Пример #1
0
// For Shading Purposes
void RT_shade(Ray* ray, int depth) {
    
    if (depth <= MAX_DEPTH){                
        
        // Color Coefficients
        Vector4* diffuseCoeff = new Vector4();
        Vector4* specularCoeff = new Vector4();
        double shininess;
        
        // Diffuse and Specular Terms
        double diffuseTerm[3] = {0.0, 0.0, 0.0};
        double specularTerm[3] = {0.0, 0.0, 0.0};
        
        if (ray->intersectedObject == SPHERE) {

            diffuseCoeff->ReInitialize(spheres[ray->intersectID].color_diffuse);
            specularCoeff->ReInitialize(spheres[ray->intersectID].color_specular);
            shininess = spheres[ray->intersectID].shininess;
        }
        else if (ray->intersectedObject == TRIANGLE) {

            // Interpolate diffuse and specular coefficients
            double alpha, beta;
            ObtainIntermediateTriangleIntersection(ray->intersectID, ray->intersectPoint, &alpha, &beta);

            diffuseCoeff->ReInitialize();
            InterpolateTriangleProperty(triangles[ray->intersectID].v[0].color_diffuse,
                    triangles[ray->intersectID].v[1].color_diffuse,
                    triangles[ray->intersectID].v[2].color_diffuse,
                    alpha, beta, diffuseCoeff, false);

            specularCoeff->ReInitialize();
            InterpolateTriangleProperty(triangles[ray->intersectID].v[0].color_specular,
                    triangles[ray->intersectID].v[1].color_specular,
                    triangles[ray->intersectID].v[2].color_specular,
                    alpha, beta, specularCoeff, false);

            // Interpolate shininess
            if (alpha > 0) {

                double intermediateShininess = beta * triangles[ray->intersectID].v[2].shininess
                        + (1 - beta) * triangles[ray->intersectID].v[1].shininess;

                shininess = ((alpha - 1) * triangles[ray->intersectID].v[0].shininess
                        + intermediateShininess) / alpha;
            } 
            else {
                shininess = triangles[ray->intersectID].v[0].shininess;
            }
        }

        // Boundary Checking        
        assert(diffuseCoeff->HasNonNegativeEntries());
        assert(!diffuseCoeff->HasGreaterThanOneEntries());
        assert(specularCoeff->HasNonNegativeEntries());
        assert(!specularCoeff->HasGreaterThanOneEntries());
        assert(shininess >= 0);
        
        // Normal Vector: N
        Vector4* N = new Vector4(ray->normal);
        N->ConvertToUnitVector();
        
        // Viewer Direction: V = ray->intersectedPoint - ray->source = -ray->dir
        Vector4* V = new Vector4(ray->dir);
        V->Scale(-1);
        V->ConvertToUnitVector();
        
        int dontCheckObject = NONE;
        int dontCheckObjectID = NONE;
        
        if (ray->intersectedObject == TRIANGLE) {
            dontCheckObject = ray->intersectedObject;
            dontCheckObjectID = ray->intersectID;
        }
        
                
        unsigned int i;
        for (i = 0; i < num_lights; i++) {            
            
            // Shoot a ray in the direction of the light
            Vector4* lightPos = new Vector4(lights[i].position);
            Ray* checkShadow = new Ray(ray->intersectPoint, lightPos);
            bool shadow = false;            
            
            double nearestTIntersect = FindNearestTIntersection(checkShadow,dontCheckObject,dontCheckObjectID);
            double point2LightDistance = FindDistanceOfIntersectedPointWithLight(ray,i);
            if (nearestTIntersect != INFINITY 
                && nearestTIntersect< point2LightDistance)
            {
                shadow = true;    
            }

            // Point to Light Vector: L = light_pos - intersectedPoint
            Vector4* L = new Vector4(lights[i].position);
            L->Subtraction(ray->intersectPoint);
            L->ConvertToUnitVector();            

            // Reflected Ray: R = 2(N.L)N - L
            Vector4* R = new Vector4(ray->normal);
            R->Scale(2 * N->DotProduct(L));
            R->Subtraction(L);
            R->ConvertToUnitVector();

            // Dot Product of N and L: NL
            double NL = N->DotProduct(L);
            if (NL < 0) {
                NL = 0;
            }

            // Dot Product of R and V: RV
            double RV = R->DotProduct(V);
            if (RV < 0) {
                RV = 0;
            }

            assert(NL <= 1 && RV <= 1);

            double attenuationTerm =  depth==1?1:1; 
            
            if (!shadow) {                
                unsigned int j;
                for (j = 0; j < 3; j++) {
                    diffuseTerm[j] += attenuationTerm * lights[i].color[j] * diffuseCoeff->vector[j] * NL;
                    specularTerm[j] += attenuationTerm * lights[i].color[j] * specularCoeff->vector[j] * pow(RV, shininess);
                }
            }

            
            
            delete(L);
            delete(R);

            delete(lightPos);
            delete(checkShadow);
        }

        // Adding diffused light
        Vector4* diffusedColor = new Vector4(diffuseTerm);
        //          //For Debugging Purposes
        //          if(ray->intersectedObject == SPHERE){                
        //            ray->color->Display();
        //            diffusedColor->Display();
        //            cout<<"................................................."<<endl;
        //          }
        ray->color->Addition(diffusedColor);
        delete(diffusedColor);

        // Adding specular light
        Vector4* specularColor = new Vector4(specularTerm);
        ray->color->Addition(specularColor);        
        delete(specularColor);

