VertexDecoder *DrawEngineCommon::GetVertexDecoder(u32 vtype) { auto iter = decoderMap_.find(vtype); if (iter != decoderMap_.end()) return iter->second; VertexDecoder *dec = new VertexDecoder(); dec->SetVertexType(vtype, decOptions_, decJitCache_); decoderMap_[vtype] = dec; return dec; }
// Just to get something on the screen, we'll just not subdivide correctly. void TransformDrawEngine::DrawBezier(int ucount, int vcount) { u16 indices[3 * 3 * 6]; static bool reported = false; if (!reported) { Reporting::ReportMessage("Unsupported bezier curve"); reported = true; } // if (gstate.patchprimitive) // Generate indices for a rectangular mesh. int c = 0; for (int y = 0; y < 3; y++) { for (int x = 0; x < 3; x++) { indices[c++] = y * 4 + x; indices[c++] = y * 4 + x + 1; indices[c++] = (y + 1) * 4 + x + 1; indices[c++] = (y + 1) * 4 + x + 1; indices[c++] = (y + 1) * 4 + x; indices[c++] = y * 4 + x; } } // We are free to use the "decoded" buffer here. // Let's split it into two to get a second buffer, there's enough space. u8 *decoded2 = decoded + 65536 * 24; // Alright, now for the vertex data. // For now, we will simply inject UVs. float customUV[4 * 4 * 2]; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { customUV[(y * 4 + x) * 2 + 0] = (float)x/3.0f; customUV[(y * 4 + x) * 2 + 1] = (float)y/3.0f; } } if (!(gstate.vertType & GE_VTYPE_TC_MASK)) { VertexDecoder *dec = GetVertexDecoder(gstate.vertType); dec->SetVertexType(gstate.vertType); u32 newVertType = dec->InjectUVs(decoded2, Memory::GetPointer(gstate_c.vertexAddr), customUV, 16); SubmitPrim(decoded2, &indices[0], GE_PRIM_TRIANGLES, c, newVertType, GE_VTYPE_IDX_16BIT, 0); } else { SubmitPrim(Memory::GetPointer(gstate_c.vertexAddr), &indices[0], GE_PRIM_TRIANGLES, c, gstate.vertType, GE_VTYPE_IDX_16BIT, 0); } Flush(); // as our vertex storage here is temporary, it will only survive one draw. }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; } VertexData data[max_vtcs_per_prim]; // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: case GE_PRIM_RECTANGLES: { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) { if (indices_32bit) { vreader.Goto(indices32[vtx + i]); } else if (indices_16bit) { vreader.Goto(indices16[vtx + i]); } else { vreader.Goto(indices8[vtx + i]); } } else { vreader.Goto(vtx+i); } data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessRect(data[0], data[1]); break; case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1]); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0]); break; } } break; } case GE_PRIM_LINE_STRIP: { int skip_count = 1; // Don't draw a line when loading the first vertex for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx & 1] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]); } } break; } case GE_PRIM_TRIANGLE_STRIP: { int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } case GE_PRIM_TRIANGLE_FAN: { unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } } host->GPUNotifyDraw(); }
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; vdecoder.SetVertexType(vertex_type, options); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT; u8 *indices8 = (u8 *)indices; u16 *indices16 = (u16 *)indices; u32 *indices32 = (u32 *)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; if (patchBufferSize_ < num_patches_u * num_patches_v) { if (patchBuffer_) { FreeAlignedMemory(patchBuffer_); } patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16); patchBufferSize_ = num_patches_u * num_patches_v; } SplinePatch *patches = patchBuffer_; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) { if (indices_32bit) { vreader.Goto(indices32[idx]); } else if (indices_16bit) { vreader.Goto(indices16[idx]); } else { vreader.Goto(indices8[idx]); } } else { vreader.Goto(idx); } patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } host->GPUNotifyDraw(); }
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) { PROFILE_THIS_SCOPE("bezier"); DispatchFlush(); // TODO: Verify correct functionality with < 4. if (count_u < 4 || count_v < 4) return; u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding // There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great. SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 18; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u; if (indices) patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = simplified_control_points + idx; } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; patch.index = patch_v * num_patches_u + patch_u; patch.primType = prim_type; patch.computeNormals = computeNormals; patch.patchFacing = patchFacing; } } int count = 0; u8 *dest = splineBuffer; // Simple approximation