floating point math, the lower bits are suspect. Round carefully.
    SkScalar gdiTextSize = SkScalarRoundToScalar(realTextSize * 64.0f) / 64.0f;
    if (gdiTextSize == 0) {
        gdiTextSize = SK_Scalar1;
    }

    bool bitmapRequested = SkToBool(fRec.fFlags & SkScalerContext::kEmbeddedBitmapText_Flag);
    bool treatLikeBitmap = false;
    bool axisAlignedBitmap = false;
    if (bitmapRequested) {
        // When embedded bitmaps are requested, treat the entire range like
        // a bitmap strike if the range is gridfit only and contains a bitmap.
        int bitmapPPEM = SkScalarTruncToInt(gdiTextSize);
        PPEMRange range = { bitmapPPEM, bitmapPPEM };
        expand_range_if_gridfit_only(typeface, bitmapPPEM, &range);
        treatLikeBitmap = has_bitmap_strike(typeface, range);

        axisAlignedBitmap = is_axis_aligned(fRec);
    }

    // If the user requested aliased, do so with aliased compatible metrics.
    if (SkMask::kBW_Format == fRec.fMaskFormat) {
        fTextSizeRender = gdiTextSize;
        fRenderingMode = DWRITE_RENDERING_MODE_ALIASED;
        fTextureType = DWRITE_TEXTURE_ALIASED_1x1;
        fTextSizeMeasure = gdiTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC;

    // If we can use a bitmap, use gdi classic rendering and measurement.
    // This will not always provide a bitmap, but matches expected behavior.
    } else if (treatLikeBitmap && axisAlignedBitmap) {
        fTextSizeRender = gdiTextSize;
        fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_GDI_CLASSIC;
        fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1;
        fTextSizeMeasure = gdiTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC;

    // If rotated but the horizontal text could have used a bitmap,
    // render high quality rotated glyphs but measure using bitmap metrics.
    } else if (treatLikeBitmap) {
        fTextSizeRender = gdiTextSize;
        fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL_SYMMETRIC;
        fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1;
        fTextSizeMeasure = gdiTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_GDI_CLASSIC;

    // Fonts that have hints but no gasp table get non-symmetric rendering.
    // Usually such fonts have low quality hints which were never tested
    // with anything but GDI ClearType classic. Such fonts often rely on
    // drop out control in the y direction in order to be legible.
    } else if (is_hinted_without_gasp(typeface)) {
        fTextSizeRender = gdiTextSize;
        fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL;
        fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1;
        fTextSizeMeasure = realTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL;

    // The normal case is to use natural symmetric rendering and linear metrics.
    } else {
        fTextSizeRender = realTextSize;
        fRenderingMode = DWRITE_RENDERING_MODE_CLEARTYPE_NATURAL_SYMMETRIC;
        fTextureType = DWRITE_TEXTURE_CLEARTYPE_3x1;
        fTextSizeMeasure = realTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL;
    }

    if (this->isSubpixel()) {
        fTextSizeMeasure = realTextSize;
        fMeasuringMode = DWRITE_MEASURING_MODE_NATURAL;
    }

    // Remove the realTextSize, as that is the text height scale currently in A.
    SkScalar scale = SkScalarInvert(realTextSize);

    // fSkXform is the total matrix A without the text height scale.
    fSkXform = A;
    fSkXform.preScale(scale, scale); //remove the text height scale.

    fXform.m11 = SkScalarToFloat(fSkXform.getScaleX());
    fXform.m12 = SkScalarToFloat(fSkXform.getSkewY());
    fXform.m21 = SkScalarToFloat(fSkXform.getSkewX());
    fXform.m22 = SkScalarToFloat(fSkXform.getScaleY());
    fXform.dx = 0;
    fXform.dy = 0;

    // GsA is the non-rotational part of A without the text height scale.
    SkMatrix GsA(GA);
    GsA.preScale(scale, scale); //remove text height scale, G is rotational so reorders with scale.

    fGsA.m11 = SkScalarToFloat(GsA.get(SkMatrix::kMScaleX));
    fGsA.m12 = SkScalarToFloat(GsA.get(SkMatrix::kMSkewY)); // This should be ~0.
    fGsA.m21 = SkScalarToFloat(GsA.get(SkMatrix::kMSkewX));
    fGsA.m22 = SkScalarToFloat(GsA.get(SkMatrix::kMScaleY));
    fGsA.dx = 0;
    fGsA.dy = 0;