        //R = 2*(NI)N - I ; N = N; I = V = ray->source - ray->IntersectPoint
        Vector4* R_ = new Vector4(ray->normal);
        Vector4* I = new Vector4(ray->dir);
        I->Scale(-1);
        R_->Scale(2*N->DotProduct(I));
        R_->Subtraction(I);
        Vector4* end = new Vector4(ray->intersectPoint);
        end->Addition(R_);       
        
        
        Ray* reflectedRay = new Ray(ray->intersectPoint, end);
        delete(R_);
        delete(I);
        delete(end);
        assert(dontCheckObject!=SPHERE);
        RT_trace(reflectedRay, depth+1, dontCheckObject, dontCheckObjectID);

        //For Debugging
//        if(ray->intersectedObject==TRIANGLE/* && ray->intersectPoint->vector[1]<-2*screenX/4
//                && ray->intersectPoint->vector[1]>-3*screenX/4*/){
//            cout<<ray->intersectID;            
//            cout<<"---->";
//            ray->normal->Display();
//            cout<<"------>";
//            I->Display();
//            cout<<I->DotProduct(ray->normal)<<"\t";
//            cout<<reflectedRay->dir->DotProduct(ray->normal);
//            reflectedRay->dir->Display();
//            cout<<": "<<reflectedRay->tIntersect<<"\t";            
//            reflectedRay->color->Display();
//            cout<<endl;
//        }
        
        if(reflectedRay->tIntersect!=INFINITY){          
            
            reflectedRay->color->Scale(specularCoeff->vector[0], specularCoeff->vector[1], specularCoeff->vector[2]);                       
            ray->color->Addition(reflectedRay->color);
        }
        
        delete(reflectedRay);

        delete(N);
        delete(V);
        delete(specularCoeff);
        delete(diffuseCoeff);
    }    
}
Пример #2
0
double FindNearestTIntersection(Ray* ray, int noCheckObject = NONE, int noCheckID = NONE){
    
    assert((noCheckObject==NONE && noCheckID==NONE) 
            || (noCheckObject==SPHERE && noCheckID>=0 && noCheckID<num_spheres)
            || (noCheckObject==TRIANGLE && noCheckID>=0 && noCheckID<num_triangles));
            
    
    int dontCheckSphereID = NONE;
    int dontCheckTriangleID = NONE;
    
    if(noCheckObject==SPHERE){
        dontCheckSphereID = noCheckID;
    }
    if(noCheckObject==TRIANGLE){
        dontCheckTriangleID = noCheckID;
    }
    
    int index1 = NONE;
    double nearestSphereIntersect = FindNearestTIntersectionWithSphere(ray,&index1, dontCheckSphereID);    
        
    int index2 = NONE;    
    double nearestTriangleIntersect = FindNearestTIntersectionWithTriangle(ray,&index2, dontCheckTriangleID);    
    
//    // For Debugging Purposes
//    printf("[%f,%f]\t",nearestSphereIntersect,nearestTriangleIntersect);
    
    int index = NONE;
    double nearestTIntersect = INFINITY;
    
    if (nearestSphereIntersect < nearestTriangleIntersect){
        nearestTIntersect = nearestSphereIntersect;
        index = index1;
    }
    else{
        nearestTIntersect = nearestTriangleIntersect;
        index = index2;
        
//        // For Debugging Purposes
//        intersectTriangle[index] = 1;
    }
    
    if (index != NONE) {

        ray->intersectID = index;
        ray->tIntersect = nearestTIntersect;

        // Obtaining Intersection Point = P0 + t*dir
        ray->intersectPoint->ReInitialize(ray->dir->vector);
        ray->intersectPoint->Scale(nearestTIntersect);
        ray->intersectPoint->Addition(ray->source);
        
        ray->color->ReInitialize(ambient_light);             
                
        if (index == index1){
            
            ray->intersectedObject = SPHERE;            

            // Obtaining normal at Intersection Point = intersectPoint - center
            ray->normal->ReInitialize(spheres[index].position);
            ray->normal->Scale(-1);
            ray->normal->Addition(ray->intersectPoint);
            ray->normal->ConvertToUnitVector();

            // Assuming ambient coefficient = diffused coefficient, add ambient light
            ray->color->Scale(spheres[index].color_diffuse[0], spheres[index].color_diffuse[1],
                    spheres[index].color_diffuse[2]);                
        }
        else {
            
            ray->intersectedObject = TRIANGLE;
            
            // Obtaining normal at Intersection Point
            double alpha = 0.0, beta = 0.0;
            ObtainIntermediateTriangleIntersection(index, ray->intersectPoint, &alpha, &beta);
            //printf("\n(%f,%f):%f\n",alpha,beta,ray->tIntersect);
            
            InterpolateTriangleProperty(triangles[index].v[0].normal, triangles[index].v[1].normal,
                    triangles[index].v[2].normal, alpha, beta, ray->normal, true);

            // Assuming ambient coefficient = diffused coefficient, add ambient light
            Vector4* diffusedCoeff = new Vector4();
            InterpolateTriangleProperty(triangles[index].v[0].color_diffuse, triangles[index].v[1].color_diffuse, triangles[index].v[2].color_diffuse,
                    alpha, beta, diffusedCoeff);
                      
            assert(diffusedCoeff->HasNonNegativeEntries());
            ray->color->Scale(diffusedCoeff->vector[0], diffusedCoeff->vector[1], diffusedCoeff->vector[2]);
            delete(diffusedCoeff);
        }
    }    
    
    return nearestTIntersect;
}