of the real tesselation factor. // We shouldn't really split up into separate 4x4 patches, instead we should do something that works // like the splines, so we subdivide across the whole "mega-patch". if (num_patches_u == 0) num_patches_u = 1; if (num_patches_v == 0) num_patches_v = 1; if (tess_u < 4) tess_u = 4; if (tess_v < 4) tess_v = 4; u16 *inds = quadIndices_; int maxVertices = SPLINE_BUFFER_SIZE / vertexSize; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { BezierPatch& patch = patches[patch_idx]; TesselateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType, maxVertices); } delete[] patches; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } int bytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead); DispatchFlush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) { PROFILE_THIS_SCOPE("spline"); DispatchFlush(); // TODO: Verify correct functionality with < 4. if (count_u < 4 || count_v < 4) return; u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 18; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // TODO: Do something less idiotic to manage this buffer SimpleVertex **points = new SimpleVertex *[count_u * count_v]; // Make an array of pointers to the control points, to get rid of indices. for (int idx = 0; idx < count_u * count_v; idx++) { if (indices) points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else points[idx] = simplified_control_points + idx; } int count = 0; u8 *dest = splineBuffer; SplinePatchLocal patch; patch.tess_u = tess_u; patch.tess_v = tess_v; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.points = points; patch.computeNormals = computeNormals; patch.primType = prim_type; patch.patchFacing = patchFacing; int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize; TesselateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount); delete[] points; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } int bytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead); DispatchFlush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }
// TODO: This probably is not the best interface. bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16 *inds16 = (const u16 *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; default: return false; } } else { indices.clear(); } } else { indices.clear(); } static std::vector<u32> temp_buffer; static std::vector<SimpleVertex> simpleVertices; temp_buffer.resize(65536 * 24 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); VertexDecoder vdecoder; VertexDecoderOptions options; memset(&options, 0, sizeof(options)); options.expandAllUVtoFloat = false; // TODO: True should be fine here vdecoder.SetVertexType(gstate.vertType, options); DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); vertices.resize(indexUpperBound + 1); for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if (gstate.isModeThrough()) { if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); ScreenCoords screenPos = ClipToScreen(clipPos); DrawingCoords drawPos = ScreenToDrawing(screenPos); if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = 1.0; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } } return true; }
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, u32 prim_type, u32 vertex_type) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } // We're not actually going to decode, only reshuffle. VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); int undecodedVertexSize = vdecoder.VertexSize(); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx; } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } u8 *decoded2 = decoded + 65536 * 24; int count = 0; u8 *dest = decoded2; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { HWSplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; u8 *v0 = patch.points[point_index]; u8 *v1 = patch.points[point_index+1]; u8 *v2 = patch.points[point_index+4]; u8 *v3 = patch.points[point_index+5]; // TODO: Insert UVs where applicable. Actually subdivide. CopyTriangle(dest, v0, v1, v2, undecodedVertexSize); CopyTriangle(dest, v2, v1, v0, undecodedVertexSize); CopyTriangle(dest, v2, v1, v3, undecodedVertexSize); CopyTriangle(dest, v3, v1, v2, undecodedVertexSize); count += 12; } } } delete[] patches; u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK; SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0); Flush(); }