    // fG_inv is G inverse, which is fairly simple since G is 2x2 rotational.
    fG_inv.setAll(G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
                  -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
                  G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
}
Пример #28
0
SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
        : SkPDFDict("Pattern"),
          fState(state) {
    SkString (*codeFunction)(const SkShader::GradientInfo& info) = NULL;
    SkPoint transformPoints[2];

    // Depending on the type of the gradient, we want to transform the
    // coordinate space in different ways.
    const SkShader::GradientInfo* info = &fState.get()->fInfo;
    transformPoints[0] = info->fPoint[0];
    transformPoints[1] = info->fPoint[1];
    switch (fState.get()->fType) {
        case SkShader::kLinear_GradientType:
            codeFunction = &linearCode;
            break;
        case SkShader::kRadial_GradientType:
            transformPoints[1] = transformPoints[0];
            transformPoints[1].fX += info->fRadius[0];
            codeFunction = &radialCode;
            break;
        case SkShader::kRadial2_GradientType: {
            // Bail out if the radii are the same.  Empty fResources signals
            // an error and isValid will return false.
            if (info->fRadius[0] == info->fRadius[1]) {
                return;
            }
            transformPoints[1] = transformPoints[0];
            SkScalar dr = info->fRadius[1] - info->fRadius[0];
            transformPoints[1].fX += dr;
            codeFunction = &twoPointRadialCode;
            break;
        }
        case SkShader::kSweep_GradientType:
            transformPoints[1] = transformPoints[0];
            transformPoints[1].fX += 1;
            codeFunction = &sweepCode;
            break;
        case SkShader::kColor_GradientType:
        case SkShader::kNone_GradientType:
        default:
            return;
    }

    // Move any scaling (assuming a unit gradient) or translation
    // (and rotation for linear gradient), of the final gradient from
    // info->fPoints to the matrix (updating bbox appropriately).  Now
    // the gradient can be drawn on on the unit segment.
    SkMatrix mapperMatrix;
    unitToPointsMatrix(transformPoints, &mapperMatrix);
    SkMatrix finalMatrix = fState.get()->fCanvasTransform;
    finalMatrix.preConcat(mapperMatrix);
    finalMatrix.preConcat(fState.get()->fShaderTransform);
    SkRect bbox;
    bbox.set(fState.get()->fBBox);
    transformBBox(finalMatrix, &bbox);

    SkRefPtr<SkPDFArray> domain = new SkPDFArray;
    domain->unref();  // SkRefPtr and new both took a reference.
    domain->reserve(4);
    domain->appendScalar(bbox.fLeft);
    domain->appendScalar(bbox.fRight);
    domain->appendScalar(bbox.fTop);
    domain->appendScalar(bbox.fBottom);

    SkString functionCode;
    // The two point radial gradient further references fState.get()->fInfo
    // in translating from x, y coordinates to the t parameter. So, we have
    // to transform the points and radii according to the calculated matrix.
    if (fState.get()->fType == SkShader::kRadial2_GradientType) {
        SkShader::GradientInfo twoPointRadialInfo = *info;
        SkMatrix inverseMapperMatrix;
        mapperMatrix.invert(&inverseMapperMatrix);
        inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
        twoPointRadialInfo.fRadius[0] =
            inverseMapperMatrix.mapRadius(info->fRadius[0]);
        twoPointRadialInfo.fRadius[1] =
            inverseMapperMatrix.mapRadius(info->fRadius[1]);
        functionCode = codeFunction(twoPointRadialInfo);
    } else {
        functionCode = codeFunction(*info);
    }

    SkRefPtr<SkPDFStream> function = makePSFunction(functionCode, domain.get());
    // Pass one reference to fResources, SkRefPtr and new both took a reference.
    fResources.push(function.get());

    SkRefPtr<SkPDFDict> pdfShader = new SkPDFDict;
    pdfShader->unref();  // SkRefPtr and new both took a reference.
    pdfShader->insertInt("ShadingType", 1);
    pdfShader->insertName("ColorSpace", "DeviceRGB");
    pdfShader->insert("Domain", domain.get());
    pdfShader->insert("Function", new SkPDFObjRef(function.get()))->unref();

