Пример #1
0
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type)
{
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v];

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
                if (indices)
                    vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]);
                else
                    vreader.Goto(idx);

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}
	delete[] patches;
}
Пример #2
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;
	if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1;
	else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2;
	else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3;
	else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2;
	else {
		// TODO: Unsupported
	}

	if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) {
		for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
			VertexData data[max_vtcs_per_prim];

			for (int i = 0; i < vtcs_per_prim; ++i) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]);
				else
					vreader.Goto(vtx+i);

				data[i] = ReadVertex(vreader);
				if (outside_range_flag)
					break;
			}
			if (outside_range_flag) {
				outside_range_flag = false;
				continue;
			}


			switch (prim_type) {
			case GE_PRIM_TRIANGLES:
			{
				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if (!gstate.getCullMode())
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				else
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				break;
			}

			case GE_PRIM_RECTANGLES:
				Clipper::ProcessQuad(data[0], data[1]);
				break;
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_STRIP) {
		VertexData data[3];
		unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices

		for (int vtx = 0; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[vtx % 3] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_FAN) {
		VertexData data[3];
		unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

		if (indices)
			vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
		else
			vreader.Goto(0);
		data[0] = ReadVertex(vreader);

		for (int vtx = 1; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[2 - (vtx % 2)] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	}
}
Пример #3
0
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	if (patchBufferSize_ < num_patches_u * num_patches_v) {
		if (patchBuffer_) {
			FreeAlignedMemory(patchBuffer_);
		}
		patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16);
		patchBufferSize_ = num_patches_u * num_patches_v;
	}
	SplinePatch *patches = patchBuffer_;

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices) {
					if (indices_32bit) {
						vreader.Goto(indices32[idx]);
					} else if (indices_16bit) {
						vreader.Goto(indices16[idx]);
					} else {
						vreader.Goto(indices8[idx]);
					}
				} else {
					vreader.Goto(idx);
				}

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}

	host->GPUNotifyDraw();
}
Пример #4
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	if (bytesRead)
		*bytesRead = vertex_count * vdecoder.VertexSize();

	// Frame skipping.
	if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;

	switch (prim_type) {
	case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
	case GE_PRIM_LINES: vtcs_per_prim = 2; break;
	case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
	case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
	}

	VertexData data[max_vtcs_per_prim];

	// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
	// then resolve the indices. This lets us avoid transforming shared vertices twice.

	switch (prim_type) {
	case GE_PRIM_POINTS:
	case GE_PRIM_LINES:
	case GE_PRIM_TRIANGLES:
	case GE_PRIM_RECTANGLES:
		{
			for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
				for (int i = 0; i < vtcs_per_prim; ++i) {
					if (indices) {
						if (indices_32bit) {
							vreader.Goto(indices32[vtx + i]);
						} else if (indices_16bit) {
							vreader.Goto(indices16[vtx + i]);
						} else {
							vreader.Goto(indices8[vtx + i]);
						}
					} else {
						vreader.Goto(vtx+i);
					}

					data[i] = ReadVertex(vreader);
					if (outside_range_flag)
						break;
				}
				if (outside_range_flag) {
					outside_range_flag = false;
					continue;
				}

				switch (prim_type) {
				case GE_PRIM_TRIANGLES:
				{
					if (!gstate.isCullEnabled() || gstate.isModeClear()) {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else if (!gstate.getCullMode())
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					else
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
					break;
				}

				case GE_PRIM_RECTANGLES:
					Clipper::ProcessRect(data[0], data[1]);
					break;

				case GE_PRIM_LINES:
					Clipper::ProcessLine(data[0], data[1]);
					break;

				case GE_PRIM_POINTS:
					Clipper::ProcessPoint(data[0]);
					break;
				}
			}
			break;
		}

	case GE_PRIM_LINE_STRIP:
		{
			int skip_count = 1; // Don't draw a line when loading the first vertex
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx & 1] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
				} else {
					Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_STRIP:
		{
			int skip_count = 2; // Don't draw a triangle when loading the first two vertices

			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx % 3] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_FAN:
		{
			unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

			if (indices)
				vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
			else
				vreader.Goto(0);
			data[0] = ReadVertex(vreader);

			for (int vtx = 1; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[2 - (vtx % 2)] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}
	}

	host->GPUNotifyDraw();
}
Пример #5
0
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	// Simple approximation of the real tesselation factor.
	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".
	if (num_patches_u == 0) num_patches_u = 1;
	if (num_patches_v == 0) num_patches_v = 1;
	int tess_u = gstate.getPatchDivisionU() / num_patches_u;
	int tess_v = gstate.getPatchDivisionV() / num_patches_v;
	if (tess_u < 4) tess_u = 4;
	if (tess_v < 4) tess_v = 4;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);
	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #6
0
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;
	