// TODO: This probably is not the best interface. // Also, we should try to merge this into the similar function in DrawEngineCommon. bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16 *inds16 = (const u16 *)inds; const u32 *inds32 = (const u32 *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_32BIT: WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes"); for (int i = 0; i < count; ++i) { // These aren't documented and should be rare. Let's bounds check each one. if (inds32[i] != (u16)inds32[i]) { ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range"); } indices[i] = (u16)inds32[i]; } break; } } else { indices.clear(); } } else { indices.clear(); } static std::vector<u32> temp_buffer; static std::vector<SimpleVertex> simpleVertices; temp_buffer.resize(65536 * 24 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); VertexDecoder vdecoder; VertexDecoderOptions options{}; vdecoder.SetVertexType(gstate.vertType, options); DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); vertices.resize(indexUpperBound + 1); for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if (gstate.isModeThrough()) { if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); ScreenCoords screenPos = ClipToScreen(clipPos); DrawingCoords drawPos = ScreenToDrawing(screenPos); if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0); vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0); } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = drawPos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } } // The GE debugger expects these to be set. gstate_c.curTextureWidth = gstate.getTextureWidth(0); gstate_c.curTextureHeight = gstate.getTextureHeight(0); return true; }
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec) { dec_ = &dec; const u8 *start = this->GetCodePtr(); #ifdef _M_IX86 // Store register values PUSH(ESI); PUSH(EDI); PUSH(EBX); PUSH(EBP); // Read parameters int offset = 4; MOV(32, R(srcReg), MDisp(ESP, 16 + offset + 0)); MOV(32, R(dstReg), MDisp(ESP, 16 + offset + 4)); MOV(32, R(counterReg), MDisp(ESP, 16 + offset + 8)); #endif // Save XMM4/XMM5 which apparently can be problematic? // Actually, if they are, it must be a compiler bug because they SHOULD be ok. // So I won't bother. SUB(PTRBITS, R(ESP), Imm8(64)); MOVUPS(MDisp(ESP, 0), XMM4); MOVUPS(MDisp(ESP, 16), XMM5); MOVUPS(MDisp(ESP, 32), XMM6); MOVUPS(MDisp(ESP, 48), XMM7); bool prescaleStep = false; // Look for prescaled texcoord steps for (int i = 0; i < dec.numSteps_; i++) { if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale || dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale || dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) { prescaleStep = true; } } // Add code to convert matrices to 4x4. // Later we might want to do this when the matrices are loaded instead. // This is mostly proof of concept. int boneCount = 0; if (dec.weighttype && g_Config.bSoftwareSkinning) { for (int i = 0; i < 8; i++) { MOVUPS(XMM0, M((gstate.boneMatrix + 12 * i))); MOVUPS(XMM1, M((gstate.boneMatrix + 12 * i + 3))); MOVUPS(XMM2, M((gstate.boneMatrix + 12 * i + 3 * 2))); MOVUPS(XMM3, M((gstate.boneMatrix + 12 * i + 3 * 3))); ANDPS(XMM0, M(&threeMasks)); ANDPS(XMM1, M(&threeMasks)); ANDPS(XMM2, M(&threeMasks)); ANDPS(XMM3, M(&threeMasks)); ORPS(XMM3, M(&aOne)); MOVAPS(M((bones + 16 * i)), XMM0); MOVAPS(M((bones + 16 * i + 4)), XMM1); MOVAPS(M((bones + 16 * i + 8)), XMM2); MOVAPS(M((bones + 16 * i + 12)), XMM3); } } // Keep the scale/offset in a few fp registers if we need it. if (prescaleStep) { #ifdef _M_X64 MOV(64, R(tempReg1), Imm64((u64)(&gstate_c.uv))); #else MOV(32, R(tempReg1), Imm32((u32)(&gstate_c.uv))); #endif MOVSS(fpScaleOffsetReg, MDisp(tempReg1, 0)); MOVSS(fpScratchReg, MDisp(tempReg1, 4)); UNPCKLPS(fpScaleOffsetReg, R(fpScratchReg)); if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) { MULPS(fpScaleOffsetReg, M(&by128)); } else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) { MULPS(fpScaleOffsetReg, M(&by32768)); } MOVSS(fpScratchReg, MDisp(tempReg1, 8)); MOVSS(fpScratchReg2, MDisp(tempReg1, 12)); UNPCKLPS(fpScratchReg, R(fpScratchReg2)); UNPCKLPD(fpScaleOffsetReg, R(fpScratchReg)); } // Let's not bother with a proper stack frame. We just grab the arguments and go. JumpTarget loopStart = GetCodePtr(); for (int i = 0; i < dec.numSteps_; i++) { if (!CompileStep(dec, i)) { // Reset the code ptr and return zero to indicate that we failed. SetCodePtr(const_cast<u8 *>(start)); return 0; } } ADD(PTRBITS, R(srcReg), Imm32(dec.VertexSize())); ADD(PTRBITS, R(dstReg), Imm32(dec.decFmt.stride)); SUB(32, R(counterReg), Imm8(1)); J_CC(CC_NZ, loopStart, true); MOVUPS(XMM4, MDisp(ESP, 0)); MOVUPS(XMM5, MDisp(ESP, 16)); MOVUPS(XMM6, MDisp(ESP, 32)); MOVUPS(XMM7, MDisp(ESP, 48)); ADD(PTRBITS, R(ESP), Imm8(64)); #ifdef _M_IX86 // Restore register values POP(EBP); POP(EBX); POP(EDI); POP(ESI); #endif RET(); return (JittedVertexDecoder)start; }