    insertInt("PatternType", 2);
    insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
    insert("Shading", pdfShader.get());
}
Пример #29
0
// TODO: This needs to be split into helper functions to better scope the
// inputs/outputs, and reduce duplicate code.
// This issue is tracked in https://bugs.webkit.org/show_bug.cgi?id=62989
void Font::drawGlyphs(GraphicsContext* gc, const SimpleFontData* font,
                      const GlyphBuffer& glyphBuffer,  int from, int numGlyphs,
                      const FloatPoint& point) const {
    COMPILE_ASSERT(sizeof(GlyphBufferGlyph) == sizeof(uint16_t), GlyphBufferGlyphSize_equals_uint16_t);

    bool shouldSmoothFonts = true;
    bool shouldAntialias = true;
    
    switch (fontDescription().fontSmoothing()) {
    case Antialiased:
        shouldSmoothFonts = false;
        break;
    case SubpixelAntialiased:
        break;
    case NoSmoothing:
        shouldAntialias = false;
        shouldSmoothFonts = false;
        break;
    case AutoSmoothing:
        // For the AutoSmooth case, don't do anything! Keep the default settings.
        break; 
    }
    
    if (!shouldUseSmoothing() || PlatformSupport::layoutTestMode())
        shouldSmoothFonts = false;

    const GlyphBufferGlyph* glyphs = glyphBuffer.glyphs(from);
    SkScalar x = SkFloatToScalar(point.x());
    SkScalar y = SkFloatToScalar(point.y());

    if (font->platformData().orientation() == Vertical)
        y += SkFloatToScalar(font->fontMetrics().floatAscent(IdeographicBaseline) - font->fontMetrics().floatAscent());
    // FIXME: text rendering speed:
    // Android has code in their WebCore fork to special case when the
    // GlyphBuffer has no advances other than the defaults. In that case the
    // text drawing can proceed faster. However, it's unclear when those
    // patches may be upstreamed to WebKit so we always use the slower path
    // here.
    const GlyphBufferAdvance* adv = glyphBuffer.advances(from);
    SkAutoSTMalloc<32, SkPoint> storage(numGlyphs);
    SkPoint* pos = storage.get();

    for (int i = 0; i < numGlyphs; i++) {
        pos[i].set(x, y);
        x += SkFloatToScalar(adv[i].width);
        y += SkFloatToScalar(adv[i].height);
    }

    SkCanvas* canvas = gc->platformContext()->canvas();
    if (font->platformData().orientation() == Vertical) {
        canvas->save();
        canvas->rotate(-90);
        SkMatrix rotator;
        rotator.reset();
        rotator.setRotate(90);
        rotator.mapPoints(pos, numGlyphs);
    }
    TextDrawingModeFlags textMode = gc->platformContext()->getTextDrawingMode();

    // We draw text up to two times (once for fill, once for stroke).
    if (textMode & TextModeFill) {
        SkPaint paint;
        gc->platformContext()->setupPaintForFilling(&paint);
        setupPaint(&paint, font, this, shouldAntialias, shouldSmoothFonts);
        gc->platformContext()->adjustTextRenderMode(&paint);
        paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);

        canvas->drawPosText(glyphs, numGlyphs * sizeof(uint16_t), pos, paint);
    }

    if ((textMode & TextModeStroke)
        && gc->platformContext()->getStrokeStyle() != NoStroke
        && gc->platformContext()->getStrokeThickness() > 0) {

        SkPaint paint;
        gc->platformContext()->setupPaintForStroking(&paint, 0, 0);
        setupPaint(&paint, font, this, shouldAntialias, shouldSmoothFonts);
        gc->platformContext()->adjustTextRenderMode(&paint);
        paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);

        if (textMode & TextModeFill) {
            // If we also filled, we don't want to draw shadows twice.
            // See comment in FontChromiumWin.cpp::paintSkiaText() for more details.
            paint.setLooper(0);
        }

        canvas->drawPosText(glyphs, numGlyphs * sizeof(uint16_t), pos, paint);
    }
    if (font->platformData().orientation() == Vertical)
        canvas->restore();
}
Пример #30
0
SkPDFFunctionShader* SkPDFFunctionShader::Create(
        SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) {
    const SkPDFShader::State& state = **autoState;

    SkString (*codeFunction)(const SkShader::GradientInfo& info,
                             const SkMatrix& perspectiveRemover) = NULL;
    SkPoint transformPoints[2];