	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		if (indices)
			points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
		else
			points[idx] = simplified_control_points + idx;
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	SplinePatchLocal patch;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;

	TesselateSplinePatch(dest, count, patch, origVertType);

	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}
	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);

	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #7
0
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0);
	Flush();
}
Пример #8
0
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) {
	// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
	// implementation of the vertex decoder.
	VertexDecoder *dec = GetVertexDecoder(vertType);
	dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);

	// OK, morphing eliminated but bones still remain to be taken care of.
	// Let's do a partial software transform where we only do skinning.

	VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);

	SimpleVertex *sverts = (SimpleVertex *)outPtr;	

	const u8 defaultColor[4] = {
		(u8)gstate.getMaterialAmbientR(),
		(u8)gstate.getMaterialAmbientG(),
		(u8)gstate.getMaterialAmbientB(),
		(u8)gstate.getMaterialAmbientA(),
	};

	// Let's have two separate loops, one for non skinning and one for skinning.
	if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
		int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
		for (int i = lowerBound; i <= upperBound; i++) {
			reader.Goto(i);
			SimpleVertex &sv = sverts[i];
			if (vertType & GE_VTYPE_TC_MASK) {
				reader.ReadUV(sv.uv);
			}

			if (vertType & GE_VTYPE_COL_MASK) {
				reader.ReadColor0_8888(sv.color);
			} else {
				memcpy(sv.color, defaultColor, 4);
			}

			float nrm[3], pos[3];
			float bnrm[3], bpos[3];

			if (vertType & GE_VTYPE_NRM_MASK) {
				// Normals are generated during tesselation anyway, not sure if any need to supply
				reader.ReadNrm(nrm);
			} else {
				nrm[0] = 0;
				nrm[1] = 0;
				nrm[2] = 1.0f;
			}
			reader.ReadPos(pos);

			// Apply skinning transform directly
			float weights[8];
			reader.ReadWeights(weights);
			// Skinning
			Vec3f psum(0,0,0);
			Vec3f nsum(0,0,0);
			for (int i = 0; i < numBoneWeights; i++) {
				if (weights[i] != 0.0f) {
					Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12);
					Vec3f tpos(bpos);
					psum += tpos * weights[i];

					Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12);
					Vec3f tnorm(bnrm);
					nsum += tnorm * weights[i];
				}
			}
			sv.pos = psum;
			sv.nrm = nsum;
		}
	} else {
		for (int i = lowerBound; i <= upperBound; i++) {
			reader.Goto(i);
			SimpleVertex &sv = sverts[i];
			if (vertType & GE_VTYPE_TC_MASK) {
				reader.ReadUV(sv.uv);
			} else {
				sv.uv[0] = 0;  // This will get filled in during tesselation
				sv.uv[1] = 0;
			}
			if (vertType & GE_VTYPE_COL_MASK) {
				reader.ReadColor0_8888(sv.color);
			} else {
				memcpy(sv.color, defaultColor, 4);
			}
			if (vertType & GE_VTYPE_NRM_MASK) {
				// Normals are generated during tesselation anyway, not sure if any need to supply
				reader.ReadNrm((float *)&sv.nrm);
			} else {
				sv.nrm.x = 0;
				sv.nrm.y = 0;
				sv.nrm.z = 1.0f;
			}
			reader.ReadPos((float *)&sv.pos);
		}
	}

	// Okay, there we are! Return the new type (but keep the index bits)
	return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK);
}
Пример #9
0
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, u32 prim_type, u32 vertex_type)
{
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	// We're not actually going to decode, only reshuffle.
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);

	int undecodedVertexSize = vdecoder.VertexSize();

	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices)
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx;
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	u8 *decoded2 = decoded + 65536 * 24;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		HWSplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				u8 *v0 = patch.points[point_index];
				u8 *v1 = patch.points[point_index+1];
				u8 *v2 = patch.points[point_index+4];
				u8 *v3 = patch.points[point_index+5];

				// TODO: Insert UVs where applicable. Actually subdivide.
				CopyTriangle(dest, v0, v1, v2, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v0, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v3, undecodedVertexSize);
				CopyTriangle(dest, v3, v1, v2, undecodedVertexSize);
				count += 12;
			}
		}
	}
	delete[] patches;

	u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK;

	SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
	Flush();
}