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("bezier"); DispatchFlush(); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter idxConv(vertType, indices); if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Real hardware seems to draw nothing when given < 4 either U or V. // This would result in num_patches_u / num_patches_v being 0. if (count_u < 4 || count_v < 4) { return; } // Simplify away bones and morph before proceeding // There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great. SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 18; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } float *pos = (float*)(decoded + 65536 * 18); // Size 4 float float *tex = pos + count_u * count_v * 4; // Size 4 float float *col = tex + count_u * count_v * 4; // Size 4 float const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0; const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0; // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch *patches = nullptr; if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) { int posStride, texStride, colStride; tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords); float *p = pos; float *t = tex; float *c = col; for (int idx = 0; idx < count_u * count_v; idx++) { SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(idx) : idx); memcpy(p, point->pos.AsArray(), 3 * sizeof(float)); p += posStride; if (hasTexCoords) { memcpy(t, point->uv, 2 * sizeof(float)); t += texStride; } if (hasColor) { memcpy(c, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float)); c += colStride; } } if (!hasColor) { SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(0) : 0); memcpy(col, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float)); } } else { patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u; patch.points[point] = simplified_control_points + (indices ? idxConv.convert(idx) : idx); } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; patch.index = patch_v * num_patches_u + patch_u; patch.primType = prim_type; patch.computeNormals = computeNormals; patch.patchFacing = patchFacing; } } } int count = 0; u8 *dest = splineBuffer; // We shouldn't really split up into separate 4x4 patches, instead we should do something that works // like the splines, so we subdivide across the whole "mega-patch". // If specified as 0, uses 1. if (tess_u < 1) { tess_u = 1; } if (tess_v < 1) { tess_v = 1; } u16 *inds = quadIndices_; if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) { tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords); TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type); numPatches = num_patches_u * num_patches_v; } else { int maxVertices = SPLINE_BUFFER_SIZE / vertexSize; // Downsample until it fits, in case crazy tessellation factors are sent. while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) { tess_u /= 2; tess_v /= 2; } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { const BezierPatch &patch = patches[patch_idx]; TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType); } delete[] patches; } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (origVertType & GE_VTYPE_TC_MASK) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead); DispatchFlush(); if (origVertType & GE_VTYPE_TC_MASK) { gstate_c.uv = prevUVScale; } }
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("spline"); DispatchFlush(); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter idxConv(vertType, indices); if (indices) GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Real hardware seems to draw nothing when given < 4 either U or V. if (count_u < 4 || count_v < 4) { return; } // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 18; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // TODO: Do something less idiotic to manage this buffer SimpleVertex **points = new SimpleVertex *[count_u * count_v]; // Make an array of pointers to the control points, to get rid of indices. for (int idx = 0; idx < count_u * count_v; idx++) { points[idx] = simplified_control_points + (indices ? idxConv.convert(idx) : idx); } int count = 0; u8 *dest = splineBuffer; SplinePatchLocal patch; patch.tess_u = tess_u; patch.tess_v = tess_v; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.points = points; patch.computeNormals = computeNormals; patch.primType = prim_type; patch.patchFacing = patchFacing; if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) { float *pos = (float*)(decoded + 65536 * 18); // Size 4 float float *tex = pos + count_u * count_v * 4; // Size 4 float float *col = tex + count_u * count_v * 4; // Size 4 float const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0; const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0; int