    // Depending on the type of the gradient, we want to transform the
    // coordinate space in different ways.
    const SkShader::GradientInfo* info = &state.fInfo;
    transformPoints[0] = info->fPoint[0];
    transformPoints[1] = info->fPoint[1];
    switch (state.fType) {
        case SkShader::kLinear_GradientType:
            codeFunction = &linearCode;
            break;
        case SkShader::kRadial_GradientType:
            transformPoints[1] = transformPoints[0];
            transformPoints[1].fX += info->fRadius[0];
            codeFunction = &radialCode;
            break;
        case SkShader::kRadial2_GradientType: {
            // Bail out if the radii are the same.
            if (info->fRadius[0] == info->fRadius[1]) {
                return NULL;
            }
            transformPoints[1] = transformPoints[0];
            SkScalar dr = info->fRadius[1] - info->fRadius[0];
            transformPoints[1].fX += dr;
            codeFunction = &twoPointRadialCode;
            break;
        }
        case SkShader::kConical_GradientType: {
            transformPoints[1] = transformPoints[0];
            transformPoints[1].fX += SK_Scalar1;
            codeFunction = &twoPointConicalCode;
            break;
        }
        case SkShader::kSweep_GradientType:
            transformPoints[1] = transformPoints[0];
            transformPoints[1].fX += SK_Scalar1;
            codeFunction = &sweepCode;
            break;
        case SkShader::kColor_GradientType:
        case SkShader::kNone_GradientType:
        default:
            return NULL;
    }

    // Move any scaling (assuming a unit gradient) or translation
    // (and rotation for linear gradient), of the final gradient from
    // info->fPoints to the matrix (updating bbox appropriately).  Now
    // the gradient can be drawn on on the unit segment.
    SkMatrix mapperMatrix;
    unitToPointsMatrix(transformPoints, &mapperMatrix);

    SkMatrix finalMatrix = state.fCanvasTransform;
    finalMatrix.preConcat(state.fShaderTransform);
    finalMatrix.preConcat(mapperMatrix);

    // Preserves as much as posible in the final matrix, and only removes
    // the perspective. The inverse of the perspective is stored in
    // perspectiveInverseOnly matrix and has 3 useful numbers
    // (p0, p1, p2), while everything else is either 0 or 1.
    // In this way the shader will handle it eficiently, with minimal code.
    SkMatrix perspectiveInverseOnly = SkMatrix::I();
    if (finalMatrix.hasPerspective()) {
        if (!split_perspective(finalMatrix,
                               &finalMatrix, &perspectiveInverseOnly)) {
            return NULL;
        }
    }

    SkRect bbox;
    bbox.set(state.fBBox);
    if (!inverse_transform_bbox(finalMatrix, &bbox)) {
        return NULL;
    }

    SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
    domain->reserve(4);
    domain->appendScalar(bbox.fLeft);
    domain->appendScalar(bbox.fRight);
    domain->appendScalar(bbox.fTop);
    domain->appendScalar(bbox.fBottom);

    SkString functionCode;
    // The two point radial gradient further references
    // state.fInfo
    // in translating from x, y coordinates to the t parameter. So, we have
    // to transform the points and radii according to the calculated matrix.
    if (state.fType == SkShader::kRadial2_GradientType) {
        SkShader::GradientInfo twoPointRadialInfo = *info;
        SkMatrix inverseMapperMatrix;
        if (!mapperMatrix.invert(&inverseMapperMatrix)) {
            return NULL;
        }
        inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
        twoPointRadialInfo.fRadius[0] =
            inverseMapperMatrix.mapRadius(info->fRadius[0]);
        twoPointRadialInfo.fRadius[1] =
            inverseMapperMatrix.mapRadius(info->fRadius[1]);
        functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
    } else {
        functionCode = codeFunction(*info, perspectiveInverseOnly);
    }

    SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
    pdfShader->insertInt("ShadingType", 1);
    pdfShader->insertName("ColorSpace", "DeviceRGB");
    pdfShader->insert("Domain", domain.get());

    SkAutoTUnref<SkPDFStream> function(
            make_ps_function(functionCode, domain.get()));
    pdfShader->insert("Function", new SkPDFObjRef(function))->unref();

    SkAutoTUnref<SkPDFArray> matrixArray(
            SkPDFUtils::MatrixToArray(finalMatrix));

    SkPDFFunctionShader* pdfFunctionShader =
            SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach()));

    pdfFunctionShader->insertInt("PatternType", 2);
    pdfFunctionShader->insert("Matrix", matrixArray.get());
    pdfFunctionShader->insert("Shading", pdfShader.get());

    canon->addFunctionShader(pdfFunctionShader);
    return pdfFunctionShader;
}