void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]); else vreader.Goto(idx); patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } delete[] patches; }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1; else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2; else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3; else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2; else { // TODO: Unsupported } if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { VertexData data[max_vtcs_per_prim]; for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]); else vreader.Goto(vtx+i); data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessQuad(data[0], data[1]); break; } } } else if (prim_type == GE_PRIM_TRIANGLE_STRIP) { VertexData data[3]; unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } else if (prim_type == GE_PRIM_TRIANGLE_FAN) { VertexData data[3]; unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } }
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; if (patchBufferSize_ < num_patches_u * num_patches_v) { if (patchBuffer_) { FreeAlignedMemory(patchBuffer_); } patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16); patchBufferSize_ = num_patches_u * num_patches_v; } SplinePatch *patches = patchBuffer_; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) { if (indices_32bit) { vreader.Goto(indices32[idx]); } else if (indices_16bit) { vreader.Goto(indices16[idx]); } else { vreader.Goto(indices8[idx]); } } else { vreader.Goto(idx); } patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } host->GPUNotifyDraw(); }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; } VertexData data[max_vtcs_per_prim]; // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: case GE_PRIM_RECTANGLES: { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) { if (indices_32bit) { vreader.Goto(indices32[vtx + i]); } else if (indices_16bit) { vreader.Goto(indices16[vtx + i]); } else { vreader.Goto(indices8[vtx + i]); } } else { vreader.Goto(vtx+i); } data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessRect(data[0], data[1]); break; case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1]); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0]); break; } } break; } case GE_PRIM_LINE_STRIP: { int skip_count = 1; // Don't draw a line when loading the first vertex for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx & 1] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]); } } break; } case GE_PRIM_TRIANGLE_STRIP: { int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } case GE_PRIM_TRIANGLE_FAN: { unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } } host->GPUNotifyDraw(); }
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u; if (indices) patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = simplified_control_points + idx; } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; } } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; // Simple approximation of the real tesselation factor. // We shouldn't really split up into separate 4x4 patches, instead we should do something that works // like the splines, so we subdivide across the whole "mega-patch". if (num_patches_u == 0) num_patches_u = 1; if (num_patches_v == 0) num_patches_v = 1; int tess_u = gstate.getPatchDivisionU() / num_patches_u; int tess_v = gstate.getPatchDivisionV() / num_patches_v; if (tess_u < 4) tess_u = 4; if (tess_v < 4) tess_v = 4; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { BezierPatch& patch = patches[patch_idx]; TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType); } delete[] patches; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0); Flush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // TODO: Do something less idiotic to manage this buffer SimpleVertex **points = new SimpleVertex *[count_u * count_v]; // Make an array of pointers to the control points, to get rid of indices. for (int idx = 0; idx < count_u * count_v; idx++) { if (indices) points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else points[idx] = simplified_control_points + idx; } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; SplinePatchLocal patch; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.points = points; TesselateSplinePatch(dest, count, patch, origVertType); delete[] points; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0); Flush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u; if (indices) patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = simplified_control_points + idx; } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; } } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { BezierPatch& patch = patches[patch_idx]; TesselateBezierPatch(dest, count, patch, origVertType); } delete[] patches; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0); Flush(); }
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning. // The rest of the transform pipeline like lighting will go as normal, either hardware or software. // The implementation is initially a bit inefficient but shouldn't be a big deal. // An intermediate buffer of not-easy-to-predict size is stored at bufPtr. u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) { // First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate // implementation of the vertex decoder. VertexDecoder *dec = GetVertexDecoder(vertType); dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound); // OK, morphing eliminated but bones still remain to be taken care of. // Let's do a partial software transform where we only do skinning. VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType); SimpleVertex *sverts = (SimpleVertex *)outPtr; const u8 defaultColor[4] = { (u8)gstate.getMaterialAmbientR(), (u8)gstate.getMaterialAmbientG(), (u8)gstate.getMaterialAmbientB(), (u8)gstate.getMaterialAmbientA(), }; // Let's have two separate loops, one for non skinning and one for skinning. if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) { int numBoneWeights = vertTypeGetNumBoneWeights(vertType); for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } float nrm[3], pos[3]; float bnrm[3], bpos[3]; if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm(nrm); } else { nrm[0] = 0; nrm[1] = 0; nrm[2] = 1.0f; } reader.ReadPos(pos); // Apply skinning transform directly float weights[8]; reader.ReadWeights(weights); // Skinning Vec3f psum(0,0,0); Vec3f nsum(0,0,0); for (int i = 0; i < numBoneWeights; i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12); Vec3f tpos(bpos); psum += tpos * weights[i]; Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12); Vec3f tnorm(bnrm); nsum += tnorm * weights[i]; } } sv.pos = psum; sv.nrm = nsum; } } else { for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } else { sv.uv[0] = 0; // This will get filled in during tesselation sv.uv[1] = 0; } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm((float *)&sv.nrm); } else { sv.nrm.x = 0; sv.nrm.y = 0; sv.nrm.z = 1.0f; } reader.ReadPos((float *)&sv.pos); } } // Okay, there we are! Return the new type (but keep the index bits) return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK); }
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, u32 prim_type, u32 vertex_type) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } // We're not actually going to decode, only reshuffle. VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); int undecodedVertexSize = vdecoder.VertexSize(); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx; } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } u8 *decoded2 = decoded + 65536 * 24; int count = 0; u8 *dest = decoded2; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { HWSplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; u8 *v0 = patch.points[point_index]; u8 *v1 = patch.points[point_index+1]; u8 *v2 = patch.points[point_index+4]; u8 *v3 = patch.points[point_index+5]; // TODO: Insert UVs where applicable. Actually subdivide. CopyTriangle(dest, v0, v1, v2, undecodedVertexSize); CopyTriangle(dest, v2, v1, v0, undecodedVertexSize); CopyTriangle(dest, v2, v1, v3, undecodedVertexSize); CopyTriangle(dest, v3, v1, v2, undecodedVertexSize); count += 12; } } } delete[] patches; u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK; SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0); Flush(); }