posStride, texStride, colStride; tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords); float *p = pos; float *t = tex; float *c = col; for (int idx = 0; idx < count_u * count_v; idx++) { memcpy(p, points[idx]->pos.AsArray(), 3 * sizeof(float)); p += posStride; if (hasTexCoords) { memcpy(t, points[idx]->uv, 2 * sizeof(float)); t += texStride; } if (hasColor) { memcpy(c, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float)); c += colStride; } } if (!hasColor) memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float)); tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords); TessellateSplinePatchHardware(dest, quadIndices_, count, patch); numPatches = (count_u - 3) * (count_v - 3); } else { int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize; TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount); } delete[] points; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if ((origVertType & GE_VTYPE_TC_MASK) != 0) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0.0f; gstate_c.uv.vOff = 0.0f; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead); DispatchFlush(); if ((origVertType & GE_VTYPE_TC_MASK) != 0) { gstate_c.uv = prevUVScale; } }
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u; if (indices) patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = simplified_control_points + idx; } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; } } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { BezierPatch& patch = patches[patch_idx]; TesselateBezierPatch(dest, count, patch, origVertType); } delete[] patches; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0); Flush(); }
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning. // The rest of the transform pipeline like lighting will go as normal, either hardware or software. // The implementation is initially a bit inefficient but shouldn't be a big deal. // An intermediate buffer of not-easy-to-predict size is stored at bufPtr. u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) { // First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate // implementation of the vertex decoder. VertexDecoder *dec = GetVertexDecoder(vertType); dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound); // OK, morphing eliminated but bones still remain to be taken care of. // Let's do a partial software transform where we only do skinning. VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType); SimpleVertex *sverts = (SimpleVertex *)outPtr; const u8 defaultColor[4] = { (u8)gstate.getMaterialAmbientR(), (u8)gstate.getMaterialAmbientG(), (u8)gstate.getMaterialAmbientB(), (u8)gstate.getMaterialAmbientA(), }; // Let's have two separate loops, one for non skinning and one for skinning. if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) { int numBoneWeights = vertTypeGetNumBoneWeights(vertType); for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } float nrm[3], pos[3]; float bnrm[3], bpos[3]; if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm(nrm); } else { nrm[0] = 0; nrm[1] = 0; nrm[2] = 1.0f; } reader.ReadPos(pos); // Apply skinning transform directly float weights[8]; reader.ReadWeights(weights); // Skinning Vec3f psum(0,0,0); Vec3f nsum(0,0,0); for (int i = 0; i < numBoneWeights; i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12); Vec3f tpos(bpos); psum += tpos * weights[i]; Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12); Vec3f tnorm(bnrm); nsum += tnorm * weights[i]; } } sv.pos = psum; sv.nrm = nsum; } } else { for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } else { sv.uv[0] = 0; // This will get filled in during tesselation sv.uv[1] = 0; } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm((float *)&sv.nrm); } else { sv.nrm.x = 0; sv.nrm.y = 0; sv.nrm.z = 1.0f; } reader.ReadPos((float *)&sv.pos); } } // Okay, there we are! Return the new type (but keep the index bits) return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK); }
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]); else vreader.Goto(idx); patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } delete[] patches; }
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1; else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2; else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3; else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2; else { // TODO: Unsupported } if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { VertexData data[max_vtcs_per_prim]; for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]); else vreader.Goto(vtx+i); data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessQuad(data[0], data[1]); break; } } } else if (prim_type == GE_PRIM_TRIANGLE_STRIP) { VertexData data[3]; unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } else if (prim_type == GE_PRIM_TRIANGLE_FAN) { VertexData data[3]; unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } }
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // TODO: Do something less idiotic to manage this buffer SimpleVertex **points = new SimpleVertex *[count_u * count_v]; // Make an array of pointers to the control points, to get rid of indices. for (int idx = 0; idx < count_u * count_v; idx++) { if (indices) points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else points[idx] = simplified_control_points + idx; } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; SplinePatchLocal patch; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.points = points; TesselateSplinePatch(dest, count, patch, origVertType); delete[] points; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0); Flush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }
void TransformAndDrawPrim(void *verts, void *inds, int prim, int vertexCount, LinkedShader *program, float *customUV, int forceIndexType) { // First, decode the verts and apply morphing VertexDecoder dec; dec.SetVertexType(gstate.vertType); dec.DecodeVerts(decoded, verts, inds, prim, vertexCount); bool useTexCoord = false; // Check if anything needs updating if (gstate.textureChanged) { if (gstate.textureMapEnable && !(gstate.clearmode & 1)) { PSPSetTexture(); useTexCoord = true; } } // Then, transform and draw in one big swoop (urgh!) // need to move this to the shader. // We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0. // Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of // this code. // Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed // space and thus make decent use of hardware transform. // Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for // GL_TRIANGLES. Still need to sw transform to compute the extra two corners though. // Temporary storage for RECTANGLES emulation float v2[3] = {0}; float uv2[2] = {0}; int numTrans = 0; TransformedVertex *trans = &transformed[0]; // TODO: Could use glDrawElements in some cases, see below. // TODO: Split up into multiple draw calls for Android where you can't guarantee support for more than 0x10000 verts. int i = 0; #ifdef ANDROID if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif for (int i = 0; i < vertexCount; i++) { int indexType = (gstate.vertType & GE_VTYPE_IDX_MASK); if (forceIndexType != -1) { indexType = forceIndexType; } int index; if (indexType == GE_VTYPE_IDX_8BIT) { index = ((u8*)inds)[i]; } else if (indexType == GE_VTYPE_IDX_16BIT) { index = ((u16*)inds)[i]; } else { index = i; } float v[3] = {0,0,0}; float c[4] = {1,1,1,1}; float uv[2] = {0,0}; if (gstate.vertType & GE_VTYPE_THROUGH_MASK) { // Do not touch the coordinates or the colors. No lighting. for (int j=0; j<3; j++) v[j] = decoded[index].pos[j]; // TODO : check if has color for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; // TODO : check if has uv for (int j=0; j<2; j++) uv[j] = decoded[index].uv[j]; //Rescale UV? } else { //We do software T&L for now float out[3], norm[3]; if ((gstate.vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE) { Vec3ByMatrix43(out, decoded[index].pos, gstate.worldMatrix); Norm3ByMatrix43(norm, decoded[index].normal, gstate.worldMatrix); } else { Vec3 psum(0,0,0); Vec3 nsum(0,0,0); int nweights = (gstate.vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT; for (int i = 0; i < nweights; i++) { Vec3ByMatrix43(out, decoded[index].pos, gstate.boneMatrix+i*12); Norm3ByMatrix43(norm, decoded[index].normal, gstate.boneMatrix+i*12); Vec3 tpos(out), tnorm(norm); psum += tpos*decoded[index].weights[i]; nsum += tnorm*decoded[index].weights[i]; } nsum.Normalize(); psum.Write(out); nsum.Write(norm); } // Perform lighting here if enabled. don't need to check through, it's checked above. float dots[4] = {0,0,0,0}; if (program->a_color0 != -1) { //c[1] = norm[1]; float litColor[4] = {0,0,0,0}; Light(litColor, decoded[index].color, out, norm, dots); if (gstate.lightingEnable & 1) { memcpy(c, litColor, sizeof(litColor)); } else { // no lighting? copy the color. for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } } else { // no color in the fragment program??? for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } if (customUV) { uv[0] = customUV[index * 2 + 0]*gstate.uScale + gstate.uOff; uv[1] = customUV[index * 2 + 1]*gstate.vScale + gstate.vOff; } else { // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.texmapmode & 0x3) { case 0: // UV mapping // Texture scale/offset is only performed in this mode. uv[0] = decoded[index].uv[0]*gstate.uScale + gstate.uOff; uv[1] = decoded[index].uv[1]*gstate.vScale + gstate.vOff; break; case 1: { // Projection mapping Vec3 source; switch ((gstate.texmapmode >> 8) & 0x3) { case 0: // Use model space XYZ as source source = decoded[index].pos; break; case 1: // Use unscaled UV as source source = Vec3(decoded[index].uv[0], decoded[index].uv[1], 0.0f); break; case 2: // Use normalized normal as source source = Vec3(norm).Normalized(); break; case 3: // Use non-normalized normal as source! source = Vec3(norm); break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; } break; case 2: // Shade mapping { int lightsource1 = gstate.texshade & 0x3; int lightsource2 = (gstate.texshade >> 8) & 0x3; uv[0] = dots[lightsource1]; uv[1] = dots[lightsource2]; } break; case 3: // Illegal break; } } // Transform the coord by the view matrix. Should this be done before or after texcoord generation? Vec3ByMatrix43(v, out, gstate.viewMatrix); } // We need to tesselate axis-aligned rectangles, as they're only specified by two coordinates. if (prim == GE_PRIM_RECTANGLES) { if ((i & 1) == 0) { // Save this vertex so we can generate when we get the next one. Color is taken from the last vertex. memcpy(v2, v, sizeof(float)*3); memcpy(uv2,uv,sizeof(float)*2); } else { // We have to turn the rectangle into two triangles, so 6 points. Sigh. // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top right trans->x = v2[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom left trans->x = v[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; numTrans += 6; } } else { memcpy(&trans->x, v, 3*sizeof(float)); memcpy(trans->color, c, 4*sizeof(float)); memcpy(trans->uv, uv, 2*sizeof(float)); trans++; numTrans++; } } glEnableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glEnableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glEnableVertexAttribArray(program->a_color0); const int vertexSize = sizeof(*trans); glVertexAttribPointer(program->a_position, 3, GL_FLOAT, GL_FALSE, vertexSize, transformed); if (useTexCoord && program->a_texcoord != -1) glVertexAttribPointer(program->a_texcoord, 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 3 * 4); if (program->a_color0 != -1) glVertexAttribPointer(program->a_color0, 4, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 5 * 4); // NOTICE_LOG(G3D,"DrawPrimitive: %i", numTrans); glDrawArrays(glprim[prim], 0, numTrans); glDisableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glDisableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glDisableVertexAttribArray(program->a_color0); /* if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_8BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_BYTE, inds); } else if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_SHORT, inds); } else {*/ }
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) { Flush(); if (prim_type != GE_PATCHPRIM_TRIANGLES) { // Only triangles supported! return; } u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; const u8* indices8 = (const u8*)indices; const u16* indices16 = (const u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12); u8 *temp_buffer = decoded + 65536 * 24; u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt(); // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; patch_u++) { for (int patch_v = 0; patch_v < num_patches_v; patch_v++) { BezierPatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u; if (indices) patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]); else patch.points[point] = simplified_control_points + idx; } patch.u_index = patch_u * 3; patch.v_index = patch_v * 3; } } u8 *decoded2 = decoded + 65536 * 36; int count = 0; u8 *dest = decoded2; // Simple approximation of the real tesselation factor. // We shouldn't really split up into separate 4x4 patches, instead we should do something that works // like the splines, so we subdivide across the whole "mega-patch". if (num_patches_u == 0) num_patches_u = 1; if (num_patches_v == 0) num_patches_v = 1; int tess_u = gstate.getPatchDivisionU() / num_patches_u; int tess_v = gstate.getPatchDivisionV() / num_patches_v; if (tess_u < 4) tess_u = 4; if (tess_v < 4) tess_v = 4; for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { BezierPatch& patch = patches[patch_idx]; TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType); } delete[] patches; u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (g_Config.bPrescaleUV) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0); Flush(); if (g_Config.bPrescaleUV) { gstate_c.uv = prevUVScale; } }